
DunceCap: Query Plans Using Generalized Hypertree
Decompositions

[Extended Abstract]

Susan Tu
∗

Stanford University
sctu@stanford.edu

Christopher Ré
†

Stanford University
chrismre@stanford.edu

ABSTRACT
Joins are central to data processing. However, traditional
query plans for joins, which are based on choosing the or-
der of pairwise joins, are provably suboptimal. They often
perform poorly on cyclic graph queries, which have become
increasingly important to modern data analytics. Other
join algorithms exist: Yannakakis’, for example, operates
on acyclic queries in runtime proportional to the input size
plus the output size [7]. More recently, Ngo et al. published
a join algorithm that is optimal on worst-case inputs [5]. My
contribution is to explore query planning using these join al-
gorithms. In our approach, every query plan can be viewed
as a generalized hypertree decomposition (GHD). We score
each GHD using the minimal fractional hypertree width,
which Ngo et al. show allows us to bound its worst-case
runtime. We benchmark our plans using datasets from the
Stanford Large Network Dataset Collection [4] and find that
our performance compares favorably against that of Log-
icBlox, a commercial system that implements a worst-case
optimal join algorithm.

1. PRELIMINARIES
We begin by describing Yannakakis’ and a worst-case op-

timal join algorithm.

1.1 Yannakakis
Yannakakis’ algorithm consists of constructing the tree

TGY O implicit in performing the Graham-Yu-Ozsoyoglu (GYO)
reduction. For every leaf v in TGY O with relation R, com-
pute R := RnS where S is the relation in the leaf’s parent.

∗Thanks to Adam Perelman, with whom I worked to im-
plement the two join algorithms and who implemented the
count query. Thanks to Chris Aberger and Andres Nötzli
for implementation advice, and to Rohan Puttagunta and
Manas Joglekar for theory help.
†This project is supported by the National Science Founda-
tion CAREER Award (No. IIS-1353606).

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
ACM 978-1-4503-2758-9/15/05.
http://dx.doi.org/10.1145/2723372.2764946.

Now recursively fully reduce TGY O without v. Then com-
pute S := S n R. Finally, join each leaf in the tree with its
parent. Since the semijoins “filter out” input tuples that will
not appear in the final result, they prevent wasted work in
the final join phase.

1.2 Worst-Case Optimal Join Algorithms
We implemented the worst-case optimal join algorithm de-

scribed in Ngo, Rudra, and Ré’s survey [5]., which we repro-
duce below as Algorithm 1. To see a situation in which this
algorithm is optimal, consider the triangle query R1(A,B) 1
R2(B,C) 1 R3(C,A). As a concrete example (taken from
[6]), consider having all three relations contain (1, 2), (1, 3),
(1, 4), (2, 1), (3, 1), (4, 1). The maximum number of tuples

that could result from a triangle query is O(M3/2). Algo-

rithm 1 is O(M3/2); any pairwise join is Ω(M2).

Algorithm 1 Worst-case optimal join algorithm

Input : Query Q , hypergraph H = (V, E)
def WorstCaseOptimalJoin (1F∈E RF)

Q = ∅
I f |V| = 1 then

return
⋂

F∈E RF

Let I = {v} , J = V \ I for some v ∈ V .
A = WorstCaseOptimalJoin(1{F∈E|I∩F 6=∅} πI(RF))

For every a ∈ A :
partialQ{a} = WorstCaseOptimalJoin (

1{F∈E|J∩F 6=∅} πJ (RF n {a}))
Q = Q ∪ {a} × partialQ{a}

return Q

2. APPROACH
DunceCap (DC), our query compiler, uses a hybrid al-

gorithm to perform joins. Algorithm 1 is guaranteed to
be optimal only for worst-case data but can be used for
any query, whereas Yannakakis can only be used on acyclic
queries. We might ask, given a cyclic query, how can we sep-
arate the query into subqueries such that the results of the
subqueries can be joined using Yannakakis? (The subqueries
would be computed using Algorithm 1.) The subquery that
takes the most time in such a partition of work would con-
tribute the dominant term in the worst case analysis, and if
we parallelize the computation of the subqueries, the largest
subquery will be the bottleneck computation. We therefore
seek to minimize the size of the largest subquery output.

2077

2.1 Generalized Hypertree Decomposition
A theory problem that maps well to this problem of allo-

cating subqueries to Algorithm 1 is finding a minimal width
generalized hypertree decomposition (GHD). A GHD of a
join query 1i∈{1,...,d} Ri is a tree T where each node con-
tains at least one relation, each relation appears in at least
one node (we also refer to these nodes as bags), and if a
bag v and a bag u both contain an attribute A, all bags
on the path between v and u contain A. Where α(v) de-
notes the number of attributes in node v and V is the set
of all nodes in the GHD, the generalized hypertree width is
maxv∈V (α(v)− 1). While finding a minimal width GHD is
NP-hard [3], our inputs are so small (our inputs are relations
and their attributes, not tuples) that we can use Algorithm
2 to enumerate a GHD of every possible width.

Algorithm 2 Algorithm for enumerating GHDs

def enumerateGHDs (E , a t t r i b u t e s)
For every n in 1 to |E| :

For every p o s s i b l e subset S o f s i z e n in E :
For any R ∈ E \ S :

I f R . a t t r i b u t e s ∩ a t t r i b u t e s 6⊆ S . a t t r i b u t e s
return []

Find connected components in E \ S ,
i gno r ing a t t r i b u t e s in S
For every connected component Ci :

s ub t r e e s {Ci} = enumerateGHDs (
Ci , S . a t t r i b u t e s)

subt r e e s = {{c1, c2, . . .} | each ci ∈ subtrees{Ci}}
r e s u l t = []
For each s in subt r e e s :

r e s u l t . append (S with s as ch i l d r en)
return r e s u l t

2.1.1 Fractional Hypertree Width
The Atserias, Grohe, and Marx bound tells us that the

output size is upper bounded by
∏

F∈E |RF |xF , under the
constraints ∀v ∈ V,

∑
F :v∈F xF ≥ 1 and xF ≥ 0 [2]. We

would therefore like to minimize
∏

F∈E |RF |xF , subject to
those constraints. If we assume that |RF | = N for all F ∈ E
(which is true for graph queries), we can take the log of our
objective and divide by log(N). Then our linear program is:
minimize

∑
F∈E xF , subject to ∀v ∈ V,

∑
F :v∈F xF ≥ 1 and

xF ≥ 0. Its solution is known as the fractional hypertree
width (FHW). We can score all the GHDs according to the
FHW instead of the generalized hypertree width.

2.2 Attribute Ordering
Because we represent our tables using tries, it is advanta-

geous, for the joins in Yannakakis, to have the join attributes
at or near the first level of the trie. We therefore compute a
global attribute ordering by performing a pre-order traver-
sal of our plan’s GHD. If attribute A comes before B in the
global attribute ordering, in the tries we index A before B,
and we perform intersections on A before B in Algorithm 1.

3. RESULTS
We benchmarked our query plans on the Arxiv GR-QC

collaboration network (5242 nodes, 14496 edges) and Face-
book friend lists (4039 nodes, 88234 edges) [4]. (Each edge
is represented as a tuple in our input tables.) Execution
times are presented in Tables 1 and 2. Our numbers com-
pare favorably with LogicBlox’s despite their use of all 48

Query DC 1 bag DC min FHW LogicBlox Count
Triangle 0.051 0.051 0.56 290E3

(3,1)-Lollipop 0.133 0.069 0.92 ~10E6
(4,1)-Lollipop 5.576 0.817 6.06 ~342E6

4-Clique 0.538 0.538 1.37 ~8E6

Table 1: Time (s) to run queries that count the occurrences
of various graph structures on the Arxiv dataset. Note that
for triangle and 4-clique, the 1-bag plan is the minimal FHW
plan. Datasets are not pruned, so each triangle is counted
6x, etc. Benchmarks were run on a machine with 48 cores
on 4 Intel Xeon E5-4657L v2 CPUs and 1 TB of RAM.

Query DC 1 bag DC min FHW LogicBlox Count
Triangle 0.281 0.281 0.88 ~10E6

(3,1)-Lollipop 3.427 0.529 21.47 ~1.4E9
(4,1)-Lollipop 416.753 48.408 1084.83 ~121E9

4-Clique 29.437 29.437 26.23 ~720E6

Table 2: Time (s) to run queries on the Facebook dataset.
Queries and experimental setup are the same as in Table 1.

cores. We currently use 1 thread but are faster on all queries
except for the 4-clique query on Facebook.

Note that there can be quite a drastic difference in execu-
tion times between the minimal FHW and any other arbi-
trary plan: For example, the query plan for the (4,1)-lollipop
count query that puts a single edge from the 4-clique part
of the structure into a bag and the rest in another bag takes
over 14 seconds to run on the Arxiv dataset. The optimal
plan, which places the 4-clique in a bag and the remaining
edge in a bag (FHW=2), takes 817 ms. We also bench-
marked all the 1 or 2-bag plans we generate for the (3,1)-
Lollipop count query. The 2 plans with FHW=1.5 take 69
and 69 ms, the plans with FHW=2 take 137 to 10866 ms,
and the plans with FHW=3 take 641 and 11967 ms. These
times show that plans with lower FHW are indeed faster.

4. FUTURE WORK
EmptyHeaded is an graph pattern engine that uses SIMD

parallelism to implement fast set intersections [1], which we
plan to leverage in the base case of Algorithm 1. We plan
to more thoroughly test our system on different queries (in-
cluding non-graph queries where the relations have more at-
tributes) and datasets.

5. REFERENCES
[1] C. R. Aberger, A. Nötzli, K. Olukotun, and C. Ré.

EmptyHeaded: Boolean Algebra Based Graph Processing.
ArXiv e-prints, Mar. 2015.

[2] A. Atserias, M. Grohe, and D. Marx. Size bounds and query
plans for relational joins, 2008.

[3] G. Gottlob, Z. Miklós, and T. Schwentick. Generalized
hypertree decompositions: Np-hardness and tractable
variants. J. ACM, 56(6):30:1–30:32, Sept. 2009.

[4] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large
network dataset collection, June 2014.

[5] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-case
optimal join algorithms. PODS ’12, pages 37–48, New York,
NY, USA, 2012. ACM.

[6] H. Q. Ngo, C. Re, and A. Rudra. Skew strikes back: New
developments in the theory of join algorithms. CoRR,
abs/1310.3314, 2013.

[7] M. Yannakakis. Algorithms for acyclic database schemes.
VLDB ’81, pages 82–94. VLDB Endowment, 1981.

2078

