
Scalable Microblogs Data Management

Amr Magdy
amr@cs.umn.edu

Supervised by: Prof. Mohamed F. Mokbel
Department of Computer Science and Engineering

University of Minnesota - Twin Cities

ABSTRACT
Microblogs, e.g., tweets, reviews, or comments on news websites
and social media, have become so popular among web users that
many applications are exploiting them for different types of anal-
ysis. The distinguishing characteristics of microblogs have moti-
vated a lot of research for managing such data. However, the de-
veloped technology for microblogs is still scattered efforts here and
there which leads to several data management gaps that limits sup-
porting microblogs-centric applications end-to-end. Our research
aims to provide a holistic system approach to manage microblogs
data, so that whoever builds new functionality on microblogs can
seamlessly exploit a single data management system to power his
applications. In this paper, we present a full proposal for Kite;
the f rst holistic system that provides end-to-end management for
microblogs data. Kite aims to f ll the gap in existing systems to
support scalable queries with selective search criteria on data that
comes in high velocity and adds up to large volumes (billions of
records). To this end, the system is going to exploit and extend the
infrastructure of Apache Spark system. Throughout the paper, we
represent a roadmap for the accomplished contributions, on-going
contributions towards the f rst cut realization of Kite, and future
contributions to iteratively improve the system maturity and capa-
bilities.

1. INTRODUCTION
The striking availability and richness of microblogs, e.g., tweets,

reviews, and comments on news websites and on Facebook, has
motivated a lot of efforts on analyzing microblogs. Examples of
such efforts include event detection and exploration [23, 29], news
extraction and delivery [7, 25, 27], user analysis [16], and rescue
services [12]. All these applications use a set of common queries
on different microblogs attributes. The most famous examples of
such queries are "f nd microblogs that have certain keyword(s)",
"f nd microblogs that have posted in certain location(s)", and "f nd
microblogs that have posted by certain user(s)". With the distin-

This research is capitally supported by NSF grants IIS-0952977,
IIS-1218168, IIS-1525953, CNS-1512877, and the University of
Minnesota Doctoral Dissertation Fellowship.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for prof t or commercial advantage and that copies bear this notice and the full cita-
tion on the f rst page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specif c permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’16 PhD Symp, June 25-July 01 2016, San Francisco, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4192-9/16/06. . . $15.00
DOI: http://dx.doi.org/10.1145/2926693.2929898

guishing characteristics of microblogs data, these queries were not
straight forward to be managed by the existing data management
technology. In particular, microblogs arrive in high rates all the
time, tens of thousands every second, and hence such a large num-
ber accumulates over time to make large volumes of historical data,
billions every day. Moreover, microblogs queries come on both re-
cent data in real time, that arrive with high velocity, and old data
that reside in large volume archives. Selecting microblogs with
certain keywords out of this data was challenging enough so that
new real-time indexing techniques have been introduced to man-
age them [9, 11]. The new indexing infrastructures have been also
introduced for location queries [8, 21, 28], user queries [30], and
social-aware personalized queries [17].
Despite all existing work on indexing, querying, analyzing, and

visualizing microblogs, whoever develops microblogs applications
still has to implement major components from scratch with all the
associated complications and challenges. This is mainly due to lack
of a holistic system that glues all of these components together as
means of managing microblogs data. Meanwhile, relying on ex-
isting data management systems is neither eff cient nor practical
as they have inherent limitations to manage microblogs. In par-
ticular, Database Management Systems (DBMSs) [26] cannot sup-
port microblogs as they are not equipped to deal with high arrival
rates that come with microblogs. Such major limitation in DBMSs
was a main reason that systems community has introduced Data
Stream Management Systems (DSMSs) that have emerged as re-
search projects (e.g., Aurora [1] and Trill [10]) and commercial
products (e.g., Apache Storm [5] and Microsoft StreamInsight [2]).
Although a DSMS can eff ciently digest incoming data with high
arrival rates, it is mainly designed and optimized to support the
concept of continuous queries. Continuous queries register in the
system ahead of time while incoming data are processed upon ar-
rival, mostly in a single pass, to provide already registered queries
with incremental answers. This is fundamentally different from
the needs of microblogs queries where users are mostly asking
about data that has already arrived through posing snapshot queries.
Hence, data needs to be digested and indexed for answering future
incoming queries. Though some DSMSs support data archiving,
they do not support indexing, which is a major need for microblogs
queries especially in-memory indexing of recent data that receive a
high fraction of queries.
A recent trend is the development of various Big Data Manage-

ment Systems (BDMSs), e.g., Apache Spark [4], AsterixDB [3],
and Myria [13]. Although Apache Spark can process both fast and
large data, it still cannot eff ciently support queries with selective
search criteria like microblogs queries. The main reason is that it
is geared towards analytics applications that process a large per-
centage of the data, rather than selective queries that f nd few data

32

items with certain keywords or user ids. On another hand, Aster-
ixDB, Myria, and similar systems are primarily designed and op-
timized for eff cient processing of big volume data, thus, they still
cannot support fast data which is an essential part of microblogs
data management. Lately, AsterixDB has been adapted for fast data
ingestion [14]. Nevertheless, the system still cannot cope up with
microblogs arrival rates as it forwards ingested data directly to disk
without providing any main-memory indexing structures. Gener-
ally, systems that are primarily designed for handling big volume
data has shown in [24] to be limited in practice to support fast data.
Thus, handling big velocity has to be inherent in system design
from the early beginning which is not currently supported in big-
volume systems. This leads to a gap in existing systems as they
do not provide the data management infrastructure that is appro-
priate to support microblogs queries. This gap limits them from
supporting major microblogs applications and ease building new
functionality on top of microblogs data.
Our research ultimately aims to build Kite; the f rst system that

provides data management infrastructure for microblogs queries.
Kite f lls the gap in existing systems to support queries with selec-
tive search criteria on both fast data and large data. Kite is a full-
f edged open-source system that would be available for everyone
to build microblogs applications, just like how database systems
eases building applications on top of relational data hiding all the
underlying complications of managing the data. Kite supports in-
dex structures, query operators, memory management techniques,
and SQL-like query language that are all geared towards the distin-
guishing characteristics of microblogs.
Kite makes use of the existing solid data management systems

and extend their infrastructure to support microblogs. In particu-
lar, we extend Apache Spark system to add various indexing struc-
tures in both main-memory and disk storage. These index struc-
tures are exploited by a query processor that converts microblogs
queries into a set of Spark operations on the supported structures.
Therefore, Kite consists of three main components: (i)Memory In-
dexer, (ii) Disk Indexer, and (iii) Query Processor. The Memory
Indexer is optimized to digest fast streams of microblogs data in
main-memory indexes and equipped with eff cient memory utiliza-
tion techniques. The Disk Indexer is optimized for managing large
data volumes in disk storage with minimal cost. TheQuery Proces-
sor is geared towards processing top-k and temporal queries, which
are the most common aspects in microblogs queries [20]. The fol-
lowing sections introduce each component in a bit of details.
Kite is planned to go through three main milestones. The f rst

milestone, which has been already accomplished, is to f ll exist-
ing gaps in the literature of modules that provide microblogs data
management. For this, we have successfully proposed a spatial
real-time index structure for microblogs [21, 22] and novel main-
memory f ushing polices [19] that are able to f ne tune memory
utilization for microblogs queries. The second milestone, which is
currently on-going, is to provide the f rst cut realization of Kite in-
side Apache Spark system and release it to the community to build
on it. The primary release is planned to have only the essential
modules [20] that enable users to build scalable applications on
microblogs. The third milestone, which is planned to start by the
end of this year, is to improve the primary release through adding
the rest of planned modules [20] and enable easiness of extending
the system by the research community.
The rest of this paper is organized as follows. Section 2 gives

an overview about Kite system requirements and architecture. Sec-
tions 3, 4, and 5 describe the details of different Kite components,
namely, Memory Indexer, Disk Indexer, and Query Processor, re-
spectively. Section 6 introduces Kite SQL-like query language.

Flushing Policy

HDFS

(Indexed)

Disk Index

Manager

In-memory RDDs

(Indexed)

Memory Index

Manager

Spark Runtime

Query Operators

Query Processor

Spark

Streaming

Query

Language

Application

Developers

Insert Data Operation Lineage
Query

Query

Compiled Programs

(Java, Scala)

Flush Data

Flushed Data

Create/Drop

Indexes

Microblog Stream

DStream RDDs

Insert Data

Disk Indexer

Memory Indexer

Flushing

Manager

Access Indexes

Figure 1: Kite System Overview.

Section 7 highlights Kite accomplished, on-going, and future mile-
stones. Finally, Section 8 concludes the paper.

2. SYSTEM OVERVIEW
Kite system is designed to primarily address the characteristics of

microblogs data and queries. Specif cally, microblogs data comes
with high arrival rate of tens of thousands per second. Queries that
exploit such fast data ask about both recent data that is few sec-
onds old and historical data that is several months old. This obli-
gates to provide native data management for both fast data in main-
memory (for eff cient digestion and high-throughput querying) and
large data in disk (for scalable querying of large volumes). In ad-
dition, all microblogs queries are mostly temporal queries, where
the query limits its search space to a certain temporal period due to
the timely nature of microblogs. Combined with the temporal at-
tribute, microblogs queries are dominated by either spatial attribute,
keyword attribute, or both of them. Such characteristics drive Kite
system to feature the required data management infrastructures that
are capable to handle both fast and large data. Such infrastructure
are equipped to promote temporal, spatial, and keyword attributes
as f rst class citizens.
Figure 1 depicts our proposal for Kite system architecture. The

system components are proposed to be realized within the ecosys-
tem of Apache Spark system, exploiting its solid infrastructure and
widely-used components. The system consists of three main com-
ponents, namely, Memory Indexer, Disk Indexer, and Query Pro-
cessor. Kite receives a stream of microblogs that are digested in
the Memory Indexer with high arrival rates. The incoming data are
indexed in main-memory index structures so that the high fraction
of incoming queries that ask about recent data are evaluated eff -
ciently frommain-memory contents. Whenever the allocated mem-
ory budget of a certain index is f lled, its data is subject to f ushing
to a corresponding disk index, inside the Disk Indexer component.
The Disk Indexer is responsible for organizing historical data with
large volumes that reaches hundreds of billions of data items. Such
historical data is mainly queried by analytics applications, like get-
ting microblogs that mention a certain presidential candidate over
the last three months or analyzing microblogs that are related to
Ebola epidemic spread over the last year. Both memory and disk
indexes are created and/or dropped by system users, either system
administrators or application developers, on arbitrary attributes of
microblogs data. Meanwhile, developers of microblogs applica-
tions exploit the rich features of Kite through its Query Processor

33

component in two ways: (i) direct calls from their Java or Scala pro-
grams, just like programming on top of Apache Spark, or (ii) SQL-
like declarative query language that provides a familiar and easy
interface for the underlying data management infrastructure. Kite
Memory Indexer, Disk Indexer, Query Processor, and Query Lan-
guage are brief y discussed in Sections 3-6 followed by an empha-
size on the accomplished and remaining milestones of the system
in Section 7.

3. MEMORY INDEXER
TheMemory Indexer component organizes incoming microblogs

in main-memory index structures to achieve: (i) scalable diges-
tion of incoming data with high arrival rates, and (ii) eff cient in-
memory query processing on recent data, which represents a high
fraction of incoming queries to Kite. The Memory Indexer uses
Spark Streaming engine to digest and pre-process the incoming
data stream. Then, Kite modif es the way that Spark partitions its
main abstraction of Resilient Distributed Datasets (RDDs). In par-
ticular, Kite organizes RDDs as temporal index structures, so that
data is partitioned based on its temporal recency. This is mainly
motivated by the dominance of temporal dimension in microblogs
queries, so that data within certain time range need to be retrieved
eff ciently. Also, a high fraction of queries come on the most recent
data, so it is more eff cient to partition them temporally. Kite sup-
ports three families of temporal index structures; temporal keyword
indexes for keyword attribute, spatio-temporal indexes for location
attribute, and a generic temporal hash index that is used for other
microblogs attributes. The f rst version of Kite will support a tem-
poral inverted index for keywords and a temporal partial quad tree
for locations. The supported indexes are decided to promote spatial
and keyword attribute as f rst class citizens, as they are dominant
in microblogs queries and applications. Thus, optimized indexes
are carefully designed for eff cient retrieval on these two specif c
attributes.
Each in-memory index is allocated a maximum main-memory

budget. Once the index f lls the whole available memory budget, a
Flushing Manger triggers a f ushing process that selects a subset of
in-memory data to spill to a corresponding disk-resident index. The
f rst version of Kite is planned to implement two f ushing policies:
the temporal policy where the oldest microblogs are f ushed [9]
and the kFlushing policy where memory contents are smartly ad-
justed to support top-k queries [19]. To synchronize the operations
between the Spark Streaming engine, the indexed RDDs, and the
f ushing manager, we add a new component, termed Memory In-
dex Manager. The main job of this new component is to receive
the pre-processed microblogs from Spark streaming engine, inserts
them in the indexed RDDs based on catalog information about the
existing indexes in the system, and triggers the execution of the
f ushing policy on certain index(es).

4. DISK INDEXER
Microblogs accumulates billions of data items every day, which

forms hundreds of billions of historical data items. Such histor-
ical data is queried based on temporal, spatial, and keyword at-
tributes for applications like social media analysis. To support these
queries, Kite introduces the Disk Indexer component to Apache
Spark echosystem. The main objective is to maintain a set of disk-
resident index structures that correspond to the main-memory in-
dexes. The Disk Index Manager receives the f ushed data from the
Flushing Manager and inserts them as one batch into correspond-
ing disk indexes in Hadoop Distributed File System (HDFS). Each
index consists of a set of HDFS blocks, where data in each block

Flushed

Microblogs

Segment n

1 month data

Segment 1

1 month data

......
Monthly Segments

Daily Segments

Segment 1

1 day data

Segment 2

1 day data

Segment 3

1 day data

Segment 4

1 day data

Segment 5

1 day data

Segment 6

1 day data

Segment 7

1 day data

Weekly Segments

Segment 3

1 week data

Segment 2

1 week data

Segment 1

1 week data

Segment 4

1 week data

Figure 2: Example of Disk Index Temporal Hierarchy.

is grouped based on the index key attribute. Similar to in-memory
index structures, disk-based structures are append-only temporal
inverted index, temporal quad tree index, and temporal hash index.
Unlike main-memory indexes that are primarily designed to sup-

port high digestion rates, disk indexes are designed to support
queries on arbitrarily large temporal horizons (and in turn large
data volumes). Thus, each disk index should be segmented and
replicated in an arbitrarily-def ned temporal hierarchy. Figure 2
shows an example for a hash disk index that is organized in a tem-
poral hierarchy of (day, week, month). Thus, the index has three
levels of segments, namely, daily segments, weekly segments, and
monthly segments. Each daily segment index data of a single cal-
endar day. For each calendar week days, daily segments are merged
and replicated in one weekly segment, and so for the monthly seg-
ments. An incoming query accesses index segments within its tem-
poral horizon so that it minimizes the response time. For example,
a query that spans three weeks would access three weekly segments
rather than searching twenty-one daily segments. This allows Kite
to support relatively long-period queries with minimal querying
overhead. The temporal hierarchy is arbitrary, e.g., (week, month,
year) instead of (day, week, month), and can be def ned by system
admins based on the applications requirements.
Although Kite disk indexes replicate indexing overhead for same

data over multiple hierarchy levels, this overhead is acceptable
for two reasons: (1) Each level of replication adds approximately
a storage overhead of 10% of the indexed data size which is
an acceptable overhead with continuously reducing storage costs.
(2) Kite disk index segments are read-only indexes and do not re-
ceive new data because they index historical microblogs that come
in append-only fashion, hence, there is no index update overhead.

5. QUERY PROCESSOR
Kite query processor provides a set of generic operators that can

be combined to support arbitrary queries on arbitrary microblogs
attributes. Specif cally, it provides the following operations: selec-
tion, aggregate count, projection, and join. All operations, except

34

projection, mostly require top-k results. Thus, Kite is supporting
ranking-aware query processing natively to evaluate top-k queries
eff ciently. The importance of top-k queries comes from the exces-
sive numbers of microblogs data. Consequently, most of existing
work on microblogs agree to put a limit k on the answer size [8, 9,
20, 30], so that the results are meaningful to end users.
All operators are expressed as Spark lineage, i.e., sequence or

graph of basic Spark operations, on both in-memory RDDs and in-
disk HDFS blocks. Query Operatorsmodule expands the incoming
query into its corresponding operators and Spark lineage. Then, it
forwards the lineage to Spark Runtime that executes the query on
the underlying Spark cluster and returns the answer. In this section,
we brief y sketch the distinguishing characteristics of processing
the different operations in Kite.
Selection. With dominance of top-k queries, selection in Kite is

top-k ranking-aware selection [15]. Incorporating top-k semantic
inside query processor speeds up query latency signif cantly. Kite
could use top-k selection on hash indexes as proposed in [30] and
on spatial indexes as proposed in [21]. The basic idea is similar to
ones presented in DBMS literature [15]. Each index entry stores
multiple data lists that ordered on different partial ranking scores.
Then, the lists are traversed in order to aggregate the f nal ranking
score which is usually a monotone function of the partial scores.
Aggregate count. Kite does not support separate indexes for

count aggregation like the proposed ones in [8, 28]. Instead, Kite
exploit the indexes that are presented in Sections 3 and 4. Each
index entry stores the count of individual microblogs in the en-
try. These counts are combined on the f y to get the f nal count
for the query parameters. Due to the discrete nature of microblogs
attributes, e.g., keyword or language, Kite uses a hash-based tech-
nique to perform eff cient counting.
Join. In practice, join operations on multiple microblogs streams

are currently rare and mostly involve equality comparisons, i.e.,
equi-join queries. Thus, a suitable technique for such operation is
hash join. If hash indexes exist on join attribute, they are directly
used for a classical hash join implementation. Otherwise, concise
hash structures should be built and used for eff cient implementa-
tion as described in [6].
Projection. In Kite, projection is useful to reduce the size of

intermediate disk-resident data during query processing. This is
mainly because of the relatively large number of attributes that
come with microblogs, e.g., 63 attributes per tweet. This is not
applicable to main-memory data as microblogs are stored as ob-
jects with random access to all attributes, unlike disk data that are
stored in records with attributes stored sequentially. On another
hand, projection is traditionally, e.g., in DBMSs, challenging for
removing duplicates from f nal answer. However, removing dupli-
cates is not important in Kite because most of search queries ask
about microblogs text which is rarely in full duplicated.

6. QUERY LANGUAGE
Kite query language consists of three main statements:

(1) CREATE (STREAM|INDEX), (2) SELECT, and (3) DROP
(STREAM|INDEX) statements in addition to auxiliary statements
and commands like SHOW, DESC, and ALTER. For presentation
simplicity, we introduce only SELECT statement that is used to
pose queries on microblogs. Both CREATE and DROP are similar
to the typical statements in the standard SQL.
⋆ SELECT attr_list FROM stream_name

[WHERE condition]
TOP-K k ORDER BY F(arg_list)
TEMPORAL (T_start,T_end)

⋆ SELECT grouping_attr_list,
COUNT(attr_list)
FROM stream_name
[WHERE condition]
GROUP BY grouping_attr_list TOP-K k
TEMPORAL (T_start,T_end)

SELECT statement supports basic search queries that retrieve
individual microblogs (the f rst variation) and aggregate queries
that retrieve aggregate counts on microblogs (the second variation).
Both types of queries are top-k queries and include temporal aspect
due to their exceptional importance in microblogs. If a query needs
to omit declaring a specif c time range or k, it should use special
values ∞ and −∞ to intentionally show the need to process all
stored data or return all matching items. This prevents users from
mistakenly submit poorly performing queries.
Example 1. The following basic search query retrieves the most

recent 20 tweets that mention both keywords Obama and Care:
SELECT *

FROM twitter_name
WHERE keyword CONTAINS ALL {Obama, Care}
TOP-K 20
ORDER BY Max(timestamp)
TEMPORAL (-∞,NOW)

Example 2. The following aggregate query retrieves the most
frequent 10 keywords from tweets in Ukraine since February 18,
2014:
SELECT keyword, COUNT(*)

FROM twitter_name
WHERE location WITHIN (52,44.7,39.91,21.8)
GROUP BY keyword
TOP-K 10
TEMPORAL ("18 Feb 2014",∞)

7. KiteMILESTONES
Kite plan has three main milestones. The f rst milestone has pro-

posed a full system architecture [18, 20], and hence identif ed gaps
in the existing literature of microblogs data management. We f lled
the identif ed gaps in our work on real-time spatial querying [21,
22] and main-memory f ushing polices [19]. In nutshell, we have
proposed a main-memory spatial index structure [21, 22] that is op-
timized to support real-time indexing and scalable spatial queries
on microblogs. The index uses a partial quad-tree that is equipped
with batch insertion, lazy deletion, and eff cient index restructur-
ing operations. The new operations signif cantly reduce the overall
indexing overhead and hence tens of thousands of data items can
be indexed every second. In addition, we have proposed a novel
main-memory f ushing policy [19] that is tailored to tune memory
utilization for top-k queries, which are the dominant queries on mi-
croblogs data. The policy basically identify in-memory data items
that are not contributing, or less contributing, to incoming queries.
Such data items become victims for the next f ushing operation.
By identifying and f ushing the least useful data, our policy is able
to signif cantly boost main-memory hit ratio, so that much more
queries are answered entirely from main-memory contents achiev-
ing more eff cient query evaluation and better memory resource uti-
lization.
The second milestone is to realize our proposed components and

system architecture inside Apache Spark system and release it to
the community to build on it. This milestone is currently on-going
as described throughout this paper. The f rst release of Kite is
planned to have the described index structures, f ushing policies,

35

and query operators. These modules enable users to build scalable
applications on microblogs. In its third milestone, which is planned
to start by the end of this year, Kite primary release is planned to
add a query optimizer and additional querying capabilities as en-
visioned in [20]. Also, it is important to ensure the easiness of
extending the system so that it can be incubated by the research
community.

8. CONCLUSION
In this paper, we have introduced Kite; the f rst microblogs data

management system that is designed to address the distinguished
characteristics of microblogs data. Kite is built within the echosys-
tem of Apache Spark system, exploiting its solid data manage-
ment infrastructure and adding a major extension to enable eff cient
querying of microblog data. Specif cally, the system can digest fast
data with high arrival rates, up to tens of thousands per second, in
main-memory index structures. When the allocated memory bud-
get is f lled, a portion of in-memory contents is f ushed to corre-
sponding disk index structures. The disk indexes are partitioned
in temporal slices so that it could serve hundreds of billions of
data items that come in append-only fashion. Both memory and
disk index structures can be built on any microblog attribute, yet,
they are promoting temporal, spatial, and keyword attributes as f rst
class citizen due to their dominance in microblogs queries. Mean-
while, Kite features are exploited through its query processor, ei-
ther through programming language APIs or a SQL-like declara-
tive query language. The supported query language provides a set
of generic operators that can be combined to post a wide variety
of queries on arbitrary microblogs attributes. Towards building the
system, we have identif ed and f lled certain gaps in the literature
of microblogs data management. The system is currently being re-
alized inside Apache Spark system and is planned to be released to
the research community to build upon it.

9. REFERENCES
[1] Daniel J. Abadi and et. al. Aurora: A New Model and

Architecture for Data Stream Management. VLDB Journal,
12(2), 2003.

[2] Mohamed H. Ali and et. al. Spatio-Temporal Stream
Processing in Microsoft StreamInsight. IEEE Data
Engineering Bulletin, 33(2), 2010.

[3] Sattam Alsubaiee and et. al. AsterixDB: A Scalable, Open
Source BDMS. PVLDB, 7(14), 2014.

[4] Apache Spark. https://spark.apache.org/, 2014.
[5] Apache Storm. https://storm.apache.org/, 2014.
[6] R. Barber, G. Lohman, I. Pandis, V. Raman, R. Sidle,

G. Attaluri, N. Chainani, S. Lightstone, and D. Sharpe.
Memory-Eff cient Hash Joins. In VLDB, 2015.

[7] After Boston Explosions, People Rush to Twitter for
Breaking News.
http://www.latimes.com/business/technology/la-f -tn-after-
boston-explosions-people-rush-to-twitter-for-breaking-news-
20130415,0,3729783.story,
2013.

[8] Ceren Budak, Theodore Georgiou, Divyakant Agrawal, and
Amr El Abbadi. GeoScope: Online Detection of
Geo-Correlated Information Trends in Social Networks. In
VLDB, 2014.

[9] Michael Busch, Krishna Gade, Brian Larson, Patrick Lok,
Samuel Luckenbill, and Jimmy Lin. Earlybird: Real-Time
Search at Twitter. In ICDE, 2012.

[10] Badrish Chandramouli and et. al. Trill: A High-Performance
Incremental Query Processor for Diverse Analytics. In
VLDB, 2015.

[11] Chun Chen, Feng Li, Beng Chin Ooi, and Sai Wu. TI: An
Eff cient Indexing Mechanism for Real-Time Search on
Tweets. In SIGMOD, 2011.

[12] Sina Weibo, China Twitter, comes to rescue amid f ooding in
Beijing. http://thenextweb.com/asia/2012/07/23/sina-weibo-
chinas-twitter-comes-to-rescue-amid-f ooding-in-beijing/,
2012.

[13] Daniel Halperin et. al. Demonstration of the Myria big data
management service. In SIGMOD, 2014.

[14] Raman Grover and Michael Carey. Data Ingestion in
AsterixDB. In EDBT, 2015.

[15] Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. A
survey of top-k query processing techniques in relational
database systems. ACS, 40(4), 2008.

[16] Jinling Jiang, Hua Lu, Bin Yang, and Bin Cui. Finding Top-k
Local Users in Geo-Tagged Social Media Data. In ICDE,
2015.

[17] Yuchen Li, Zhifeng Bao, Guoliang Li, and Kian-Lee Tan.
Real Time Personalized Search on Social Networks. In
ICDE, 2015.

[18] Amr Magdy, Louai Alarabi, Saif Al-Harthi, Mashaal
Musleh, Thanaa Ghanem, Sohaib Ghani, and Mohamed
Mokbel. Taghreed: A System for Querying, Analyzing, and
Visualizing Geotagged Microblogs. In SIGSPATIAL, 2014.

[19] Amr Magdy, Rami Alghamdi, and Mohamed F. Mokbel. On
Main-memory Flushing in Microblogs Data Management
Systems. In ICDE, 2016.

[20] Amr Magdy and Mohamed Mokbel. Towards a Microblogs
Data Management System. InMDM, 2015.

[21] Amr Magdy, Mohamed F. Mokbel, Sameh Elnikety, Suman
Nath, and Yuxiong He. Mercury: A Memory-Constrained
Spatio-temporal Real-time Search on Microblogs. In ICDE,
2014.

[22] Amr Magdy, Mohamed F. Mokbel, Sameh Elnikety, Suman
Nath, and Yuxiong He. Venus: Scalable Real-time Spatial
Queries on Microblogs with Adaptive Load Shedding.
TKDE, 2016.

[23] Michael Mathioudakis and Nick Koudas. TwitterMonitor:
Trend Detection over the Twitter Stream. In SIGMOD, 2010.

[24] Gilad Mishne, Jeff Dalton, Zhenghua Li, Aneesh Sharma,
and Jimmy Lin. Fast Data in the Era of Big Data: Twitter’s
Real-time Related Query Suggestion Architecture. In
SIGMOD, 2013.

[25] Owen Phelan, Kevin McCarthy, and Barry Smyth. Using
Twitter to Recommend Real-Time Topical News. In RecSys,
2009.

[26] Raghu Ramakrishnan and Johannes Gehrke. Database
Management Systems (3rd ed.). McGraw-Hill, 2003.

[27] Jagan Sankaranarayanan, Hanan Samet, Benjamin E. Teitler,
Michael D. Lieberman, and Jon Sperling. TwitterStand:
News in Tweets. In GIS, 2009.

[28] Anders Skovsgaard, Darius Sidlauskas, and Christian S.
Jensen. Scalable Top-k Spatio-temporal Term Querying. In
ICDE, 2014.

[29] Tracking Disease Trends. http://nowtrending.hhs.gov/, 2015.
[30] Lingkun Wu, Wenqing Lin, Xiaokui Xiao, and Yabo Xu.

LSII: An Indexing Structure for Exact Real-Time Search on
Microblogs. In ICDE, 2013.

36

