
Can Modern Graph Processing Engines Run Concurrent�eries
E�iciently?

Ma�hias Hauck

Computer Engineering Group,

Ruprecht-Karls University of

Heidelberg / SAP SE

ma�hias.hauck@sap.com

Marcus Paradies

SAP SE

marcus.paradies@sap.com

Holger Fröning

Computer Engineering Group,

Ruprecht-Karls University of

Heidelberg

holger.froening@ziti.uni-heidelberg.

de

ABSTRACT

Analytic graph processing has witnessed an ever-growing interest

both in industry and academia with the focus on providing the

most e�ective algorithm implementations to maximize single-query

performance. In a complex application scenario, where multiple

users issue concurrent queries to the analytic graph processing

engine, the major performance metric is throughput rather than

single-query elapsed time. As of today, there is no single-node

graph engine that is designed for concurrent graph processing

running multiple queries in parallel.

In this work, we analyze the single-node graph engine Galois and

extend it to run multiple graph queries concurrently. We perform

an extensive evaluation of Galois for various graph algorithms and

data sets to gain a fundamental understanding of the performance

bo�lenecks of existing graph engines. Finally, we derive important

insights and conclude that modern graph engines cannot be easily

adapted to handle concurrent graph queries e�ciently.

CCS CONCEPTS

•Information systems→Online analytical processing engines;

•General and reference →Performance; •�eory of computa-

tion →Graph algorithms analysis;

KEYWORDS

Concurrent query processing, Graph Processing, Experimental

Study

ACM Reference format:

Ma�hias Hauck, Marcus Paradies, and Holger Fröning. 2017. Can Mod-

ern Graph Processing Engines Run Concurrent �eries E�ciently?. In

Proceedings of GRADES’17, Chicago, IL, USA, May 19, 2017, 6 pages.

DOI: h�p://dx.doi.org/10.1145/3078447.3078452

1 INTRODUCTION

Analytic graph processing has witnessed a widespread adoption

across multiple application domains, including social media, health

care, transportation management, and telecommunication.

In practice, graph instances from these domains can consist of

billions of edges and use hundreds of GB of main memory. Today

ACM acknowledges that this contribution was authored or co-authored by an employee,

contractor or a�liate of a national government. As such, the Government retains a

nonexclusive, royalty-free right to publish or reproduce this article, or to allow others

to do so, for Government purposes only.

GRADES’17, Chicago, IL, USA
© 2017 ACM. 978-1-4503-5038-9/17/05. . .$15.00

DOI: h�p://dx.doi.org/10.1145/3078447.3078452

even single computing machines can easily accommodate multiple

hundreds of GB, even multiple TB, which makes a strong case to

support such graph processing within one machine boundary. How-

ever, the sheer graph size requires analytic graph algorithms to be

processed e�ciently, while it is also necessary to utilize all available

computing resources using e�cient, parallelized implementations

of these algorithms.

Especially when executed in parallel, e�cient graph algorithm

implementations have multiple interesting runtime properties. �e

most important one is the varying intra-algorithm parallelism. Due

to the data-dependent execution behavior, the available parallelism

during execution of a query can vary between one and multiple

hundreds of concurrent activities [3]. Insu�cient available paral-

lelism can limit the potential system utilization especially in modern

multi-core server systems. Additionally, there are also algorithmic

properties that are sensitive to parallelism. For example, the positive

e�ect of asynchronous execution can decrease due to an increasing

number of parallel compute units. Limiting the parallel execution

can increase algorithmic e�ciency, while it also frees resources.

In classic relational enterprise database environments or web-

scale NoSQL environments the systems must handle multiple queries

at the same time. Multi-user setups are common, where users can

issue queries concurrently to the same system. Additionally, these

queries can expose independent parts, which can be executed inde-

pendently and be issued as batches. �ere is no reason to assume

that analytic graph engines will not be used similarly. A system

could run di�erent queries in batch or by di�erent users on the

complete graph, and in addition, analytic operations could run on

di�erent subgraphs.

Especially in interactive scenarios, users demand a low response

time for the queries they issue. According to Li�le’s law from queu-

ing theory requires a low mean response time a high throughput.

Typical approaches to improve throughput are to enhance system

utilization by increasing the available parallelism or the e�ciency of

execution. More parallelism can be provided by introducing more

intra-query parallelism within each query, or by increasing the

inter-query parallelism through the concurrent execution of multi-

ple queries. In contrast to increased system utilization, increased

e�ciency typically covers algorithmic improvements, optimized

resource assignment or a limitation of intra-query parallelism to

reduce overheads.

Both approaches are a�ected by the previously mentioned prop-

erties of graph algorithms. To the best of our knowledge, there

are only a few publications about concurrent execution of analytic

GRADES’17, May 19, 2017, Chicago, IL, USA Ma�hias Hauck, Marcus Paradies, and Holger Fröning

graph queries like [11], especially none that analyses execution be-

havior. We �ll this gap by an analysis of the current state of graph

processing engines. As there are no systems built for concurrent

query execution, we realize it by executing multiple instances of a

state-of-the-art engine in parallel.

�e main goal of this work is to give an overview, which im-

plications on throughput arise from executing a state-of-the-art

single-node graph processing engine in parallel. To get a �rst funda-

mental understanding of concurrent execution of graph queries, we

focus on workloads where the input graphs and the executed algo-

rithm are the same for all queries (homogeneous). We present our

measurements for a concurrent execution of analytic graph queries

with (1) di�erent algorithms at di�erent sizes, (2) with limited intra-

query parallelism, and (3) with enhanced thread contention. Based

on these measurements we provide an analysis of these three e�ects

and identify issues related to concurrent execution.

2 BACKGROUND

In this study we choose Galois [3] as a representative for a modern

graph engine. �e �rst reason for this choice is clearly that it is one

of the fastest graph processing engines available [7].

Galois has a programming model [5] that provides a rich tool set

to formalize algorithms and to exploit parallelism. Algorithms are

implemented as an operator and a strategy to schedule operators

for execution. �e range of schedulers include simple topology-

centric, advanced asynchronous, and data driven schedulers that

support priorities. In addition, some of these schedulers can exploit

hardware properties like NUMA. �e second reason we choose

Galois is because this range of schedulers also allows to e�ciently

support a large range of algorithms.

Based on the insights from the work of Pingali et al. [5], we

expect that this programming model exposes in contrast to for

example BSP-style programming models a higher variability in the

degree of concurrency. �is variability in concurrency should result

in similar resource usage. �en concurrent query execution could

help to increase the overall performance by leveraging unused

resources, which is our third reason.

�e authors of Galois do not claim that Galois is made or suited

for concurrent execution. In fact, the system is optimized for exclu-

sive use of system resources, so it binds threads to cpu cores using

libnuma1
. �read binding is realized by mapping deterministically

threads for the same algorithm and identical thread numbers on the

same system always to the same cores. �is behavior is typically

harmful for a concurrent query execution, as it causes a signi�cant

interference between di�erent Galois instances.

3 METHODOLOGY

�e overarching goal of this experimental analysis is to assess the

feasibility of using existing graph processing engines for the con-

current execution of multiple analytic queries. A graph processing

engine optimized for concurrent execution would be able to execute

these concurrent queries at least without decreasing the through-

put. However, one can anticipate that there are various reasons

1
�e use of libnuma make the use of tools like numactl not possible, because libnuma

overwrites external bindings. So we are not able to enforce a collision-free thread

binding (see also subsection 4.3).

Figure 1: �e components of the measurement process for

concurrent and sequential query execution

both within the so�ware and the hardware side that can decrease

the throughput of a concurrent query execution.

Figure 1 gives an overview of our measuring approach and our

terminology. In our de�nition, a query is an input graph and algo-
rithm that is applied on the input graph. Graph query executions

vary in their behavior based on these algorithms and input graphs.
As a representative set of graph algorithm we select PageRank (pr),

strongly connected component (scc), and breadth-�rst search (bfs)

and used Galois example implementations of them in the default

variant, except for pr where we had to choose the pull variant.

We generate the input graphs using the rmat graph generator

implementation from the PBBS project [8] and use the default

parameters (a = 0.5, b = 0.1, c = 0.1, d = 0.3). �e generated data

sets
2

are small (|V | = 0.13 M, |E | = 1.92 M), medium (|V | = 1.05 M,

|E | = 19.6 M) and large (|V | = 16.7 M, |E | = 198 M). �e sizes of

the data sets are similar to the data size in productive environments.

We measure performance as throughput in terms of executed

queries per second, but for readability we rather report the inverse

of this metric, which is the elapsed time per query. To measure

the elapsed time, we execute all queries for a combination of al-
gorithms and input graph as a batch. So for sequential execution

the elapsed time per query is equal to the mean time spent on one

query, while for concurrent execution it is the calculated fraction of

the total elapsed time spent on a query in a batch. �e total elapsed
time is measured from the start of the �rst query in a batch until

the last query has completed. �is means that the measurements

include not only the query algorithm execution but also initializa-

tion, data load and shutdown of the engine. In our opinion this is

also the typical usage scenario for such a system in a productive

environment.

In our setup we have two types of parallelism: inter-query con-

currency, due to concurrent execution of multiple Galois instances,
and intra-query parallelism, as the query-internal parallel process-

ing uses multiple threads. When multiple queries are executed

concurrently, the batch size refers to the number of concurrently exe-

cuted instances. A concurrent work queue (gnu parallel [9]) executes

2
�e number of vertices is automatically rounded up to the next power of two by the

generator.

Can Modern Graph Processing Engines Run Concurrent �eries E�iciently? GRADES’17, May 19, 2017, Chicago, IL, USA

small sequential medium sequential large sequential

small concurrent medium concurrent large concurrent

2 3 4 5 6 7 8 9 10
10
−1

10
0

10
1

Instances

E
l
a
p

s
e
d

t
i
m

e
p

e
r

q
u

e
r
y

[
s
]

Algorithm: bfs

2 3 4 5 6 7 8 9 10
10
−1

10
0

10
1

Instances

Algorithm: scc

2 3 4 5 6 7 8 9 10
10
−1

10
0

10
1

10
2

Instances

Algorithm: pr

Figure 2: Elapsed time of a single query out of a batch using di�erent algorithms on a homogeneous workload using all cores

without thread binding.

the query batches. We evaluate 2 to 10 concurrent instances, but later

report only a part of them, because the rest of the measurements

give no additional insights. Apart from inter-query parallelism,

which we control by the maximum number of concurrent instances
the work queue can issue, we control intra-query parallelism with a

thread limit that we pass to the instances as a command line argu-

ment. In our experiments we deactivate thread binding using an

environment variable. We chose for bfs the same start node, so the

work of the same con�guration is always identical and it ensures

that not an isolated vertex is selected.

3.1 System con�guration

We use a dual-socket Linux-based system (SLES 11 SP 4) with Intel

Xeon X5650 (Westmere) CPUs. Our system is equipped with 2 × 6

cores @2.66 GHz with Hyper-�reading enabled, 12 MB last-level

cache for each socket, and 48 GB DDR3 RAM @1333 MHz. �e cpu

frequency scaling governor was set to “on demand”. We compile

Galois with gcc 6.2 and Atlas 3.10.2 as a BLAS/Lapack library

together with the optimization �ags -O3 and -march=nativewhich

enables the compiler to use the complete instruction set of the cpu.

For time measurement we use the GNU tool date with nanosecond

resolution.

4 OBSERVATIONS FOR HOMOGENEOUS

GRAPH QUERYWORKLOADS

In this section we analyze the execution of homogeneous concur-

rent graph workloads where multiple queries of the same type and

on the same input graph are executed concurrently. Even though,

we believe that this is not the typical case of concurrent execu-

tion of graph queries, we also believe it to be important for a �rst

fundamental understanding of interference e�ects.

4.1 Impact of input sizes and algorithms on

concurrent throughput

In �gure 2 we depict the experimental results for our analysis of

homogeneous graph workloads for di�erent graph algorithms and

input graphs. We limit the number of threads each query can use

to the number of CPU cores, so each of the concurrent instances

could potentially use all available resources in the system. For each

algorithm, we vary the input size and report the elapsed time per

query for sequential and concurrent execution up to 10 concurrent

instances.

In general, all three algorithms behave similar for di�erent input

sizes when executed concurrently, but the extent of performance

(dis)advantage concerning their behavior varies. Our major obser-

vations are the following: 1) When executed in parallel, we see

especially for small input sizes a substantial negative e�ect on the

mean execution time. 2) With an increasing input size this perfor-

mance disadvantage decreases and turns into an improvement. 3)

With low concurrency degrees it is possible to achieve a through-

put improvement. 4) With an increasing number of concurrent

instances for smaller input sizes, the elapsed time increases until a

plateau is reached. Additionally, for at least for small and medium,

this plateau is at a similar level for all algorithms. In detail, we

observed the e�ects below.

Observation 1: We see for all algorithms for concurrent execution

a penalty. For smaller input graph sizes the penalties are much

higher than for larger. Algorithm bfs has a penalty between 118%

and 210% for small on 4 up to 10 instances, and between 54% and

124% for medium on 3 up to 10 instances. For pr the penalty is

even larger, with 470% and 1760% for small on 3 up to 10 instances,

and between 77% and 152% for medium on 3 up to 10 instances.

Algorithm scc shows a behavior that favors concurrent execution:

while for small a concurrency penalty between 6% to 163% for 3

up to 10 concurrent instances exist, it changes to an improvement

between -14% up to 24% for medium

Observation 2: At the largest input size, large, the di�erence

between sequential execution and concurrent execution diminishes.

Algorithm bfs needs 1% and 5% less time on average for concurrent

execution with an outlier of 18% for two instances, while pr has even

an advantage in between 12% and 15% compared to a sequential

execution. For scc we see even an improvement of 31% up to 39%.

Observation 3: For a low degree of concurrency, we observe as

a recurring pa�ern that for two concurrent instances, for bfs on

small also for three instances, the elapsed time is much be�er than

GRADES’17, May 19, 2017, Chicago, IL, USA Ma�hias Hauck, Marcus Paradies, and Holger Fröning

All cores sequential All threads concurrent All cores concurrent 10 �reads concurrent

8 �reads concurrent 6 �reads concurrent 4 �reads concurrent 2 �reads concurrent

2 3 4 5 6 7 8 9 10
10
−2

10
−1

10
0

10
1

Instances

E
l
a
p

s
e
d

t
i
m

e
p

e
r

q
u

e
r
y

[
s
]

Algorithm: bfs

2 3 4 5 6 7 8 9 10
10
−2

10
−1

10
0

10
1

Instances

Algorithm: scc

2 3 4 5 6 7 8 9 10
10
−1

10
0

10
1

10
2

Instances

Algorithm: pr

Figure 3: Elapsed time per query out of a batch on a small graph with thread binding and an upper thread limit per query

for con�gurations with more concurrency. For the small measure-

ments this could be within the error of measurement, because of

the small elapsed time for these experiments, but still this pa�ern

appears for all algorithms and input sizes.

Observation 4: As already mentioned, we observe a plateau e�ect

for concurrent execution. For bfs the time di�erence from small to

medium at 10 instances is only 8.5%, while the sequential di�erence

is 51% and the di�erence from medium to large is 229%. When pr is

used, the relative di�erences are larger, but the e�ect remains. �e

di�erence from small to medium is for 10 instances only 32%, while

the sequential di�erence is 876% and the di�erence from medium

to large is 451%. �e relative elapsed time di�erences for scc are

between bfs and pr.

4.2 Limiting intra query parallelism

In the previous experiment every query could use a number of

threads that is equal to the number of available physical cores.

Because the instances that execute the queries run independently

from each other, they are not cooperative, which can lead to thread

contention. In the measurements for �gure 3 we limit the number

of threads for concurrent execution to decrease the e�ect of the

thread contention between di�erent instances.

We observe that all three di�erent algorithms show some com-

mon behavior. �ere is a signi�cant penalty for concurrent query

execution, when each query uses all available threads of the system

(including Hyper-�reading threads). For lower thread bounds up

to the number of physical cores the system behaves di�erently.

Especially high thread counts show a mean elapsed time that con-

stantly rises until it ends up in a plateau. If the thread count is

lower, also the plateau is lower at a high degree of concurrency.

At low thread counts we see also a falling slope for low degrees

of inter-query parallelism, which might be caused by insu�cient

parallelism.

�e point when the slope starts and when it reaches the plateau

seems to be algorithm-dependent. We list the starts of the slope

and plateau for bfs and pr in table 1. For scc the start of the plateau

is hard to see, because the slope is too shallow. It seems that the

start of the slope and start of the plateau are related to algorithm-

dependent thread numbers. �e spread of the elapsed times at a

given concurrency degree is also for pr larger than for bfs followed

by scc with the lowest spread.

4.3 Binding threads to physical cores

By default, Galois uses thread binding. For the previous measure-

ments, we deactivated it, because the thread binding assigns the

threads from concurrent queries to the same physical cpu threads.

Our assumption is that this behavior causes interference between

concurrent queries. Figure 4 illustrates the e�ect of thread binding.

For sequential execution the e�ect of thread binding is algorithm-

dependent. In general, the positive e�ect of thread binding increases

with the size of the graph. pr pro�ts from thread binding in general

(mean improvement medium: 12% large: 19%) except for small

graphs (mean penalty small: 23%). scc on the other side does not

pro�t from thread binding (mean penalty small: 43%, medium: 21%,

large: 0%)

For concurrent execution has thread binding obviously a negative

e�ect as expected. In addition, we see for concurrent an input size

behavior as for sequential execution. With increasing input size

decreases the di�erence to the execution without thread binding.

But for scc the elapsed time gap remains even for large, which is

with a di�erence of 26% signi�cantly larger than for the sequential

execution case or pr with only 10%.

Start of slope Start of plateau

12 T 10 T 8 T 6 T 12 T 10 T 8 T

bfs 3 (36) 4 (40) 5 (40) 7 (42) 4 (48) 5 (50) 7 (56)

pr 2 (24) 2 (20) 3 (24) 4 (24) 5 (60) 6 (60) 8 (64)

Table 1: Points, where in �gure 3 for a given number of

threads (T) the elapsed time starts to increase (Slope), with

a high rate and where this increase stops (plateau). �e �rst

number is the number of instances, the second is the num-

ber of total threads in the system.

Can Modern Graph Processing Engines Run Concurrent �eries E�iciently? GRADES’17, May 19, 2017, Chicago, IL, USA

small sequential medium sequential large sequential

small concurrent medium concurrent large concurrent

2 3 4 5 6 7
10
−1

10
0

10
1

Instances

E
l
a
p

s
e
d

t
i
m

e
p

e
r

q
u

e
r
y

[
s
]

Algorithm: scc,

without thread binding

2 3 4 5 6 7
10
−1

10
0

10
1

Instances

Algorithm: scc,

with thread binding

2 3 4 5 6 7
10
−1

10
0

10
1

10
2

Instances

Algorithm: pr,

without thread binding

2 3 4 5 6 7
10
−1

10
0

10
1

10
2

Instances

Algorithm: pr,

with thread binding

Figure 4: Elapsed time of a single query out of a batch using scc or pr on a homogeneous workload using all cores with and

without thread binding

5 DISCUSSION

We showed in section 4 the impact of concurrent graph query

execution for di�erent input sizes and algorithms. In addition, we

also reported on e�ects when limiting intra-query parallelization

and fostered thread contention.

�e most signi�cant observation we make is that we could not

improve the throughput by executing queries concurrently, or even

have a throughput comparable to sequential execution, when we

use the engine with default parameters. As mentioned as obser-

vation 1 in section 4.1, we see for higher numbers of concurrent

instances contention e�ects for all algorithms, but in particular for

low and medium input sizes these contention e�ects are strong.

In section 4.2 we unveiled that this e�ect depends on the total

number of active threads in the system. Up to a query speci�c

system wide number of threads the elapsed time is low until it starts

(slope start) to grow with the concurrent instances. Before this

point, there can be a performance improvement through concurrent

query execution. As we see in table 1 can for bfs at this point the

system-wide accumulated thread limits be larger than the number

of cpu threads, but for pr it is exactly the number of cpu threads.

�e reason might be the di�erent structure of these algorithms.

pr is a topology-centric algorithm and can easily saturate all cpu

threads, and when it uses more threads than the CPUs provide

these threads would interfere through context switches. bfs on the

other side is a data-driven algorithm, with a varying amount of

work per thread during execution. In general, this behavior allow

more worker threads than cpu threads to use without interference

e�ects, because contention e�ects are small. In the scenario of

section 4 there should be no such e�ect. All queries of a batch are

completely equal, so all queries should have had the same time

the same resource demand. Nonetheless, there is naturally some

randomness in the execution that might allow the use of variable

resource demand.

�e increase of the mean elapsed time caused by thread con-

tention ends at a larger total number of threads at an upper limit

(plateau). A�er this point, there is no further increase of the elapsed

time, so the maximum point of ine�ciency is reached. �is e�ect

seems not to be bound directly to the number of threads other-

wise there would be no plateau. As we saw in section 4.3, multiple

threads executed on the same core always have a negative e�ect on

concurrent execution. An explanation for this behavior could be

that cache thrashing caused by thread context switches reach at this

point its maximum that is limited by the time slice the threads get.

Other publications [1, 4] already show that caching has a signi�cant

impact on graph algorithms, even when they are executed alone, so

an enhanced e�ect through concurrent execution is not surprising.

Unexpected for us is the high elapsed time in �gure 3, when

in the concurrent case the queries can use Hyper-�reading cores.

�ere is no similar behavior for sequential execution and for lower

thread limits in situations with similar total thread counts. �is

behavior requires further analysis.

We also observe that the negative e�ect of concurrent execution

decreases with increasing input data size for all algorithms (sec-

tion 4.1 observation 2). �is e�ect might be an artifact from the

fact with increasing input size, the processing throughput becomes

lower in general. In �gure 2 the di�erence between small and

medium is smaller than the di�erence between medium and large.

�is slowdown might be caused by a decreasing bene�t of caching,

because with an increasing size less of the graph and the data struc-

tures that are used by the algorithm �t in the cache. Concurrent

execution of queries might enable the system to increase the utiliza-

tion of the memory controller, what can increase the throughput.

Regardless what causes the e�ect, is it worth to look at ’small’

graphs? In our opinion yes, because very o�en users are mainly

interested in subgraphs. For example, a user that wants to analyze

relationships from a subset of the users of a social network similar

to ldbc SNB data sets [2] would only select the person-knows

relationship that is signi�cantly smaller than the complete graph.

We expect that such kinds of selections are common on multi-user

graph processing systems.

Nonetheless, the performance improvement we saw for large

graphs and with an adaptation of runtime parameter (section 4.1

observation 2 & 3 and section 4.2) are promising.

GRADES’17, May 19, 2017, Chicago, IL, USA Ma�hias Hauck, Marcus Paradies, and Holger Fröning

6 RELATEDWORK

�ere are only few publications about graph engines that are tai-

lored to concurrent graph processing. In the relational database

community concurrent query execution is common, especially in

multi-user scenarios, and several approaches have been proposed

to increase the query throughput in such scenarios.

Exemplary for the research on concurrent query execution in

analytical workloads is the work by Psaroudakis et al. [6]. �e

authors compare two work sharing techniques, namely simultane-

ous pipelining and global query plans with shared operators. Si-

multaneous pipelining allows sharing common sub plans between

queries and global query plans with shared operators allow shar-

ing work between similar—but not necessarily equal—queries. �e

authors conclude that both techniques are orthogonal and can be

gainfully combined except for low concurrency degree scenarios,

where system resources are not fully saturated. In this case the

sharing overhead is not outweighed by the potential performance

improvements.

Seraph [11] is a distributed graph processing system tailored to

concurrent query execution. �e system addresses the problem of

a high memory consumption of concurrent graph analytic queries

by allowing multiple jobs that work on the same graph to share

the graph representation. A copy-on-write approach allows the

graph query to modify the graph while working on it—without any

interference to other concurrently running graph queries. �e reuse

of the input graph allows increasing the resource utilization in a

memory-constrained environment by executing a larger number

of graph queries concurrently. In addition, Seraph contains a job

scheduler that increases the resource utilization while limiting

thread contention. Each job in Seraph consists of a set of work

item bundles called task. �e scheduler submits the task of a job to

execution, with a rate limit based on a priority that increases with

the age of the job.

While not explicitly designed for concurrent graph query execu-

tion, there are several approaches that could be bene�cially used for

concurrent graph query execution. One example is the multi-source

breadth-�rst traversal (msbfs) by �en et al. [10], which shares the

work of multiple BFS runs executed on the same graph. In practice,

several graph centrality measures, such as closeness centrality, are

based on multiple BFS runs from di�erent start vertices. �e ms-

bfs algorithm accelerates such graph centrality computations by

sharing the work between concurrent BFS runs. A generalization

of msbfs to multiple concurrent graph queries could lead to similar

results like operator sharing in the relational world.

7 CONCLUSION

In this work we analyzed the e�ect of concurrent graph query exe-

cution using the Galois system on homogeneous graph workloads.

We report the elapsed time for the execution of di�erent workloads

using di�erent algorithms and graphs of di�erent size at several

degrees of concurrency. In addition, we analyze combinations of

di�erent degress of intra-query and inter-query parallelism and the

e�ects of enforced thread contention through thread binding.

From the measurements of this study we derive several insights.

No throughput increase based on concurrent query execution can

be achieved in most cases. Even worse, a concurrent execution of

queries o�en harms throughput, especially when the input graph is

small. Small input sizes could be the result of a subgraph selection,

which occurs frequently in multi-user scenarios where users are

interested only in parts of the complete graph. An adaption of con-

�guration parameters, such as limiting the degree of intra-query

parallelism, o�en exhibits signi�cant performance improvements.

�erefore, the performance degradation is not a problem of concur-

rency in general, but rather a problem of running multiple queries

concurrently.

As a result of this study, we envision that a graph processing en-

gine that wants to e�ciently handle multiple concurrently running

graph queries, the system architecture should be extended to cope

with these new system requirements.

In practice, it is not feasible to force users to perform manual

parameter tuning to avoid interference e�ects. A graph engine that

is able to perform concurrent query execution needs to take into

account e�ects that might be caused by caching, varying available

parallelism or workload inhomogeneity, to achieve a throughput

that is be�er than single query execution. Beyond optimization

of simple concurrent executions, also advanced techniques are

applicable, for instance similar to work sharing as it is used in the

relational world.

We focus in this work on homogeneous graph query workloads,

while in real-world scenarios inhomogeneous graph query work-

loads dominate. �erefore, we believe that further research about

the interference for inhomogeneous workloads is necessary. An

important part of this investigation could be the extension of graph

processing benchmarks for concurrent query execution.

REFERENCES

[1] S. Beamer, K. Asanovic, and D. Pa�erson. Locality exists in graph processing:

Workload characterization on an ivy bridge server. In Workload Characterization
(IISWC), 2015 IEEE International Symposium on. IEEE, 2015.

[2] O. Erling, A. Averbuch, J. Larriba-Pey, H. Cha�, A. Gubichev, A. Prat, M. D. Pham,

and P. A. Boncz. �e LDBC Social Network Benchmark: Interactive Workload.

In Proc. SIGMOD’15, 2015.

[3] D. Nguyen, A. Lenharth, and K. Pingali. A lightweight infrastructure for graph

analytics. In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles. ACM, 2013.

[4] M. A. O’Neil and M. Burtscher. Microarchitectural performance characteriza-

tion of irregular gpu kernels. In Workload Characterization (IISWC), 2014 IEEE
International Symposium on. IEEE, 2014.

[5] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan, R. Kaleem, T.-H.

Lee, A. Lenharth, R. Manevich, M. Méndez-Lojo, et al. �e tao of parallelism in

algorithms. In ACM Sigplan Notices, volume 46. ACM, 2011.

[6] I. Psaroudakis, M. Athanassoulis, and A. Ailamaki. Sharing data and work across

concurrent analytical queries. Proceedings of the VLDB Endowment, 6(9), 2013.

[7] N. Satish, N. Sundaram, M. M. A. Patwary, J. Seo, J. Park, M. A. Hassaan, S. Sen-

gupta, Z. Yin, and P. Dubey. Navigating the maze of graph analytics frameworks

using massive graph datasets. In Proceedings of the 2014 ACM SIGMOD interna-
tional conference on Management of data. ACM, 2014.

[8] J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, A. Kyrola, H. V. Simhadri,

and K. Tangwongsan. Brief announcement: the problem based benchmark suite.

In Proceedings of the twenty-fourth annual ACM symposium on Parallelism in
algorithms and architectures. ACM, 2012.

[9] O. Tange. Gnu parallel - the command-line power tool. ;login: �e USENIX
Magazine, 36(1), Feb 2011. doi: h�p://dx.doi.org/10.5281/zenodo.16303. URL

h�p://www.gnu.org/s/parallel.

[10] M. �en, M. Kaufmann, F. Chirigati, T.-A. Hoang-Vu, K. Pham, A. Kemper,

T. Neumann, and H. T. Vo. �e more the merrier: E�cient multi-source graph

traversal. Proceedings of the VLDB Endowment, 8(4), 2014.

[11] J. Xue, Z. Yang, Z. �, S. Hou, and Y. Dai. Seraph: an e�cient, low-cost system for

concurrent graph processing. In Proceedings of the 23rd international symposium
on High-performance parallel and distributed computing. ACM, 2014.

http://www.gnu.org/s/parallel

	Abstract
	1 Introduction
	2 Background
	3 Methodology
	3.1 System configuration

	4 Observations for homogeneous graph query workloads
	4.1 Impact of input sizes and algorithms on concurrent throughput
	4.2 Limiting intra query parallelism
	4.3 Binding threads to physical cores

	5 Discussion
	6 Related Work
	7 Conclusion
	References

