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ABSTRACT
Considerable effort has been devoted to establishing con-
cepts and designing algorithms that are useful for graph data
management. While most work so far has focused on static
graphs, there are many networks with time information, i.e.,
temporal graphs, such as social network messages, phone
calls, public transportation, and neural networks. Even the
most fundamental problems for static graphs become non-
trivial for temporal graphs. In this paper, we explore the
minimum-weight spanning tree problem on temporal graphs,
which was recently proposed by Huang et al. [SIGMOD
2015]. Even though this problem is proven to be NP-hard,
we design practically efficient exact algorithms using integer
programming. Experimental results confirm that the pro-
posed algorithms can produce better solutions than a previ-
ously proposed approximation algorithm.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory—Graph al-
gorithms

Keywords
Integer programming, Exact algorithm, Minimum spanning
tree, Temporal graph

1. INTRODUCTION
Although there has been an extensive amount of research

focusing on static networks, many real world networks, in-
cluding social networks, co-authorship networks and trans-
portation networks, hold temporal information. In the real
world, this data can be represented using temporal graphs.
While analyzing temporal graphs is, in general, more dif-
ficult than analyzing static graphs, many researchers have
been paying attention to the topic due to its practical im-
portance. For example, both the shortest path problem [24,
26] and core-decomposition problem [25] on the temporal
graph have been studied.
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Huang, Fu, and Liu [13] proposed a way to apply the min-
imum directed spanning tree problem on temporal graphs.
A spanning tree on a temporal graph is used to analyze how
information spreads over a whole graph from a certain ver-
tex. For static graphs, it is well known that the usual min-
imum spanning tree problem can be solved in polynomial
time [9, 5, 10, 17, 22]. However, Huang et al. proved that
the minimum spanning tree problem for temporal graphs
is NP-hard. Thus, they proposed an approximation algo-
rithm based on the known approximation algorithm for the
Steiner tree problem [4]. The theoretical approximation ra-
tio of their algorithm can be huge (more than 10000%) for
large networks. However, they experimentally showed that,
for small graphs (of roughly 100 vertices), whose optimal
solutions are known, the approximation ratio of their algo-
rithm is somewhat small (roughly 30%).

In this paper, we propose a method that computes the op-
timal solutions for many datasets of the minimum spanning
tree problem on temporal graphs generated from real-world
networks. Our method formulates the problem as an integer
linear programming problem. We experimentally show that
our method runs quickly for networks generated from real
world data.

Based on experimental results, we believe that real-world
networks may have certain properties (implicitly used by the
integer linear programming solver) that make the problem
easy. Some instances are solved quickly even if there are
no known polynomial-time algorithms for the problem. In
addition, we show that Huang et al.’s method has a good
approximation ratio of roughly 30% to 40% even for large
real-world networks.

1.1 Related Work
The minimum spanning tree problem for a static graph

has been studied substantially. For undirected graphs, Prim’s
algorithm and Kruskal’s algorithm [22, 17] solve the mini-
mum spanning tree problem. These algorithms run in time
O(|E| log |V |) for a graph G = (V,E). For a directed graph,
Chu-Liu/Edmonds’ algorithm runs in time O(|E||V |) [5, 9].
Gabow, Galil, Spencer and Tarjan improve their algorithm
to O(|V | log |V |+ |E|) [10].

Huang, Fu and Liu [13] were the first to study the min-
imum spanning tree problem for a temporal graph. In the
paper by Huang et al., they proposed two definitions for
the minimum directed spanning tree problem on temporal
graphs. One problem is minimizing the farthest distance
between vertices and the root vertex. They proposed an al-
gorithm that runs in time O(|E| log |V |) for this problem.
Another problem is minimizing the total edge weight of a



spanning tree in a temporal graph. They prove that the
second problem is NP-hard and proposed approximation al-
gorithms for the problem.
For NP-hard problems, the integer linear programming

method is often used as a technique for finding the optimal
solution of the problem in a reasonable time. The travel-
ing salesman problem is one of the most famous problems
that is studied when developing exact, approximation, and
heuristic algorithms [21, 2, 6, 18]. There are some variants
of the minimum spanning tree problem. Behle, Jünger, and
Liers studied the degree constrained minimum spanning tree
problem in 2007 [3]. The Steiner tree problem that is a gen-
eralized version of the minimum spanning tree problem has
also been studied extensively. Koch and Martin solved some
instances of the Steiner tree problem optimally in 1998 using
integer linear programming and the cutting plane method
that maintains the connectivity of a solution [16]. They
also proposed preprocessing steps for the problem to reduce
problem size before formulating the integer linear program.
Ljubic, Weiskircher, Pferschy, Klau, Mutzel and Fischetti
studied the prize-collecting Steiner tree problem [19]. The
prize-collecting Steiner tree problem is a generalized version
of the Steiner tree problem such that each vertex has a profit.
Ljubic et al. solved the problem using a similar approach to
the algorithm Koch et al. used to solve the Steiner tree prob-
lem. In this paper, we use the same cutting plane method
that generates constraints to maintain the connectivity of
the solution used in the above research [3, 16, 19].
Another topic related to temporal graphs is the short-

est path. Wu, Cheng, Huang, Ke, Lu and Xu defined four
types of shortest paths on temporal graphs [24]. Wang, Lin,
Yang, Xiao and Zhou studied shortest path queries on tem-
poral graphs using an indexing approach [23]. Wu, Cheng,
Lu, Ke, Huang, Yan, and Wu studied core-decomposition
for temporal graphs that had applications in visualization,
community analysis, and so on [25].

1.2 Our Contribution
We propose an exact algorithm for the minimum directed

spanning tree problem, while existing methods focus on ob-
taining an approximate solution. We implement an integer
linear programming formulation for the minimum directed
spanning tree on temporal graphs based on extensive re-
search[3, 20, 16, 19, 15]. It is possible that the size of näıve
constraints about the temporal property becomes quadratic
with the size of the input. In order to obtain linear size con-
straints about the temporal property, we introduce auxiliary
variables into the formulation. Even if we cannot obtain an
exact solution, we can establish a lower and upper bound us-
ing our method. Thus, even if it is not necessary to obtain
an exact solution, we can know if the solution is good.
We empirically evaluated two exact methods and Huang et

al.’s method in our experiments using real-world networks.
We compared the three methods in terms of the cost of
the solutions and running times. Our experimental results
show that the exact method gives an optimal solution for
many datasets from real-world networks. In particular, our
method solves large instances in less time than Huang et
al.’s existing approximation algorithm.

2. PRELIMINARIES

2.1 Temporal Graph
The definition of a temporal graph that we use in this

paper was proposed by Huang et al. [13]. A temporal graph
G = (V,E) consists of a vertex set V and a set E of edges
with some additional information: for each edge e ∈ E, we
use h(e) as the head of edge e, t(e) as the tail of edge e.
An edge e connects vertices from t(e) to h(e). An edge e
also has starting time s(e) from t(e), arrival time a(e) at
h(e) and an edge weight w(e). For example, this framework
could be used for a situation in which a message is sent from
vertex t(e) in time s(e) and arrives at h(e) in time a(e).

An important difference between a temporal graph and
a static graph is the definition of a path. In a temporal
graph, a sequence P = (e1, e2, · · · , ek) of edges is said to be
a temporal path if and only if a(ei) ≤ s(ei+1) and h(ei) =
t(ei+1) for any i ∈ {1, . . . , k − 1}. This means that an edge
ei cannot have an earlier start time than the arrival time of
the previous edge on the temporal path and the head of ei
should be equal to the tail of ei+1.
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Figure 1: Example of a temporal graph.

In Figure 1, we show an example of a temporal graph. An
edge from vertex 1 to vertex 2 with start time 3, arrival time
4 and edge weight 5 is shown by the label <3,4>[5].

2.2 Minimum Directed Spanning Tree in Tem-
poral Graphs

In our research, we attempt to solve the minimum directed
spanning tree problem on temporal graphs. This is a variant
of the minimum spanning tree problem. The problem is
defined by Huang et al. [13]. The input to this problem is a
temporal graph G = (V,E) and a root vertex r ∈ V . Every
edge e ∈ E has a weight w(e). The goal is to extract a rooted
tree T with the minimum total edge weight. We extract a
tree T from the input. In the extracted tree T , there should
be a temporal path from the root r to every vertex in the
graph. In Figure 2, we show the solution for Figure 1 when
the root is vertex 1.
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Figure 2: Example of a minimum directed spanning
tree in a temporal graph.



The problem has been shown to be NP-hard by Huang et
al. [13]. This was proved by constructing a reduction from
the maximum leaf spanning tree problem, which is an NP-
complete problem [12].
We note that it is easy to decide whether there exists a

directed spanning tree in a temporal graph. A feasible di-
rected spanning tree can be found by using Dijkstra’s short-
est path algorithm [7]. We will use this algorithm in order
to generate a feasible solution.

2.3 Minimum Directed Steiner Tree
In Huang et al.’s method, an instance (i.e., a temporal

graph and a root) is first converted into a directed Steiner
tree instance. The minimum directed Steiner tree problem
is an optimization problem on a weighted directed graph.
An instance of this problem consists of a weighted directed
graph G = (V,E), a root vertex r ∈ V and a terminal vertex
set X ⊂ V ; the goal is to compute a subtree T ∈ G with a
minimum total edge weight such that every terminal vertex
x ∈ X is reachable from the root vertex r. This problem is
known to be NP-hard [12].

2.4 Huang, Fu and Liu’s Method
We review Huang, Fu and Liu’s approximation algorithm.

Their algorithm first converts an instance of the minimum
spanning tree problem on temporal graphs into an instance
of the directed Steiner tree problem.
The converted graph G is constructed as follows: We de-

fine the new vertex set V as V := { (h(e), a(e)) | e ∈ E } ∪
{ (h(e),∞) | e ∈ E }. That is, a vertex of the converted
graph corresponds to a pair (h(e), a(e)) of the head vertex
and the arrival time of an edge e ∈ E. For each vertex of the
temporal graph G, we sort the vertex set of G having the
same vertex as head of edges by the arrival time of edges. Let
the sorted vertex set be Vv = { (h(e), a(e)) | h(e) = v } =
{ v1, v2, · · · , vk } for v ∈ V . We add zero cost edges between
vi and vi+1 for any 1 ≤ i ≤ k − 1. For each edge e ∈ E, we
also add an edge from a vertex u = (h(e′), a(e′)) where

e′ = arg max
e′∈E

{ a(e′) | h(e′) = t(e) and a(e′) ≤ s(e) }

to a vertex v = (h(e′), a(e′)) where

e′ = arg min
e′∈E

{ a(e′) | h(e) = h(e′) and a(e) ≤ a(e′) }

with an edge weight w(e). As a terminal vertex set for the
directed Steiner tree problem, we assign

X = { (h(e),∞) | e ∈ E } .

After converting the graph, the directed Steiner tree in-
stance is preprocessed to satisfy the triangle inequality. In
other words, if there are vertices u and v on the graph such
that there is a path from u to v shorter than the direct edge
u to v, then the edge weight between u and v is overwrit-
ten by the distance of the shortest path. This preprocess-
ing step runs in time O(|V ||E| log |V |). After preprocess-
ing, they construct a directed Steiner tree in time O(|V |iki)

with approximation ratio O(i2(i − 1)k1/i) where i ≥ 2 is
an optimization parameter and k is the number of terminal
vertices. Huang et al. improved upon Charikar, Chekuri,
Cheung, Dai, Goei, Guha and Li’s result by reducing run-
ning time from O(|V |ik2i) to O(|V |iki) while keeping the
same approximation ratio [4].

3. ALGORITHM DESCRIPTION
In this section, we describe two algorithms that use inte-

ger linear programming. First, we introduce our formulation
of the integer linear programming method for the directed
minimum spanning tree problem on temporal graphs. Next,
in order to compare another formulation with our formu-
lation, we describe an integer linear programming formula-
tion for the directed Steiner tree problem based on previous
work [16, 20].

3.1 Integer Linear Programming Formulation
for Minimum Directed Spanning Tree

We explain the integer linear programming formulation
for the directed minimum spanning tree problem on tempo-
ral graphs. Our integer programming formulation for the
minimum directed spanning tree problem is based on Behle
et al.’s formulation [3]. Using inequalities based on Behle
et al.’s method, we force an extracted graph to be a min-
imum weighted spanning tree through formulation (1), (2)
and (7). We add other inequalities (5), (6) as temporal con-
straints and introduce additional binary variables to achieve
a O(|E|+ |V |) initial formulation size.

First, we introduce a binary variable xe ∈ {0, 1} for each
edge e ∈ E to represent whether the edge e is used in an
optimal solution (xe = 1) or not (xe = 0). The objective
function of this problem is represented as:

minimize
∑
e∈E

w(e)xe. (1)

This objective function represents the sum of the weight of
edges used in a solution.

In addition, we introduce constraints to ensure that the
subgraph that is induced by xe is a tree. In a rooted tree,
the indegree of each vertex must be 1 except for the root
vertex r, which can be represented as:

(∀v ∈ V \ {r}),
∑
{xe | h(e) = v } = 1. (2)

We also introduce time constraints in order to prevent
the appearance of an invalid solution. If we formulate time
constraints only using the variables xe, the formulation is as
follows:

∀e ∈ { e | t(e) ̸= r } .

xe ≤
∑
{xe′ | t(e) = h(e′) and a(e′) ≤ s(e) } (3)

Here,
∑

A for a set A means
∑

A =
∑

x∈A x. This formu-
lation indicates that each edge e can be used in a solution
if there is an edge e′ having faster arrival time a(e′) than
the start time of edge e in a solution. The size of this näıve
formulation can become quadratic to the size of an input
graph. To reduce the quadratic size of the constraints to a
linear size in asymptotic notation, we introduce another in-
teger variable ye for each edge e ∈ E. The bottleneck to the
formulation size bottleneck of above constraint is based in
the right side of the inequality. By replacing the right side
of the constraint 3 with a simple expression, we reduce the
size of the inequality corresponding to the time constraints.
In our formulation focusing on the small formulation size,
a variable ye represents the number of edges e′ whose head
h(e′) is same as a head of e and having a faster or equal
arrival time a(e′) compared to the arrival time of edge e as



follows,

∀e ∈ E.ye =∑
{xe′ | h(e) = h(e′) and (a(e′), e′) < (a(e), e) } . (4)

In the comparison of these tuples (a(e′), e′) and (a(e), e),
we first compare the arrival time a(e′) and a(e). If a(e′)
and a(e) are different, the comparison is determined by the
magnitude of the relation between a(e′) and a(e). Other-
wise, we compare the indices of edges e and e′ and determine
the magnitude of the relation between the tuples (a(e′), e′)
and (a(e), e). From constraints (2) and (4), the variables
ye are either become 0 or 1. Thus, we can treat ye as a
binary variable. It is still possible for the above constraint
to be quadratic in size. Therefore, we reduce the size of the
summation on the right side of the constraints (4) using ye,

Q(e) = { (a(e′), e′) | h(e) = h(e′) and (a(e′), e′) < (a(e), e) }

∀e ∈ E.ye =

{
xe (∅ = Q(e))

xe + ye′ ((a(e′), e′) = maxQ(e)).

(5)

To construct this constraint quickly, we make edge sets Sv

for each vertex v. Edge set Sv contains all the edges e with
head v. In each edge set Sv, we sort edges in advance by ar-
rival time. After sorting edges, we can construct constraint
(5) in time O(|E|).
Using the above constraints, we rewrite constraint 3 as

follows,

∀e ∈ { e | t(e) ̸= r } .xe ≤ ye′ , (6)

where e′ is

arg max
e′

{ (a(e′), e′) | h(e′) = t(e) and a(e′) ≤ s(e) } .

The initial formulations used in this method are the con-
straints (2), (5) and (6). In the constraint (2), the number
of non-zero elements is O(|E|). Every variable xe appears
in only this constraint. In constraint (5), the number of
equations is O(|E|). In each equation, a constant number
of variables appear. Therefore, the number of non-zero ele-
ments in this constraint is bounded by O(|E|). Constraint
(6) contains only 2 variables in each equation, and the num-
ber of equations is |E|. As a result, the number of non-zero
elements of constraint (6) is O(|E|). Constraints (2), (5) and
(6) contain O(|E|) non-zero elements in a coefficient matrix
in the integer linear programming formulation. The size of
the initial formulation used in this problem is O(|E|).
However, the above constraints are not sufficient to obtain

an optimal solution. We need constraints for the connectiv-
ity of the solution tree. In a rooted spanning tree, there
should be a temporal path from a root vertex r to every
vertex v ∈ V . In order to satisfy this condition, we add the
following constraints [3, 20, 16, 19, 15],

∀S ⊂ V, r /∈ S, ∅ ̸= S.
∑
{xe | h(e) ∈ S, t(e) /∈ S } ≥ 1.

(7)

This constraint prevents the appearance of a circular in a so-
lution and is used in many combinatorial optimization prob-
lems with graphs to guarantee the connectivity of a solution.
This constraint guarantees that there will be a temporal
path from the root r to every v ∈ V in the solution.

However, this addition causes the number of constraints
to become exponentially large. Thus, we do not add this
constraint in the beginning. When we solve our integer lin-
ear programming formulation, we use a linear sized method
in our initial formulation. As in existing methods, when we
solve our linear relaxation problem for the formulation and
find that constraint (7) is not satisfied by the solution we
add it to the formulation as a lazy constraint cut [3, 20, 16,
19, 15]. In order to find the unsatisfied constraints (7), we
solve the maximum flow problem. For the maximum flow
problem, we make another graph from the solution of the
linear relaxation problem x̂e. The graph Gf that we use in
the maximum flow problem has a vertex set Vf = V and
an edge set Ef = E. Each edge ef ∈ Ef has a flow capac-
ity cap(e) = x̂e. In this graph Gf , we find the minimum
cut from the root vertex rf = r to every vertex vf ∈ Vf .
When a minimum cut has a capacity greater than or equal
to 1, the cut satisfies the constraint (7). Otherwise, the cut
does not satisfy the constraint (7). In this case, we add the
constraints (7) to the formulation and solve the linear pro-
gramming relaxation problem repeatedly. In order to find
the minimum cut from the root vertex r to every vertex
vf , we use Dinic’s algorithm, which runs in O(|V |2|E|) [8].
Dinic’s algorithm runs quickly in practice.

Algorithm 1 Calculate connected constraint

1: procedure Cut-generation(Gf )
2: for all e ∈ Ef do
3: if x̂e = 1 then
4: union(h(e), t(e))

5: for all v ∈ Vf do
6: while find(r) ̸= find(v) do
7: f ← maxflow(Gf , r, v)
8: maxflow(Gf , v, r)
9: if f < 1 then
10: add cut C to formulation that corresponds

to constraint 7.
11: for all e ∈ C do
12: x̂e ← 1
13: union(h(e), t(e))

14: else
15: break

Pseudo code for the cutting plane method used in our ex-
periments is shown in Algorithm 1. After we run the maxi-
mum flow method in line 7, instead of recreating the whole
graph Gf to reset the status of the graph, we calculate a re-
verse maximum flow in line 8 from the vertex v to a root r in
order to speed up our cut generation method. In line 10, we
add the cut found from the maximum flow problem. In line
11 to line 13, we increase the capacity of edges correspond-
ing to the constraint. After increasing the edge capacity, we
attempt to find multiple cuts. Another optimization is used
in our implementation. If there is a temporal path from a
root r to a vertex v in the solution x̂e, we can check the
connectivity between the vertices r and v using a disjoint-
set data structure [11]. In line 4, we merge a set including
vertex h(e) and a set including t(e) if an edge e is used in
the current linear programming problem solution. In line 6,
we check whether there is a temporal path from the root r
to a vertex v or not by using the disjoint-set data structure.
If we find that there is a temporal path, we can skip forward



to find a cut using the maximum flow method because there
is a flow with capacity larger than or equal to 1. Union
and find operations for a disjoint-set data structure run in
amortized O(α(n)) where α is the inverse of the Ackermann
function and n is the number of elements managed by the
data structure. If we do not find any cut in Algorithm 1, a
variable branch occurs. In a variable branch, the value of a
variable that is not fixed is assigned and relaxation of the
integer linear programming problem is solved recursively. In
assignment, the variable is assigned a value of 0 or 1 and the
formulation is solved recursively.
Finally, we give our integer linear programming formula-

tion an initial solution to obtain a good upper bound. To
calculate the initial solution, we run the modified version of
Dijkstra’s shortest path algorithm with a high priority for
the arrival time of edges instead of the total path weights [7].
This type of path is called the earliest-arrival path by Wu
et al. [24].

3.2 Directed Steiner Tree Based Exact Algo-
rithm

In this section, we present another exact method for solv-
ing the minimum directed spanning tree problem on tem-
poral graphs. We will solve the directed Steiner tree prob-
lem using integer programming. The formulation itself is
based on the Steiner tree problem formulation by Koch and
Martin [16] and the prize collecting Steiner tree problem
formulation by Ljubic, Weiskircher, Pferschy, Klau, Mutzel
and Fischetti [20]. In the directed Steiner tree problem, we
use a variable xe for each edge e. The objective function
of this problem is the same as the objective function of the
minimum spanning tree problem on temporal graphs: that
is

minimize
∑
e∈E

w(e)xe. (8)

We then add the indegree constraints. In the directed Steiner
tree problem, we know that only the terminal vertices have
exactly one indegree in the optimal solution.

∀v ∈ X.
∑
{xe | h(e) = v } = 1. (9)

In the directed Steiner tree problem, we can add outdegree
constraints. If there is an in-edge to a non-terminal ver-
tex v, the vertex v must have at least one out-edge. In a
directed Steiner tree problem, leaf vertices of an optimal so-
lution do not include non-terminal vertices because if there
are non-terminal vertices in the leaf nodes of the solution,
we decrease the total edge cost by deleting such vertices
and edges connected to the vertices from the solution. The
corresponding constraints for this property are:

∀v ∈ V \X, v ̸= r∑
{xe | h(e) = v } ≤

∑
{xe | t(e) = v } . (10)

This constraint (10) means that if the non-terminal vertex
v is used in a solution, the outdegree of the vertex v is at
least 1 in a directed Steiner tree. For the root vertex r, the
outdegree of the vertex is at least 1 when there is a non-root
terminal vertex x in a graph [20, 16],

1 ≤
∑
{xe | t(e) = r } . (11)

In order to make the formulation stronger, we add another

constraint to the directed Steiner tree problem. When there
is an edge e used in a solution, the tail vertex t(e) of the
edge e should have an in-edge when the tail vertex t(e) is
not a root vertex r [20, 16].

∀e ∈ E, t(e) ̸= r.
∑
{xe′ | h(e′) = t(e) } ≥ xe (12)

From the above constraint, the sum of variables correspond-
ing to in edges should be greater than or equal to any vari-
able xe corresponding to edge e coming from the vertex t(e).

Initially, we use only the above constraints. These con-
straints are not sufficient to guarantee the connectivity of
the solution of directed Steiner tree. We use the following
lazy constraint to guarantee the connectivity of the directed
Steiner tree, similar to what was used in the minimum span-
ning tree problem for the temporal graph formulation [20,
16].

∀S ⊂ V, r /∈ S, ∅ ̸= S ∩X.∑
{xe | h(e) ∈ S, t(e) /∈ S } ≥ 1. (13)

In the directed Steiner tree problem, there should be a path
from the root vertex r to every terminal vertex v ∈ X. We
add these constraints if there is a constraint that is not sat-
isfied in the solution to the integer linear programming re-
laxation problem. In order to find the unsatisfied constraint,
we use the maximum flow problem in the same way as used
above for the minimum spanning tree problem in temporal
graphs. For the maximum flow problem, we create a graph
in which every edge has a flow capacity cap(xe) equal to the
solution x̂e of the linear relaxation problem.

Algorithm 2 Calculate connected constraint for the di-
rected Steiner tree problem

1: procedure Cut-generation(Gf )
2: for all e ∈ Ef do
3: if x̂e = 1 then
4: union(h(e), t(e))

5: for all v ∈ X do
6: while find(r) ̸= find(v) do
7: f ← maxflow(Gf , r, v)
8: maxflow(Gf , v, r)
9: if f < 1 then
10: add cut C to formulation corresponds to

constraint 13.
11: for all e ∈ C do
12: x̂e ← 1
13: union(h(e), t(e))

14: else
15: break

One difference between Algorithm 1 and Algorithm 2 is
in a line 5. In a directed Steiner tree problem, we check
only connectivity between a root vertex r and the terminal
vertices v ∈ X. Therefore, we check only the maximum flow
from the root vertex r to every terminal vertex v ∈ X.

Finally, we give an initial solution for the integer linear
formulation of the directed Steiner tree problem. In order
to calculate an initial solution, we construct a shortest path
tree from the root vertex r in the converted directed Steiner
tree graph. After constructing a shortest-path tree, we re-
peatedly remove the leaf vertices that are not terminal ver-



tices from the shortest-path tree until all the leaf vertices
become terminal vertices. Therefore, the initial solution for
the directed Steiner tree problem has only terminal leaf ver-
tices. This tree is a feasible solution to the directed Steiner
tree problem.

4. EXPERIMENTS

4.1 Environment
In our experiments, all programs are run on Cent OS 5.10

with an Intel Xeon X5675 3.07 GHz CPU, and 283 GB mem-
ory. All programs are implemented in C++11 and compiled
by GNU Compiler 5.2.0 with the -O3 option. We also use
ILOG CPLEX 12.6 developed by IBM in order to solve the
integer linear programming problem. The CPLEX parame-
ter for the number of threads was set to 1.

4.2 Datasets
In our experiments, we use datasets from real-world net-

works. The graph type, vertex size, and edge size of the sub-
graphs are listed in Table 1. All datasets were downloaded
from the Koblenz Large Network Collection1. HepPh is the
co-authorship network in arXiv’s High Energy Physics Phe-
nomenology section. DBLP (Digital Bibliography & Library
Project) is a co-authorship network in the DBLP computer
science bibliography. Enron is an email communication net-
work of the company Enron. Epinions is a trust and dis-
trust network in an online product rating site. Facebook is
a communication network in one of the most famous social
network services. Slashdot is a communication network in a
news website focusing on technology and science.

Table 1: Dataset information.

Dataset |V | |E| type

HepPh 28093 4596803 co-authorship
DBLP 1314050 18986618 co-authorship
Enron 87273 1148072 communication
Epinions 131828 841372 social
Facebook 46952 876993 communication
Slashdot 51083 140778 communication

It is possible that the graphs do not have a feasible tempo-
ral spanning tree. In order to obtain a feasible solution from
the above datasets in our experiments, we extract graphs
that have a feasible solution. We use two methods to ex-
tract the data. One is the method that Huang et al. used
in their experiment [13]. Another method is used to obtain
some of the larger datasets and evaluate properties of our
method and compare in running time and approximation
ratio of the methods. In the datasets, the edges have a time
stamp but no edge weight. Therefore, we use the same time
stamp for the starting time and arrival time for each edge.
In the model of [13, 14], the propagation probability of an
edge is the inverse of the vertex degree connected by the
edge. We then assign a weight log(d+(t(e))) for all edges
e where d+(v) is the outdegree of vertex v. In the assign-
ment, the minimum spanning tree represents the maximum
influence path from the root vertex in the dataset [13, 14].
In the research of Huang et al., the authors generate a

graph as follows. First, they restrict the time interval in

1http://konect.uni-koblenz.de/

which edges appeared on the graph. They used a time inter-
val of one-tenth of the whole period of the original datasets.
Second, they calculated the set of reachable vertices from
a root vertex in the time restricted temporal graph gener-
ated the first phase. If they found that the root vertex had
reached more than ten percent of the vertices, they then ex-
tracted the subgraph including the reachable vertices as a
dataset. The graph size of each dataset is shown in Table 2
without a subscript.

In addition to the datasets from Huang et al.’s generation
method, we generate more datasets to evaluate the methods
extensively. In our method, we sort an edge set E with the
time stamp of each edge. After sorting, we extract a graph
induced by the edge set Ek where Ek is the subset of edge set
E such that it contains the top-k edges. Then, we calculate
the reachable vertices from a randomly chosen root vertex.
We generate a dataset from the reachable vertex set. 104,
105 and 106 are all used as parameter k for different datasets.
In Table 2, the parameter k is shown as datasetk.

4.3 Experimental Results
In our experiment, we compare our integer linear program-

ming formulation for a minimum directed spanning tree on
temporal graphs, with the integer linear programming for-
mulation for converted directed Steiner tree problems and
Huang et al.’s approximation algorithm. We set a hour time
limit for the methods that use the integer linear program-
ming and the preprocessing part of Huang et al.’s method.
We use Huang et al.’s implementation written in C++. We
modify the preprocessing part of their implementation to
improve time complexity from O(|V |3 + |V ||E| log |V |) to
O(|V ||E| log |V |).

Table 3 shows the cost of solutions and the execution times
for the three methods. In columns UB, LB and time(s) of
Our IP, we show the upper bound and the lower bound of the
solution and the execution time of our method, respectively.
In the columns UB, LB and time(s) of DST IP, we show
the upper bound and lower bound of the solution and the
execution time of a directed Steiner tree problem that is
converted from the original instances. In the column cost
and time(s) of Huang et al. [13], we show the cost of solutions
and the total running time of Huang et al.’s approximation
method. The lower bound of the Enron105 dataset from
our method is wrong. It seems that a numerical error in
computation of the linear programming problem causes this
incorrect result, see ∗ in Table 3. Akiba and Iwata report
a similar problem when they solve the vertex cover problem
using CPLEX [1].

From this table, the methods based on the integer lin-
ear programming problem compute the optimal solution for
small case. Our method computes the optimal solution for
16 instances and Steiner tree formulation computes the op-
timal solution for 13 instances. For the instances that our
method computes the optimal solution, the method takes
less than 10 minutes. Our method tends to obtain a better
solution and approximation ratio than the directed Steiner
tree formulation. In addition, our formulation runs faster
than the directed Steiner tree formulation in most instances.
This occurs when the size of converted instances becomes
large. We found that only our formulation computes the op-
timal solution for the Enron106 , Epinions, the Facebook105 ,
and Slashdot106 networks. In some instances, our method
takes more time to calculate worse solutions than Huang



Table 2: Size of the generated datasets. |Vdst|, |Edst| are the graph sizes of a converted directed Steiner tree
instance. |Xdst| is the number of terminals in a directed Steiner tree instance. |Eprep| is size of edges after of
Huang et al.’s preprocessing method. “-” means that preprocessing does not finish within one hour.

Dataset |V | |E| |Vdst| |Edst| |Xdst| |Eprep|
HepPh 146 3706 845 4165 146 100848
HepPh104 189 1613 722 1990 189 34658
HepPh105 2534 79872 15449 90455 2534 20451111
HepPh106 9111 939482 91063 1016019 9111 -
DBLP 4795 29426 14177 38808 4795 59779483
DBLP104 152 970 476 1294 152 32547
DBLP105 3031 19783 10691 27443 3031 18592360
DBLP106 52349 426763 196611 571025 52349 -
Enron 722 4921 5642 9746 722 4181528
Enron104 656 4180 4824 8242 656 2909012
Enron105 6522 80813 87248 157884 6522 1216033144
Enron106 38672 883430 921028 1734565 38672 -
Epinions 863 7111 6990 12329 863 10933013
Epinions104 1916 3362 3831 5277 1916 211304
Epinions105 16620 90550 33239 107169 16620 62970494
Epinions106 55117 638208 244224 815877 55117 -
Facebook 1430 14521 15949 27326 1430 10508416
Facebook104 171 789 960 1412 171 43514
Facebook105 5143 74514 79640 140672 5143 618767173
Facebook106 32593 817175 849649 1589700 32593 -
Slashdot 898 2964 3815 4921 898 338336
Slashdot104 373 1023 1381 1686 373 39653
Slashdot105 4122 25614 29172 45153 4122 143462973
Slashdot106 8607 59285 66369 104957 8607 905286427

et al.’s method, however our method gives us how far the
solution is away from the optimal solution. The approxi-
mation ratios from upper bound and lower bounds of our
method are roughly 30% in DBLP106 , except in the case of
the Enron105 network. The approximation ratios of other
instances is at most 0% to 20% in our formulation. Com-
pared to Huang et al.’s method, our method computes the
optimal solutions in less time in 12 instances. Huang et al.’s
method is more time consuming when it makes the transitive
closure in preprocessing. From this result, we demonstrate
that many practical networks can be quickly solved using
integer programming.

5. CONCLUSION
We studied the minimum directed spanning tree problem

on temporal graphs, which is NP-hard. We then proposed
a method that can compute optimal solutions using inte-
ger programming. Through experiments, we compared our
minimum directed spanning tree formulation, the directed
Steiner tree formulation, and Huang et al.’s approximation
method. From experimental results, we showed that our
method computes the optimal solution for some instances
generated from real-world networks. For some datasets used
in our experiment, we found the optimal solutions faster
than Huang et al.’s approximation method. From these re-
sults, we believe that there may be an undiscovered property
of real-world networks that makes the problem easy.
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