
SCAN-XP: Parallel Structural Graph Clustering Algorithm
on Intel Xeon Phi Coprocessors∗

Tomokatsu Takahashi

Gradiate School of Systems and

Information Engineering

University of Tsukuba

shihakata@kde.cs.tsukuba.ac.jp

Hiroaki Shiokawa

Center for Computational Sciences

University of Tsukuba

shiokawa@cs.tsukuba.ac.jp

Hiroyuki Kitagawa

Center for Computational Sciences

University of Tsukuba

kitagawa@cs.tsukuba.ac.jp

ABSTRACT
The structural graph clustering method SCAN, proposed by Xu et al.,
is successfully used in many applications because it not only detects

densely connected nodes as clusters but also extracts sparsely con-

nected nodes as hubs or outliers. However, it is di�cult to applying

SCAN to large-scale graphs since SCAN needs to evaluate the den-

sity for all adjacent nodes included in the given graphs. In this paper,

so as to address the above problem, we present a novel algorithm

SCAN-XP that performs over Intel Xeon Phi. We designed SCAN-

XP in order to make best use of the hardware potential of Intel

Xeon Phi by employing the following approaches: First, SCAN-XP

avoids the bottlenecks that arise from parallel graph computations

by providing good load balances among cores on the Intel Xeon Phi.

Second, SCAN-XP e�ectively exploits 512 bit SIMD instructions

implemented in the Intel Xeon Phi to speed up the density evalu-

ations. As a result, SCAN-XP detects clusters, hubs, and outliers

from large-scale graphs with much shorter computation time than

SCAN. Speci�cally, SCAN-XP runs approximately 100 times faster

than SCAN; for the graphs with 100 million edges, SCAN-XP is able

to perform in a few seconds. In this paper, extensive evaluations

on real-world graphs demonstrate the performance superiority of

SCAN-XP over existing approaches.

CCS CONCEPTS
• Information systems → Clustering; • Theory of compu-
tation → Graph algorithms analysis; Massively parallel algo-
rithms;

KEYWORDS
Graph, Clustering, Intel Xeon Phi Coprocessors

ACM Reference format:
Tomokatsu Takahashi, Hiroaki Shiokawa, and Hiroyuki Kitagawa. 2017.

SCAN-XP: Parallel Structural Graph Clustering Algorithm on Intel Xeon

Phi Coprocessors. In Proceedings of NDA’17, Chicago, IL, USA, May 19, 2017,
7 pages.

DOI: http://dx.doi.org/10.1145/3068943.3068949

∗
Tomokatsu Takahashi and Hiroaki Shiokawa are contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

NDA’17, Chicago, IL, USA
© 2017 ACM. 978-1-4503-4990-1/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3068943.3068949

1 INTRODUCTION
Graph cluster analysis is one of the most fundamental techniques

in various research areas such as data mining [1, 8] and social

science [13]. A cluster can be regarded as a group of nodes that are

densely connected within a group and sparsely connected to those

of other groups. Besides extracting clusters, �nding special role

nodes, hubs and outliers, is also a worthwhile task for understanding

the structures of large-scale graphs [11]. Hubs are generally thought

of as bridging di�erent clusters. In contrast, outliers are treated

as noise. The hubs and outliers provide useful insights in mining

graphs. For instance, hubs in web graphs act like authoritative

web pages that link similar topics [12]. However, most traditional

algorithms such as modularity-based methods [16, 17] only study

the problem of cluster detection and so ignore hubs and outliers.

One of the most successful graph clustering method is structural
clustering algorithm (SCAN) [21]. As well as density-based cluster-

ing, the main concept of SCAN is that densely connected nodes

should be in the same cluster. However, unlike the traditional algo-

rithms, SCAN successfully �nds not only clusters but also hubs and

outliers. Although SCAN is e�ective in �nding highly accurate re-

sults, SCAN has a serious weakness; it requires high computational

costs for large-scale graphs. This is because SCAN entails exhaus-

tive density evaluations for all adjacent node pairs included in the

large-scale graphs. This procedure involves the computational cost

O (m) = O (n2) in the worst case wherem and n represents number

of edges and nodes, respectively. Furthermore, in order to evaluate

the density, SCAN employs a criteria, called structural similarity,

that is based on a set intersection between two node sets. Thus,

as shown in the literature [18] and [4], SCAN requires O (m
2

n) and

O (m1.5) in average and worst case, respectively.

To address the performance limitation of SCAN, many e�orts

have been made to improve the clustering speed in the recent few

years. SCAN++ [18] and pSCAN [4] are the most representative

methods for speeding up SCAN. These were recently proposed by

Shiokawa et al. and Chang et al., respectively. SCAN++ is designed

to handle the property of real-world graphs; a node and its two-

hop-away nodes tend to have lots of common neighbor nodes since

real-world graphs have high clustering coe�cients [18]. Based on

the above property, SCAN++ e�ectively reduces the number of

structural similarity computations. As well as SCAN++, pSCAN em-

ploys a new paradigm for structural graph clustering based on the

three observations in real-world graphs [4]. By following the obser-

vations, pSCAN employs several nodes/edges pruning techniques

and their optimizations for reducing the number of structural simi-

larity computations. Although these algorithms surely succeeded

NDA’17, May 19, 2017, Chicago, IL, USA Tomokatsu Takahashi, Hiroaki Shiokawa, and Hiroyuki Kitagawa

Table 1: De�nition of main symbols
Symbol De�nition

G Given graph.

V Set of nodes in G .

E Set of edges in G .

C Set of clusters extracted from G .

H Set of nodes classi�ed as hubs from G .

O Set of nodes classi�ed as outliers from G .

Γ(v) Set of nodes in the structural neighborhood of node v
Nϵ (v) Set of nodes in the ϵ -neighborhood of node v
D (v) Set of nodes in directly structure neighborhood of node v
C (v) Set of nodes that are belong to the same cluster as node v
n Number of nodes in G . (n = |V |)
m Number of edges in G . (m = |E |)
ϵ Threshold of the structural similarity, 0 ≤ ϵ ≤ 1.

µ Minimum number of nodes in a cluster.

α, β Block size parameters used in SCAN-XP.

σ (u, v) Structural similarity between node u and v

in reducing the time complexity of SCAN for the real-world graphs,

the computation time for large-scale graphs (i.e. graphs with more

than 100 million edges) is still large. Thus, it is a challenging task

to improving the computational e�ciency for the structural graph

clustering. Especially, most of existing approaches perform as a

single-threaded algorithms; they do not fully exploit parallel com-

putation architectures but this is time-consuming.

1.1 Contributions
Motivated by the above facts, we present a novel algorithm named

SCAN-XP ; SCAN-XP is a scalable and massively-parallel method

that exploits a modern many-core processor Xeon Phi. Our goal is

to e�ciently detect clusters, hubs, and outliers from signi�cantly

large real-world graphs. To do so, SCAN-XP employs the following

techniques in order to make best use of many-core processor on

Xeon Phi: (1) We designed SCAN-XP to avoid poor parallelism and

unbalanced load distribution coming from the irregular structure

of real graphs, i.e. the skewed degree distribution (such as power-

law), and (2) SCAN-XP e�ectively exploits 512bit SIMD instructions

implemented in Xeon Phi to speed up each structural similarity

computation. Instead of the original algorithm SCAN, our proposal

SCAN-XP can �nd clusters in an e�cient and a scalable manner

for real-world large-scale graphs.

Our contributions of this paper are summarized as follows:

(1) E�cient: We developed signi�cantly fast algorithm SCAN-

XP for structural graph clustering. SCAN-XP is able to

compute graphs with more than 850 million edges within

36 seconds. (Section 4.1)

(2) Scalable: As increasing the number of available proces-

sors, SCAN-XP e�ectively increases its runtime perfor-

mances. (Section 4.2)

(3) Exact: Basically, SCAN-XP produces exactly same clus-

tering results as SCAN since SCAN-XP is able to detect all

of densely-connected node groups. (Section 3.4)

To the best of our knowledge, SCAN-XP is the �rst solution exploit-

ing Xeon Phi for SCAN. We experiments con�rmed that SCAN-XP

computes results approximately 100 times faster than the origi-

nal algorithm SCAN. Even though SCAN is e�ective in enhancing

application quality, they have been di�cult to apply large-scale

graphs due to its performance limitations. However, by providing

our massively parallel algorithm on Xeon Phi, SCAN-XP will help

to enhance the e�ectiveness of a wider range of applications.

2 PRELIMINARY
In this section, we formally de�ne the notations and introduce the

backgrounds of this paper. Let G = {V ,E} be an unweighted and

undirected graph, where V and E are a set of nodes and edges,

respectively. We assume graphs are undirected and unweighted

only to simplify the representations. Other types of graphs such

as directed and weighted, can be handled with only slight modi-

�cations. Table 1 lists the main symbols and their de�nitions. In

Section 2.1, we �rst review the baseline algorithm SCAN. After that,

in Section 2.2, we introduce the Intel Xeon Phi coprocessor that is

exploited by our proposal SCAN-XP.

2.1 Baseline algorithm: SCAN
SCAN [21], proposed by Xu et al., is one of the most popular graph

clustering method; it successfully detects not only clusters C but

also hubs H and outliers O unlike traditional algorithms. SCAN

extracts clusters as sets of nodes that have dense internal connec-

tions; it identi�es the other non-clustered nodes, i.e. nodes that

are not belong to any clusters, as hubs or outliers. Thus, prior to

identifying hubs and outliers, it �nds all clusters in a given graph.

In order to detect clusters, SCAN �rst �nds a special node, called

core. Core is a node that has a lot of neighbor nodes with highly

dense connections; the core is regarded as the seed of a cluster.

SCAN uses the structural neighborhood [21] to evaluate density.

The structural neighborhood of a node is a node set composed of

the node itself and all its adjacent nodes.

De�nition 2.1 (Structural neighborhood). The de�nition of struc-
tural neighborhood of node v , denoted by Γ(v), is given by Γ(v) =
{u ∈ V |(v,u) ∈ E} ∪ {v}.

The density of adjacent nodes is computed by the common nodes

in the structural neighborhoods. SCAN measures the number of

common nodes in two structural neighborhoods normalized by

the geometric mean of their structural neighborhood sizes. This

measurement is called structural similarity and is de�ned as follows:

De�nition 2.2 (Structural similarity). The structural similarity
between node v and w , denoted by σ (v,w), is de�ned as σ (v,w) =

|Γ(v) ∩ Γ(w) |/
√
|Γ(v) | |Γ(w) |.

The structural similarity is a score varying from 0 to 1 that in-

dicates the scale of matching degree of structural neighborhoods.

When adjacent nodes share many members of their structural neigh-

borhoods, their structural similarity becomes high.

From De�nition 2.2, SCAN detects the core by evaluating struc-

tural similarities for all neighborhoods. In order to specify core

metrics, SCAN requires two user-speci�ed parameters. First is the

minimum score of the structural similarity to neighbor nodes, de-

noted by ϵ . Second is the minimum number of neighborhoods,

denoted by µ, all of whose structural similarities exceed ϵ . SCAN re-

gards a node as core when it has at least µ neighbors with structural

similarity greater than ϵ :

De�nition 2.3 (Core). Node u is core i� |Nϵ (v) | ≥ µ, where Nϵ ,
called ϵ-neighborhood, is Nϵ (v) = {w ∈ Γ(v) |σ (v,w) ≥ ϵ }.

Once SCAN �nds core, it expands a cluster from the core. Specif-

ically, nodes included in ϵ-neighborhood of the core are assigned to

SCAN-XP: Parallel Structural Graph Clustering Algorithm
on Intel Xeon Phi Coprocessors NDA’17, May 19, 2017, Chicago, IL, USA

Algorithm 1 Baseline method: SCAN [21]

Input: G = {V , E }, ϵ ∈ R, and µ ∈ N
Output: C , H , and O
1: ∀v ∈ V are labeled as unclassi�ed;

2:

3: // Step 1: Core detection based on De�nition 2.3

4: for each edge(v, w) ∈ E do
5: compute σ (v, w) by De�nition 2.2;

6: end for
7:

8: // Step 2: Cluster construction based on De�nition 2.4

9: for each unclassi�ed node v ∈ V do
10: if Nϵ (v) ≥ µ then
11: generate new clusterID, and add v into C (v);
12: all w ∈ Nϵ (v) into queue Q ;

13: whileQ , ∅ do
14: u = Q.pop;

15: for each w ∈ D (u) do
16: if w is unclassi�ed or non-member then
17: assign current clusterID to w , and add w into C (v);
18: end if
19: if w is unclassi�ed then
20: insert w into Q ;

21: end if
22: end for
23: end while
24: addC (v) into C ;

25: else
26: v are labeled as non-member ;
27: end if
28: end for
29:

30: // Step 3: Hubs/outliers detection based on De�nition 2.5

31: for each non-member node v do
32: if ∃u, w ∈ Γ(v) s.t.C (u) , C (w) then
33: label node v as hub, and H = H ∪ {v };
34: else
35: label node v as outlier, and O = O ∪ {v };
36: end if
37: end for

the same cluster as the core. The ϵ-neighborhood nodes of core, say

node u, are called directly structure neighborhood nodes, denoted by

D (u). When node u is core and D (u) , ∅, SCAN assigned all nodes

in D (u) to the same cluster as node u. SCAN recursively expands

the cluster by checking whether each node, which is included in

the cluster, satis�es core condition de�ned by De�nition 2.3 or not.

Formally, the cluster that has node u is de�ned as follows:

De�nition 2.4 (Cluster). The cluster by node u, denoted byC (u), is
de�ned as C (u) = {w ∈ D (v) |v ∈ C (u)}, where C (u) is initially set
to C (u) = {u}.

After termination of cluster expansion, SCAN randomly picks

a new node from the nodes that have yet to be checked. SCAN

continues this procedure until there are no undiscovered cores.

Finally, SCAN classify nodes, which are not belong to any clus-

ters, into hubs or outliers.

De�nition 2.5 (Hubs and Outliers). Suppose nodeu does not belong
to any cluster. u ∈ H i� node v andw exist in Gamma(u) such that
C (v) , C (w). Otherwise u ∈ O .

Algorithm 1 overviews pseudo code of SCAN. In the initial state,

all nodes are labeled as unclassi�ed (line 1). As shown in Algo-

rithm 1, the subsequent procedures are composed of three steps.

2.2 Intel Xeon Phi
Intel Xeon Phi [10] (Xeon Phi for short) is a series of x86-compatible

multicore processors for massively parallel computations targeted

at high performance computing. Xeon Phi comprises of over 50

physical cores, and we can easily run parallel programs on Xeon

3

0

2

1

0 2 5 7 8

1 2 0 2 3 0 1 1

Adjacent nodes of node 1

ptr

to

0 0 1 1 1 2 2 3from

Figure 1: Example of graph data representation

Phi by using OpenMP or MPI. Recently, two versions are available

for Xeon Phi: Xeon Phi Knights Corner (KNC) and Knights Landing
(KNL). KNL is the latest generation product of Xeon Phi. KNL is able

to perform as a host CPU by using up to 72 physical cores; each core

shows 1.3-1.5 GHz clock frequency with AVX-512 SIMD instruction

set. Furthermore, KNL supports 16 GB on-chip MCDRAM and up

to 384 GB DDR4 RAM. As a result, KNL is capable more than 6

TFLOPS of double precision �oating point instructions.

As we described above, Xeon Phi is expected to show good per-

formances for large-scale data processing, however it is not trivial

task to design e�cient algorithms on Xeon Phi. This is because

each physical core on Xeon Phi has relatively lower clock frequency

than Xeon CPUs (see Table 2 for details). Hence, in order to improve

performances compared with single threaded algorithms, we have

to fully exploit exhaustive resources on Xeon Phi, i.e. physical cores

and 512 bit SIMD instructions. Furthermore, since the latencies for

accessing main memory are signi�cantly large, it is important to

construct e�cient programs and data structures so as to increase

cache hit ratio and explicit prefetch instructions.

3 PROPOSED METHOD: SCAN-XP
Our goal is to �nd exactly same clustering results as SCAN from

large-scale graphs in the scalable manner. In this section, we present

details of our proposal, SCAN-XP, that e�ectively exploits Xeon Phi

coprocessors for the structural graph clustering. We �rst overview

SCAN-XP and then give a full description of algorithm.

3.1 Overview of SCAN-XP
As we described in Section 1, we need to reduce computation time of

SCAN. To do so, SCAN-XP employs massively parallel computation

approach for structural graph clustering by exploiting Intel Xeon

Phi coprocessor shown in Section 2.2. In Algorithm 1, we reviewed

that SCAN comprises three steps: (1) core detection step, (2) cluster

construction step, and (3) hubs/outliers detection step. For each

steps, SCAN-XP, thus, provides parallel computation algorithms

that show good performance on Xeon Phi.

Speci�cally, as we described in Section 2.2, it is not trivial task

for Xeon Phi to make good use of its hardware potential. In addi-

tion, real-world graphs generally lead unbalanced load distribution
and poor parallelization to parallel computations since the graphs

contain irregular and highly skewed structures (e.g. power-law

degree distribution). Thus, in SCAN-XP, we design each step to

balance loads among physical cores and to fully exploits 512 bit

SIMD instructions implemented in each physical core.

3.2 Parallel core detection step
In this section, we describe our approach using Xeon Phi to re-

duce the computation time of core detection step. Since SCAN

NDA’17, May 19, 2017, Chicago, IL, USA Tomokatsu Takahashi, Hiroaki Shiokawa, and Hiroyuki Kitagawa

needs to compute structural similarities for all edges in a graph

prior to detecting cores, this step consumes the most part of the

computational costs incurred by SCAN. Thus, we introduce two

type of parallelization into the structural similarity computations:

thread-based parallelization and SIMD-based parallelization.

Thread-based parallelization: First, we parallelize the struc-

tural similarity computations by using threads so as to made good

used of many integrated physical cores on Xeon Phi. From step 1

in Algorithm 1, it is de�nitely reasonable to assign a thread into a

edge that involves a structural similarity computation. This is be-

cause the structural similarity computation σ (v,w) is independent

among edges in E. If we assign a thread into a node, it unfortu-

nately incurs unbalanced load distributions among threads since

real-world graphs may have the power-law degree distribution.

To do so, we introduce an e�cient graph data representation by

extending the well-known graph data representation, called CRS
(Compressed Row Storage) [6]. CRS is one of the cache and space

friendly graph data representations that are generally used in the

recent graph mining studies. As shown in Figure 1, CRS is composed

of two arrays, to array and ptr array. to array stores neighbor

nodes of each node in a graph, and ptr array saves pointers that

indicate where neighbor nodes of a node are stored in to array. In

order to obtain edges from CRS, we �rst access ptr array and then

get edges from to array. However, this procedure incurs the load

skewness to threads since we need to assign a node into a thread.

Thus, as shown in Figure 1, SCAN-XP add from array into CRS

in order to e�ciently assign a thread into each edge in E. from array

stores adjacent nodeIDs corresponding to nodeIDs in the to array.

As a result, SCAN-XP easily assigns a thread into each edges by

obtaining a nodeID from to array and its corresponding nodeID of

from array. From the above thread assignment strategy, SCAN-XP

avoids the unbalanced load distributions.

SIMD-based parallelization: Then, we exploit 512 bit SIMD

instructions to e�ciently compute the structural similarity de�ned

by De�nition 2.2. As shown in De�nition 2.2, we need to compute

a set intersection between Γ(v) and Γ(w) to obtain a structural

similarity σ (v,w). Recent work [4] clari�ed that sort merge join

(SMJ for short) based set intersection shows better performances

compared with the other approaches. Thus, in this paper, SCAN-XP

presents 512 bit SIMD-based set intersections by extending SMJ

algorithm on each physical core of Xeon Phi.

Figure 2 and Algorithm 2 overview our SIMD-based structural

similarity computation algorithm. Our algorithm is based on block-

wise SIMD-based set intersection method [9] that is recently pro-

posed by Inoue et al., in 2015. In STEP 1, SCAN-XP �rst loads parts

of nodes in Γ(v) and Γ(w) as blocks into SIMD registers. Then, in

STEP 2, it counts the number of common nodes between the two

blocks by comparing all node combinations on the 512 bit SIMD

registers. Finally, as shown in STEP 3, SCAN-XP loads a new block

from Γ(w) (or Γ(v)), which has smaller nodeID than the other, into

a 512 bit SIMD register. SCAN-XP continues STEP 1 to STEP 3 until

the two blocks load all nodes in Γ(v) and Γ(w).
Based on the above algorithm, we further introduce two parame-

ters α and β in order to optimize its performances. Since real-world

graphs may have highly skewed degree distribution, the sizes of

Γ(v) and Γ(w) could be imbalanced. In such cases, as reported in

Algorithm 2 SIMD-based structural similarity computation

Input: v, w ∈ V ,

Output: σ (v, w)
1: // Initialization

2: if |Γ(v) | ≥ 2 |Γ(w) | (or 2 |Γ(v) | ≤ |Γ(w) |) then
3: α = 1, β = 16 (or α = 16, β = 1);

4: else
5: α = β = 4;

6: end if
7: get head pointers vp and wp from Γ(v) and Γ(w), respectively;

8: get tail pointers v_end and w_end from Γ(v) and Γ(w), respectively;

9:

10: while vp < v_end && wp < w_end do
11: // STEP 1 and STEP 2

12: load α and β nodes into SIMD register reg_v and reg_w from Γ(v) and Γ(w), respectively;

13: get the number of common nodes c between reg_v and reg_w by using SIMD instructions;

14: vw_common+ = c ;

15: // STEP 3

16: if vp+α == wp+β then
17: vp+ = α , wp+ = β ;

18: else if vp + α > wp + β then
19: wp+ = β ;

20: else
21: vp+ = α ;

22: end if
23: end while
24: σ (v, w) = (vw_common + 2)/

√
|Γ(v) | |Γ(w) |;

the literature [9], the algorithm degrades its computation speed

compared with the performance if |Γ(v) | ≈ |Γ(w) |. Hence, in order

to speed up for real-world graphs, we use the parameters α and

β ; α and β speci�es the number of nodes loaded in the two blocks.

For example, since we set α = β = 2 in Figure 2, SCAN-XP always

loads two nodes in STEP 1 and STEP 3. If SCAN-XP uses 512 bit

SIMD registers and 32 bit integers to represent a node in V , α and

β could take 3 patterns based on the balance between |Γ(v) | and

|Γ(w) |: (i) α = 1, β = 16, (ii) α = 2, β = 8, and (iii) α = β = 4.

As shown in line 2-6 of Algorithm 2, we set α = 1 and β = 16 if

|Γ(v) | ≥ 2|Γ(w) | (or visa verse), otherwise α = β = 4 since this set-

ting shows the best performance in our evaluations. The automatic

parameter optimization is a future work.

3.3 Parallel cluster construction step
As shown in Section 2.1, SCAN needs to expand cluster in the

recursive manner, however it is not suitable for parallel computa-

tion manner. This is because that we need to run parallel threads

iteratively in order to complete the cluster construction; this is

time-consuming since the number of the iteration equals to the

diameter of a graph in the worst case.

In order to improve the e�ciency, SCAN-XP employs a paral-

lelizable cluster construction method by using union-�nd tree [5].

Union-�nd tree is a data structure that keeps set of values par-

titioned into disjoint subsets. It supports two operations: �nd(u)
and union(u,v). �nd(u) is an operation to check which subset does

data u belongs to, and union(u,v) merges two subsets, which are

data u and v belong to, into the same subset. It is known that each

operation can be done in Ω(A(n)) where A is Ackermann function.

SCAN-XP constructs clusters from the union-�nd tree in mas-

sively parallel manner on Xeon Phi. Initially, by using union-�nd

tree, SCAN-XP manages clusters what nodes belong to. If node

u is core, ϵ-neighborhood Nϵ (u) could be in the same cluster of

node u from De�nition 2.4. Unlike SCAN shown in Algorithm 1,

SCAN-XP does not immediately merge Nϵ (u) into the same clus-

ter of node u. For each node in Nϵ (u), say node v , SCAN-XP �rst

invokes �nd(u) and �nd(v) operators. If �nd(u) , �nd(v), node

SCAN-XP: Parallel Structural Graph Clustering Algorithm
on Intel Xeon Phi Coprocessors NDA’17, May 19, 2017, Chicago, IL, USA

adjacent	nodes	 of	node	v

adjacent	nodes	 of	node	w

3 3 4 4

2 3 2 3

0 1 0 0
SIMD	register	3

+1

Equals

STEP1 STEP2

compare	(4>3)

STEP3
SIMD	register	1

SIMD	register	2

3 4 10 13 20 … end

2 3 11 13 43 … end

3 3 4 4SIMD	register	1

2 3 2 3SIMD	register	2

adjacent	nodes	 of	node	v

adjacent	nodes	 of	node	w

3 4 10 13 20 … end

2 3 11 13 43 … end

adjacent	nodes	 of	node	v
3 4 10 13 20 … end

2 3 11 13 43 … end
advance	pointer

Figure 2: Counting common nodes by SIMD instruction where α = β = 2.

Algorithm 3 SCAN-XP

Input: G = {V , E }, ϵ ∈ R and µ ∈ N
Output: C , H , and O
1: ∀v ∈ V are labeled as unclassi�ed;

2:

3: // Step 1: Parallel core detection in Section 3.2

4: for each edge (v, w) ∈ E do in parallel
5: run Algorithm 2;

6: end for
7:

8: // Step 2: Parallel cluster construction in Section 3.3

9: for each core node v ∈ V do in parallel
10: for each w ∈ Nϵ (v) do
11: if �nd(v) , �nd(w) then
12: get C (v) ∪C (w) by using union(v, w) and CAS instruction;

13: node v and node w are labeled as cluster-member ;
14: end if
15: end for
16: end for
17:

18: // Step 3: Parallel hubs/outliers detection

19: for each node v that is not included in any clusters of C do in parallel
20: if ∃u, w ∈ Γ(v) s.t.C (u) , C (w) then
21: label node v as hub, and H = H ∪ {v };
22: else
23: label node v as outlier, and O = O ∪ {v };
24: end if
25: end for

u and node v are not in the same cluster until now; thus, SCAN-

XP performs merge(u,v) so as to construct a cluster from node u
and v . For improving the computation speed, SCAN-XP performs

the above procedure in parallel by using all of physical cores on

Xeon Phi. SCAN-XP uses CAS (Compare-And-Swap) instruction to

union(u,v) so as to avoid write con�icts among parallel threads.

3.4 Algorithm of SCAN-XP
We show overall algorithm of SCAN-XP in Algorithm 3. As we

described in Section 3, SCAN-XP consists of three parallel computa-

tion steps: (1) parallel core detection in line 3-6, (2) parallel cluster

construction in line 8-16, and (3) parallel hubs/outliers detection in

line 18-25. From Algorithm 3, SCAN-XP has the following theorem:

Theorem 3.1 (Exactness of SCAN-XP). SCAN-XP always ob-
tains exactly same clustering results as SCAN.

We omit the proof of Theorem 3.1 due to space limitation.

4 EVALUATION
We evaluate the e�ectiveness of our proposed method SCAN-XP by

using several real-world graphs. We compared the following struc-

tural graph clustering algorithms including our proposal SCAN-XP:

• SCAN-XP: Our proposal. We implemented three types of

SCAN-XP that runs on CPU, Xeon Phi KNC, and Xeon Phi

KNL denoted by SCAN-XP (CPU), SCAN-XP (KNC), and

SCAN-XP (KNL), respectively.

Figure 3: Runtimes for real-world datasets

• SCAN [21]: The most standard structural graph clustering

that runs as a single-threaded algorithm on a CPU.

SCAN-XP and SCAN requires user-speci�ed parameters ϵ and µ.

In our experiments, we evaluated performances by varying the

parameters, however the parameter settings showed almost same

performances. Thus, we used ϵ = 0.3 and µ = 2.

In addition to the above parameters, SCAN-XP also requires to

specify parameters α and β for SIMD-based set intersections shown

in Algorithm 2. As we described in Section 3.2, we set α = 1 and β =
16 if |Γ(v) | ≥ 2|Γ(w) | when SCAN-XP computes σ (v,w), otherwise,

we used α = β = 4. This is because that, in our evaluations, the

above settings showed the best performances.

Datasets: We used seven real-world datasets in the evaluations.

Details of each dataset are shown in Table 3. In each datasets, we

removed self-loop edges and nodes without any connections from

the datasets in order to run SCAN and SCAN-XP.

Experimental environments: All experiments were conducted

on Intel Xeon CPU E-1620 (hereinafter, referred as CPU), Intel Xeon

Phi Knights Corner 3120A (KNC), and Intel Xeon Phi Knights Land-

ing 7250 (KNL). KNC uses Intel MPSS version 3.7.2, and we set

memory mode of KNL to flat mode. All algorithms were imple-

mented by using icpc 17.0.0with -O3 option. Table 2 summarizes

the details of our experimental environment settings.

4.1 E�ciency
We evaluated the clustering performance of each method through

wall clock time for the real-world datasets. In the evaluation, we

compared SCAN and SCAN-XP (KNL) using 272 threads. Figure 3

shows the runtimes for each real-world dataset. In Figure 3, we

omitted the result of SCAN for webbase-2001 since it does not

return the result within 1 hour. Figure 3 shows that SCAN-XP is

much faster than SCAN under all conditions examined. As described

earlier, SCAN computes all edges in a single-threaded algorithm,

while SCAN-XP e�ciently exploits 272 threads for structural graph

NDA’17, May 19, 2017, Chicago, IL, USA Tomokatsu Takahashi, Hiroaki Shiokawa, and Hiroyuki Kitagawa

Table 2: Experimental environment
CPU Memory Clock frequency # of cores Maximum # of threads OS SIMD type

Xeon E5-1620 v3 16GB 3.5 GHz 4 8 Cent OS 7 AVX2

Xeon Phi 3120A 6GB 1.10 GHz 57 228 Linux 3.10 IMCI

Xeon Phi 7250 16GB 1.4 GHz 68 272 Cent OS 7 AVX-512

1

10

100

1000

10000

100000

Ex
ec
ut
io
n	
tim

e	
(m

s)

(a) com-youtube
1

10

100

1000

10000

100000

Ex
ec
ut
io
n	
tim

e	
(m

s)

(b) web-BerkStan
1

10

100

1000

10000

100000

Ex
ec
ut
io
n	
tim

e	
(m

s)

(c) soc-Pokec

SCAN(CPU,1)

SCAN-XP(CPU,1)

SCAN-XP(CPU,4)

SCAN-XP(CPU,8)

SCAN-XP(KNC,57)

SCAN-XP(KNC,114)

SCAN-XP(KNC,171)

SCAN-XP(KNC,228)

SCAN-XP(KNL,68)

SCAN-XP(KNL,136)

SCAN-XP(KNL,204)

SCAN-XP(KNL,272)

1

10

100

1000

10000

100000

Ex
ec
ut
io
n	
tim

e	
(m

s)

(d) com-LiveJournal
1

10

100

1000

10000

100000

Ex
ec
ut
io
n	
tim

e	
(m

s)

(e) soc-LiveJournal1
1

10

100

1000

10000

100000

Ex
ec
ut
io
n	
tim

e	
(m

s)

(f) com-Orkut
1

10

100

1000

10000

100000

Ex
ec
ut
io
n	
tim

e	
(m

s)

N/A

(g) webbase-2001

Figure 4: Scalability (overall)

Table 3: Real-world datasets
Dataset n m Data source

com-youtube 1,134,890 2,987,624 SNAP [14]

web-BerkStan 685,230 6,649,470 SNAP [14]

soc-Pokec 1,632,803 22,301,964 SNAP [14]

com-LiveJournal 3,997,962 34,681,189 SNAP [14]

soc-LiveJournal1 4,846,609 42,851,237 SNAP [14]

com-Orkut 3,072,441 117,185,083 SNAP [14]

webbase-2001 115,554,441 854,809,761 LAW [2]

clustering. As a result, our proposal is up to 100 times faster than the

original algorithm SCAN for average; SCAN-XP computes clusters

from webbase-2001 that has more than 850 million edges within 36

seconds. Besides the results in Figure 3, Shiokawa et al. reported that

the state-of-the-art method SCAN++ requires almost 1,000 seconds

to compute webbase-2001 [18]. Thus, SCAN-XP runs considerably

faster than the existing approaches.

4.2 Scalability
We evaluated scalability of SCAN-XP by varying the number of

threads for all experimental conditions we examined. In order to

evaluate SCAN-XP on CPU, we used 1-8 threads on CPU by using

OpenMP; SCAN-XP (KNC) and SCAN-XP (KNL) varied the number

of threads from 1 to 228 and from 1 to 272, respectively. Figure 4

represents the results of scalability evaluations. As well as Figure 3,

SCAN and SCAN-XP (KNC) do not return results for webbase-2001

whithin 1 hour, we thus omitted the results from Figure 4 (g). Fig-

ure 4 shows that both SCAN-XP (KNC) and SCAN-XP (KNL) outper-

form SCAN. As increasing the number of threads, SCAN-XP (KNL),

SCAN-XP (KNC), and SCAN-XP (CPU) gradually improve their

clustering e�ciency. SCAN-XP (KNL) with 272 threads performs

164 times faster than SCAN for com-Orkut; SCAN-XP (KNL) com-

pletes the clustering in 3.6 seconds. In contrast, SCAN-XP (KNC)

and SCAN-XP (KNL) degrade their performances for small dataset

such as com-youtube and web-Berkstan.

5 RELATEDWORK
Structural graph clustering [3, 4, 18–20, 22, 23] is an algorithm that

detects clusters, hubs and outliers. Since it is e�ective to avoid reso-

lution limit problem of modularity-based methods, structural graph

clustering is able to �nd clusters with high accuracy; structural

graph clustering is e�ective to reproduce the ground truth [18, 21].

SCAN [21], proposed by Xu et al., is the most standard algorithm

for the structural graph clustering. It is an extension of the tra-

ditional density-based clustering DBSCAN [7]. Xu et al. reported

that SCAN outperforms modularity-based methods in producing

clustering results that resemble the ground-truth. However, SCAN

su�ers from its performance limitation.

In order to overcome the limitation, several methods [4, 15,

18] have been proposed in a recent few years. SCAN++ [18] and

pSCAN [4] are e�cient and exact structural graph clustering method

for large-scale graphs. By focusing on several observations of real-

world graphs, the methods are designed to reduce the computational

cost for core detection and cluster construction. PSCAN [23], pro-

posed by Zhao et al., is a distributed structural graph clustering

method using MapReduce framework. PSCAN �rst detects cores

by using several map and reduce processes, and then it just drops

non-core nodes as noises. As a result, PSCAN produces an approxi-

mated clustering results as well as LinkSCAN
∗

in the distributed

computation manner. Since PSCAN needs to iteratively write/read

intermediate results into/from storages, it requires much larger

computation time than SCAN++ and pSCAN.

6 CONCLUSION
We present a novel structural graph clustering algorithm SCAN-XP
that exploits Intel Xeon Phi coprocessors. As a result, our evalua-

tions and theoretical analysis show that SCAN-XP achieves e�cient

and scalable clustering without sacri�cing clustering quality com-

pared with SCAN. SCAN is a fundamental to many current and

prospective applications in various disciplines. Our proposal will

improve the e�ectiveness of future applications.

ACKNOWLEDGMENTS
This work was supported by JSPS KAKENHI Grant Numbers JP26280037,

JP16H07410, and Interdisciplinary Computational Science Program

in CCS, University of Tsukuba, and University of Tsukuba Basic

Research Support Program Type A.

SCAN-XP: Parallel Structural Graph Clustering Algorithm
on Intel Xeon Phi Coprocessors NDA’17, May 19, 2017, Chicago, IL, USA

REFERENCES
[1] Junya Arai, Hiroaki Shiokawa, Takeshi Yamamuro, Makoto Onizuka, and Sotetsu

Iwamura. 2016. Rabbit Order: Just-in-Time Parallel Reordering for Fast Graph

Analysis. In Proceedings of the IEEE International Parallel and Distributed Process-
ing Symposium (IPDPS). 22–31.

[2] Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph Framework I: Com-

pression Techniques. In Proc. of the Thirteenth International World Wide Web
Conference (WWW 2004). ACM Press, Manhattan, USA, 595–601.

[3] Dustin Bortner and Jiawei Han. 2010. Progressive Clustering of Networks Us-

ing Structure-Connected Order of Traversal. In Proceedings of the IEEE 26th
International Conference on Data Engineering (ICDE). 653–656.

[4] L. Chang, W. Li, X. Lin, L. Qin, and W. Zhang. 2016. pSCAN: Fast and Exact Struc-

tural Graph Clustering. In Proceedings of the IEEE 32nd International Conference
on Data Engineering (ICDE). 253–264.

[5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli�ord Stein.

2009. Introduction to Algorithms (3rd ed.). The MIT Press.

[6] James Demmel, Jack Dongarra, Axel Ruhe, and Henk van der Vorst. 2000. Tem-
plates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. Society

for Industrial and Applied Mathematics, Philadelphia, PA, USA.

[7] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A Density-

Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.

In Proceedings of the 2nd International Conference on Knowledge Discovery and
Data Mining (KDD). 226–231.

[8] Yasuhiro Fujiwara, Makoto Nakatsuji, Hiroaki Shiokawa, Takeshi Mishima, and

Makoto Onizuka. 2013. E�cient Ad-hoc Search for Personalized PageRank. In

Proceedings of the ACM SIGMOD International Conference on Management of Data
(SIGMOD). 445–456.

[9] Hiroshi Inoue, Moriyoshi Ohara, and Kenjiro Taura. 2015. Faster Set Intersection

with SIMD instructions by Reducing Branch Mispredictions. Proceedings of the
Very Learge Data Bases (PVLDB) 8, 3 (August 2015), 293–304.

[10] James Je�ers and James Reinders. 2013. Intel Xeon Phi Coprocessor High Perfor-
mance Programming (1st ed.). Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA.

[11] U Kang and Christos Faloutsos. 2011. Beyond ’Caveman Communities’: Hubs

and Spokes for Graph Compression and Mining. In Proceedings of the IEEE 11th
International Conference on Data Mining (ICDM). 300–309.

[12] Jon M. Kleinberg. 1999. Authoritative Sources in a Hyperlinked Environment. J.
ACM 46, 5 (Sep 1999), 604–632.

[13] Pei Lee, Laks V. S. Lakshmanan, and Evangelos E. Milios. 2014. Incremental

Cluster Evolution Tracking from Highly Dynamic Network Data. In Proceedings
of the 30th IEEE International Conference on Data Engineering (ICDE). 3–14.

[14] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data. (June 2014).

[15] S. Lim, S. Ryu, S. Kwon, K. Jung, and J. G. Lee. 2014. LinkSCAN*: Overlapping

Community Detection Using the Link-space Transformation. In Proceedings of
the IEEE 30th International Conference on Data Engineering (ICDE). 292–303.

[16] M. E. J. Newman and M. Girvan. 2004. Finding and Evaluating Community

Structure in Networks. Physical Review E 69, 2 (Feb 2004), 026113.

[17] Hiroaki Shiokawa, Yasuhiro Fujiwara, and Makoto Onizuka. 2013. Fast Algo-

rithm for Modularity-based Graph Clustering. In Proceedings of the 27th AAAI
Conference on Arti�cial Intelligence (AAAI). 1170–1176.

[18] Hiroaki Shiokawa, Yasuhiro Fujiwara, and Makoto Onizuka. 2015. SCAN++: E�-

cient Algorithm for Finding Clusters, Hubs and Outliers on Large-scale Graphs.

Proceedings of the Very Learge Data Bases (PVLDB) 8, 11 (August 2015), 1178–1189.

[19] T. R. Stovall, S. Kockara, and R. Avci. 2015. GPUSCAN: GPU-Based Parallel

Structural Clustering Algorithm for Networks. IEEE Transactions on Parallel and
Distributed Systems 26, 12 (Dec 2015), 3381–3393.

[20] Heli Sun, Jianbin Huang, Jiawei Han, Hongbo Deng, Peixiang Zhao, and Boqin

Feng. 2010. gSkeletonClu: Density-Based Network Clustering via Structure-

Connected Tree Division or Agglomeration. In Proceedings of the 10th IEEE
International Conference on Data Mining (ICDM). 481–490.

[21] X. Xu, N. Yuruk, Z. Feng, and T. A. J. Schweiger. 2007. SCAN: A Structural

Clustering Algorithm for Networks. In Proceedings of the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD). ACM,

New York, NY, USA, 824–833.

[22] Nurcan Yuruk, Mutlu Mete, Xiaowei Xu, and Thomas A. J. Schweiger. 2009.

AHSCAN: Agglomerative Hierarchical Structural Clustering Algorithm for Net-

works. In Proceedings of the International Conference onAdvances in Social Network
Analysis and Mining (ASONAM). 72–77.

[23] Weizhong Zhao, Venkata Swamy Martha, and Xiaowei Xu. 2013. PSCAN: A

Parallel Structural Clustering Algorithm for Big Networks in MapReduce. In

Proceedings of the 27th IEEE International Conference on Advanced Information
Networking and Applications (AINA). 862–869.

http://snap.stanford.edu/data

	Abstract
	1 Introduction
	1.1 Contributions

	2 Preliminary
	2.1 Baseline algorithm: SCAN
	2.2 Intel Xeon Phi

	3 Proposed method: SCAN-XP
	3.1 Overview of SCAN-XP
	3.2 Parallel core detection step
	3.3 Parallel cluster construction step
	3.4 Algorithm of SCAN-XP

	4 Evaluation
	4.1 Efficiency
	4.2 Scalability

	5 Related work
	6 Conclusion
	Acknowledgments
	References

