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ABSTRACT
The increasing interest in social networks, knowledge graphs,
protein-interaction, and many other types of networks has
raised the question how users can explore such large and
complex graph structures easily. Current tools focus on
graph management, graph mining, or graph visualization
but lack user-driven methods for graph exploration. In many
cases graph methods try to scale to the size and complexity
of a real network. However, methods miss user requirements
such as exploratory graph query processing, intuitive graph
explanation, and interactivity in graph exploration. While
there is consensus in database and data mining communities
on the definition of data exploration practices for relational
and semi-structured data, graph exploration practices are
still indeterminate.

In this tutorial, we will discuss a set of techniques, which
have been developed in the last few years for independent
purposes, within a unified graph exploration taxonomy. The
tutorial will provide a generalized definition of graph explo-
ration in which the user interacts directly with the system
either providing feedback or a partial query. We will dis-
cuss common, diverse, and missing properties of graph ex-
ploration techniques based on this definition, our taxonomy,
and multiple applications for graph exploration. Conclud-
ing this discussion we will highlight interesting and relevant
challenges for data scientists in graph exploration.

1. SCOPE OF THE TUTORIAL
The continuously increasing interest in graphs and the

growing amount of graph data available on the web require
a careful design of data analysis techniques. However, from
the user perspective most of the existing techniques appear
as a black box that returns results without any explana-
tion. For these reasons our community has resorted to data
exploration techniques. In particular, while a huge effort
has been devoted to text, relational, and semi-structured
data [8], data exploration on graphs (graph exploration in
short) is still in its infancy. Although many techniques
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for graphs have been studied in different domains, there is
still lack of a unified graph exploration taxonomy. We ab-
stracted user-driven graph exploration properties from tech-
niques proposed in the literature and defined such a unified
taxonomy. Our taxonomy consists of three strategies that
form the backbone of our presentation along with relevant
literature identified so far: exploratory graph analysis, re-
finement of graph query results, and focused graph mining.

Exploratory Graph Analysis entails the process of
casting an incomplete or imperfect pattern query to let the
system find the closest match. Such exploratory analysis
may return a huge number of results, e.g., structures match-
ing the pattern. Thus, the system is required to provide
intelligent support. One such strategy is the well known
query-by-example paradigm, in which the user provides the
template for the tuples and let the system infer the others.

Refinement of Graph Query Results is needed to
deal with the overwhelming amount of results that is typi-
cal in subgraph processing. It includes approaches designed
to present comprehensive result sets to the user or interme-
diate results that can be refined further. Instantiations of
this kind are graph summaries, top-k methods, query refor-
mulation, and skyline queries.

Focused Graph Mining guides the users to a specific
portion of the graph they are interested in. It requires the
user to provide feedback in the process to restrict the com-
putation to some portion of the graph. Ego-networks mining
belongs to this strategy, since the user search is limited to
a particular area of the graph and the algorithms focus on
that specific area.

We conclude the tutorial with a number of open research
questions, highlighting the huge potential of graph explo-
ration with many challenges still unsolved.

2. TUTORIAL OUTLINE
The tutorial provides a gently introduction to the concept

of graph exploration, considering the data exploration per-
spective and combining with the recent advances in graph
analytics. No previous knowledge is required although basic
database and graph mining concepts are beneficial for the
full understanding of the topic. The tutorial is organized as
follows.

I. Introduction and motivation: The first part of the
tutorial introduces the benefits of data exploration for ex-
tracting knowledge from data without requiring any specific
expertise or having in mind a clear task [8]. We also show
how graphs are important for modeling complex information
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in more natural way. However, current techniques for graph
exploration are limited to visualization tools that do not
scale to real graphs or complex (and non standard) graph
query languages. Instead, we claim the necessity of algo-
rithms for graph exploration that take the user in the loop
and at the same time scale to real world graphs.

II. Graph Exploration Taxonomy: We examine graph
exploration methodologies, identifying in the existing works
the three strategies introduced earlier and discussed in more
detail in Section 3: exploratory graph analysis, focused graph
mining, and refinement of query results.

III. User-driven Graph Exploration: We discuss algo-
rithmic solutions proposed in the last years that fit our
graph exploration taxonomy. In this light, we first present
exploratory graph queries in terms of approximate search
[3,11,13,30,31], by-example methods [9,17], and path learn-
ing [1]. Second, we introduce methods for refining the re-
sults of incorrectly specified queries, in case they return lit-
tle or no results, or a large number of irrelevant results.
Three main solutions have been proposed in this regard:
query reformulation and refinement [16, 21, 27, 29], ranking
and top-k [4, 5, 10, 25], and skyline queries [34, 36]. Fi-
nally, we present techniques developed in the context of
graph mining for selectively restrict the graph to a rele-
vant portion; they include focused graph clustering and out-
lier detection [5, 12, 19, 23, 35], and space restriction meth-
ods [2, 22,24,26,32].

IV. Open challenges: The last part of the tutorial dis-
cusses open problems and visions about graph exploration.
We propose four missing tiles in graph exploration that should
become the focus of future research: interactivity, scalabil-
ity, adaptivity, and personalization.

3. GRAPH EXPLORATION TAXONOMY
The main part of the tutorial introduces techniques for

graph exploration. We identify and categorize existing so-
lutions into a graph exploration taxonomy that gathers the
most important research developments in this area. Our
intent is to showcase a number of algorithms and to demon-
strate how independent research can properly fit into the
graph exploration taxonomy. A summary of the discussed
algorithms is presented in Table 1.

3.1 Exploratory Graph Analysis
Exploratory graph analysis offers some degree of freedom

in query formulation, allowing the user to explore the graph
without bothering about the strict semantic of query lan-
guages. In this category falls two main query strategies,
namely approximate graph search and searching by example.

Approximate graph search includes methods that relax
the way in which a query answer is found in the graph, al-
lowing potential mistakes or imprecisions. A strict query on
a graph is about finding occurrences of a particular struc-
ture (or pattern) in a graph through subgraph isomorphism.
As opposed to the rigidity of subgraph isomorphism, ap-
proximate graph search finds structures that are similar to
the query structure to some extent. One kind of approx-
imate graph search is strong simulation [13] that relaxes
the condition for which a match is a bijective function over
the nodes in the query and in the graph. Similarly, p-
homomorphism [3] includes the notion of matching-path to

map edges in the query to paths in the graph. As a further
extension, NeMa [11] and SLQ [30] propose the use of simi-
larity among nodes, encompassing cases in which the query
does not exactly match any subgraph.

Searching by example approaches the problem from a
different angle: Instead of considering the query as a specifi-
cation of the answers, the by-example method assumes that
the input is a representative of the intended results. The
main by-example methods in graphs are exemplar queries [17]
and graph query by-example [9]. In exemplar queries [17]
the user provides a structure as example and the method
finds other structures with the same characteristics. Graph
Query by-example (GQBE) [9] on the other hand assumes
the input is a tuple instead of a subgraph.

3.2 Refinement of Graph Query Results
In an exploratory task, the query might be vague and

return a large number of results (many-answer problem) or
over-specific and return little or no results (empty-answer
problem). In both cases the results are not useful for the user
who in turn is forced to manually modify the query to find
different results. For this reason three different approaches
have been proposed: query reformulation and refinement,
top-k results, and skyline queries.

Query reformulation (a.k.a. query reformulation, query
modification) modifies the user query and returns an alterna-
tive set of queries that are more (or less) specific. One of the
earliest methods for query reformulation in graphs proposes
a set theoretical notion [16] to find meaningful and expres-
sive reformulations. A preliminary study of empty-answer
queries in graphs has been also recently proposed [27]. That
method is based on the idea of differential graphs, i.e., the
largest subgraph of the query that produces answers. Sim-
ilar to query reformulation is result summarization [21, 29]
which aims at finding a compact representation of the results
returned by a graph query.

Top-k results returns the k best results according to a
ranking function that should ideally express the user pref-
erences. Top-k approaches either try to return results that
cover different aspects or topics [4,5,10] or learn a preference
function from user feedback [25].

Skyline queries decomposes the query conditions in di-
mensions and return results that maximize each condition
individually. Skyline approaches require the definition of a
dominance relation which, in case of graphs, can be based on
the distance of the other nodes from the query nodes [34,36].

3.3 Focused Graph Mining
The last graph exploration strategy entails a smart restric-

tion of the graph to the subgraph that contain only relevant
information for the user. These methods have been studied
in the context of graph mining and include focused graph
clustering and outlier detection and space restriction meth-
ods.

Focused graph clustering and outlier detection in-
cludes analytic methods that are driven by the user who pro-
vides an initial seed set of nodes as searching criteria. The
initial nodes can then be used to detect communities of users
that share some characteristics with the seed nodes [12].
Other techniques take a more conservative approach, com-
bining community detection to subspace clustering [19,23] to
discover communities with different characteristics. An or-
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Exploratory graph analysis Refinement of graph results Focused graph mining

• Approximate graph search [3, 11, 13,
30,31]

• Searching by example [1, 9, 17]

• Query reformulation [16,21,27,29]

• Top-k results [4, 5, 10,25]

• Skyline queries [34,36]

• Focused graph clustering and outlier
detection [3, 11,13,30,31]

• Space restriction methods [2, 22, 24,
26,32]

Table 1: Approaches in graph exploration, categorized using the graph exploration taxonomy.

thogonal approach to focused clustering is outlier detection
based on input template queries [5, 35] or seed nodes [19].

Space restriction methods focus on the analysis of spe-
cific portions of the graph. Common approaches include
ego-network analysis methods [2] and local community de-
tection [22,24]. An Ego-network is the induced subgraph of
nodes adjacent to a target node and are useful tools for many
applications, such as node similarity and community evolu-
tion. Similarly, local community detection [22, 24] focuses
on small communities around a set of input nodes. Center-
piece subgraphs [26] expand the idea of finding a node (i.e.,
center-piece node) that is in some path connecting a set of
query nodes. With center-piece subgraphs one can for in-
stance understand the connections among a set of interest-
ing users in a social networks. We also present query-driven
graph compression in which the graph is compacted in way
that the results relevant to the query are highlighted [32].

4. OPEN RESEARCH CHALLENGES
The last part of the tutorial discusses open research ques-

tions and challenges. While the tutorial covers the recent ad-
vances in graph exploration, identifying existing research in
this area, it also highlights differences with data exploration
methods. Data exploration identifies adaptivity, especially
in indexing techniques, as a key component for fast data ac-
cess [7, 20], however no graph counterpart currently exists.
Existing graph indexes [6, 33] mostly assume the data and
the query workload to be static, dismissing important opti-
mizations that can be performed on-the-fly in an adaptive
manner.

Another desiderata for current systems is a support to in-
teractive and personalized exploration. With interactivity
we require that the system promptly reacts to user feedback
and offers minimum effort strategies to reach the correct
answers quickly. This direction has been explored in rela-
tional databases for query relaxation [18], and itinerary plan-
ning [15]. Recently, the use of machine learning and more
specifically active search has been rediscovered for graph ex-
ploration [14,28]. The use of machine learning for structure
discovery has not been proposed, yet it represents a promis-
ing ground for research.

Interactivity and adaptivity should also be coupled with
scalable solutions, allowing for fast access to large data.
Scalability is only partially addressed by present solutions
and is a bottleneck to real size graphs, such as social, bio-
logical, information networks.

We discuss the aforementioned open challenges and high-
light opportunities for innovation and applicability in mod-
ern database systems and visualization methods.
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