
Automatic Structural Testing
with Abstraction Refinement and Coarsening∗

Mauro Baluda
Faculty of Informatics

University of Lugano, Switzerland
mauro.baluda@usi.ch

ABSTRACT
White box testing, also referred to as structural testing, can
be used to assess the validity of test suites with respect to the
implementation. The applicability of white box testing and
structural coverage is limited by the difficulty and the cost
of inspecting the uncovered code elements to either generate
test cases that cover elements not yet executed or to prove
the infeasibility of the elements not yet covered.

My research targets the problem of increasing code cover-
age by automatically generating test cases that augment the
coverage of the code or proving the infeasibility of uncovered
elements, and thus eliminating them from the coverage mea-
sure to obtain more realistic values. Although the problem
is undecidable in general, the results achieved so far during
my PhD indicate that it is possible to extend the test suites
and identify many infeasible elements by suitably combin-
ing static and dynamic analysis techniques, and that it is
possible to manage the combinatorial explosion of execution
models by identifying and remove elements of the execution
models when not needed anymore.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing Tools (E.G., Data Generators, Coverage Testing)

General Terms
Algorithms, Verification

1. PROBLEM STATEMENT
Testing is the most popular quality assurance technique

in the software industry. One of the challenges of testing is
to evaluate the adequacy of a test suite, that is, establishing
whether a test suite exercises the software to a sufficient

∗This research is supervised by Mauro Pezzè, University of
Lugano, Switzerland (mauro.pezze@usi.ch).
During my research I coauthored two publications that
present the initial results of my PhD work [1, 2].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’11, September 5–9, 2011, Szeged, Hungary.
Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

extent, or must be augmented with other test cases. One of
the ways proposed by researchers to quantify the adequacy
of testing is to measure code coverage, defined as the amount
of code elements of a given type (for example, statements,
branches or data flow uses) exercised by a test suite, with
respect to the number of those elements in the program [12].

Despite the large body of scientific literature on code cov-
erage, only simple coverage metrics find some practical in-
terest, and their industrial application is still limited. The
main problem that reduces the applicability of coverage met-
rics amounts to the high effort needed for manually devis-
ing test cases that execute specific code elements, especially
if the coverage domain is huge and includes infeasible ele-
ments, that is, elements that belong statically to the code
but cannot be executed for any possible input. Infeasible
elements both divert the testing effort, since testers may
waste resources to prove that they cannot be executed, and
weaken the meaningfulness of the coverage metrics, since
achieving high coverage rates can be impossible when the
portion of undetected infeasible elements is large, as is often
the case when considering advanced coverage metrics (for
example data-flow criteria) and complex code (for example
code that include OTS components and exploit defensive
programming).

The problem of augmenting test suites and improving code
coverage is attracting a lot of interest. Recent work proposes
techniques for either generating test cases by exploring the
program paths in some order, or proving the reachability of
specific faulty statements, but no proposal addresses both
goals in a synergistic fashion yet [10, 11, 5, 9, 13].

My PhD research focuses on synergistic solutions that in-
crease code coverage, while identifying as many infeasible
code elements as possible. Identifying infeasible elements
can both speed up the convergence of the analysis, by avoid-
ing to be stuck in the impossible attempt of covering an
infeasible element, and strengthen the precision of the cov-
erage measurements, by pruning the infeasible elements out
of the coverage counts.

2. RELATED WORK
So far researchers have investigated automatic test gen-

eration and code reachability as separate problems. Test
generation has been addressed with approaches based on in-
put space search and symbolic execution. Code reachability
has been explored in the domain of software model checking.

Random testing samples the input space randomly. It can
quickly produce large test suites that cover part of the code,
but typically fails to cover code that depends on corner val-

400

ues or rare behaviors. More elaborate search strategies pro-
posed in literature, for example based on genetic algorithms,
may outperform random testing in some circumstances, but
share similar problems in the general case [10].

Symbolic execution computes logic formulas that charac-
terize the inputs that drive the execution along sets of pro-
gram paths, and finds inputs that execute given paths by
satisfying these formulas by means of automatic solvers [11].
Concolic execution exploits the interplay between symbolic
execution and dynamic concrete analysis to overcome the
limitations of theorem provers and progress the analysis.
Popular tools that exploit concolic execution, like DART [5]
and PEX [9], proceed through a depth-first analysis of pro-
gram paths, which may lead to explore only a small portion
of the program state space. Different search heuristics have
been proposed, but none of them seems to perform con-
sistently better then the others. Neither Random/genetic
searches nor symbolic execution account for infeasible code.

Techniques for proving reachability properties of programs
have been developed in the area of software model check-
ing. Counter-Example Guided Abstraction Refinement (CE-
GAR) addresses the unreachability of faulty statements by
conservatively over-approximating a program state space to
a finite model, and then refining the model incrementally up
to the precision needed for the proof [7].

The approaches closest to my research are the one pro-
posed by Beckman et al., who combine CEGAR and test-
ing in a verification approach that generates test cases and
triggers suitable abstraction refinement when the test gen-
eration fails [6, 3], and McMillan, who proposes a similar
procedure that exploits an interpolating prover [8]. Both
approaches can prove the reachability of specific faulty state-
ments, but do not apply well to the problem of identifying
infeasible elements within large coverage domains, since this
problem requires to simultaneously solve many reachability
problems, becoming intractable even for small size programs,
as demonstrated experimentally when we tried to apply CE-
GAR based techniques to cover the code coverage problem.

3. RESEARCH OBJECTIVES
My PhD research tackles the problem of both increasing

code coverage and identifying unreachable code elements by
combining static and dynamic techniques and complement-
ing analysis with a new technique that we call coarsening
and that contrasts the state explosion of CEGAR by un-
rolling the refinement steps as soon as the analysis satisfies
any intermediate reachability goal [1, 2].

I plan to meet the main goal of my thesis by exploring the
following research directions:

• Assessing existing and novel analysis techniques to gen-
erate test cases that exercise code elements not yet
covered and identify unreachable ones.

• Studying how techniques for generating test cases, which
typically reason at the level of the control flow of the
program under analysis, can be adapted and extended
to efficiently address coverage domains based on differ-
ent program abstractions, such as, data-flow models.

• Conducting extensive experimental campaigns to iden-
tify the best balance between precision and efficiency
of the proposed solutions. This is of paramount impor-
tance for the approach to scale to practical software,
and then be useful in practice.

4. TECHNICAL CHALLENGES
The main technical challenges relate to the research di-

rections outlined above: suitably combining and extending
static and dynamic analysis techniques to efficiently gen-
erate test cases and rule out infeasible elements, tackling
advanced coverage metrics, and instantiating the approach
into an efficient analysis framework.

Symbolic and concolic execution are well known techniques
for generating test cases, and are implemented in several
robust tools. The main bottleneck for the applicability of
symbolic and concolic executors is the underlying constraint
solvers. Automatic solvers can reason efficiently about basic
arithmetic constructs, but do not perform well when tackling
non linear operations, and cannot deal with the complexity
of floating point representation. The first challenge of my
PhD work is to leverage on existing techniques for overcom-
ing the limitation of current constraint solvers in the scope
of the problem of interest.

The performance of current approaches for proving code
reachability depends on the specific problem instance. For
example, the relative qualities of popular approaches to de-
vise the state predicates needed for abstraction refinement,
for instance weakest precondition calculus and Craig inter-
polants [3, 8], are still unclear. My research will address the
challenge of identifying an effective combination of analy-
sis techniques by empirically investigating the performance
of different approaches, to find a suitable adaptation to the
specificity of structural testing. In the first part of my PhD, I
experimentally investigated the applicability of CEGAR and
I found out that CEGAR performs well when analyzing the
reachability of single program statements, but does not per-
form equally well when analyzing the reachability of a whole
coverage domain as required by our problem. The perfor-
mance problems derive from the complexity of the models
maintained during analysis that easily goes out of memory.
In the first part of my PhD, I proposed a novel technique
(called coarsening) to control memory consumption while
CEGAR progresses [1]. Tackling the state explosion prob-
lem by leveraging the specificity of test case generation is a
crucial challenge to my research.

Generating test cases for a wide range of coverage criteria
challenges the path exploration strategies available in the
literature. Current symbolic test generation techniques are
control flow directed and do not target complex criteria like
data flow based structural coverage, which would greatly
benefit from the approach, since a large portion of the cov-
erage domain is typically infeasible with such criteria.

The availability of an efficient analysis tool can show the
potential of the approach in supporting fault detection and
quality assessment activities for software of industrial in-
terest. A remarkable engineering and optimization effort is
required to exploit the characteristics of modern machines
like complex memory hierarchies and parallelism in the im-
plementation of the tool.

5. CURRENT STATUS
In the first part of my PhD I focused mostly on the chal-

lenge of evaluating, combining and complementing existing
analysis techniques to deal with branch coverage. I refer to
the approach as ARC (abstraction refinement and coarsen-
ing), and to the prototype tool that works for branch cover-
age as (ARC-B).

401

The ARC approach works on what we call the frontier
between covered and not-covered code elements, the frontier
includes the transitions that connect elements of the two
groups in the execution tree of the program under test. The
frontier plays a key role in exploiting the interplay of static
and dynamic analysis techniques effectively.

ARC identifies the current frontier by referring to the cov-
erage domain model, which is a state transition system
that represents all the elements of the coverage domain as
abstract states (the coverage targets), and overapproximates
the possible program flows as transitions between the ab-
stract states. ARC combines in a unitary framework four
static and dynamic analysis components:

Coverage frontier monitoring: a dynamic analysis
technique that traces sets of executions against the coverage
domain model, measures the current coverage, and identifies
the frontier between the reached and the unreached abstract
states. The frontier indicates promising program flows to be
explored to reach coverage targets not yet covered.

Coverage frontier analysis: an analysis technique that
reasons on the frontier of the coverage domain model. This
analysis aims to identify new test cases that can traverse the
frontier towards uncovered targets, reach abstract states not
reached yet and possibly increase the code coverage. The
current ARC-B prototype exploits symbolic execution tech-
niques as a support for coverage frontier analysis. When the
coverage frontier analysis fails in generating a test case that
traverses the frontier, it triggers the coverage frontier refine-
ment analysis technique that refines the model to identify
and eliminate unreachable flows.

Coverage frontier refinement: an abstraction refine-
ment analysis technique that increases the level of precision
of the coverage domain model with respect to a set of fron-
tier transitions. This analysis aims to transform (possibly
recompute) the current model either to better characterize
the set of executions that can reach a given frontier transi-
tion, or to remove such transition from the model when the
analysis can conclude that no program execution may reach
that transition. The increased precision can allow test gen-
eration to progress, while removing transitions can detect
unreachable abstract states, and possibly identify infeasible
coverage targets. The current ARC-B prototype exploits
CEGAR model checking as a support for coverage frontier
refinement.

Coarsening: a maintenance analysis technique that con-
trasts the state explosion problem caused by reiterated ab-
straction refinement. While coverage frontier analysis and
refinement alternate to explore the execution space of the
program and move the frontier further in the coverage do-
main model, many elements created during refinement be-
come irrelevant. Coarsening alleviates the state explosion
problem by eliminating redundant elements from the cov-
erage domain model. Coarsening tracks the relation be-
tween the refinements due to the analysis of the transitions
leading to a given abstract state and the abstract state it-
self, and deletes the information produced by the refine-
ment step when the corresponding abstract state is either
reached or removed from the model. Coarsening is trig-
gered by the frontier monitoring component upon reaching
abstract states, and by the frontier refinement component
upon removing unreachable abstract states.

The prototype tool ARC-B helped me in collecting a pre-
liminary set of empirical data on the validity of the approach

for branch coverage. In ARC-B, the abstract states of the
coverage domain model correspond to the branches in the
program execution. ARC-B initializes the coverage domain
model based on the control-flow graph of the program, and
while the test generation progresses it augments the ab-
stract states with constraints on the values of the program
variables, to assist the reachability analysis. ARC-B im-
plements frontier monitoring evaluating the abstract states
against the program execution during the test runs. ARC-B
implements frontier analysis in the style of concolic execu-
tion, that is, by performing lightweight symbolic execution
on a concrete path up to a frontier, and then using a solver
to compute a test case for traversing the frontier. ARC-
B implements frontier refinement in the style of template-
based abstract refinement [3], that is, by augmenting the
pre-frontier abstract states with the weakest precondition
to reach the post-frontier abstract states. By doing this,
it incrementally improves the precision of the analysis done
by the test generation stage, and it can eventually detect
contradictory preconditions and thus determine the possi-
bility of removing transitions. Finally, ARC-B includes an
implementation of coarsening that removes the conditions
generated by the refinements upon traversing or removing
the frontier transitions.

The empirical data collected with ARC-B on 12 sample
C programs indicate that ARC-B generated test cases that
cover most branches (543 out of 588), and identified most
unreachable branches (34 out of at most 45). The cover-
age obtained with ARC-B spans from 96% to 100% of the
branches in the programs and outperforms state of the art
tools. Additional details of the experiments are reported
in [1].

6. RESEARCH PLAN
My research activity is conceived as an incremental pro-

cess driven by experimental evaluation of the proposed so-
lutions with respect to the research objectives. The need
to experiment with existing analysis techniques to evaluate
their effectiveness in practical settings suggested the design
of a general architectural framework to simplify their inte-
gration and evaluation. The proposed framework identifies
a small number of analysis steps that can be embodied by
different combinations of static and dynamic techniques al-
lowing innovative combinations and their empirical evalua-
tion.

My future plan is articulated in two main phases. In the
first phase I plan to extend the initial results obtained so
far to increase branch coverage of large programs. The re-
sults obtained with ARC-B show that the approach is po-
tentially interesting and useful, but are limited to small size
programs, and thus do not generalize yet. To understand
the applicability and the limits of the analysis techniques
embedded in ARC-B, I plan to work experimentally, and I
need to both extend the approach and the prototype tool,
to deal with a larger subset of the C language, and ame-
liorate the constraint solver support that seems to be the
bottleneck of the current prototype.

Currently the template-based Coverage frontier refinement
implemented in ARC-B treats pointer aliases with impre-
cision (making the detection of infeasible elements reliable
only for programs that do not contain aliases) and is limited
to intra-procedural analysis. I plan to investigate the use of
recently proposed algorithms to precisely account for aliases

402

during symbolic execution and abstraction refinement [3, 4].
I also plan to integrate support for inter-procedural analysis
by extending the current coverage domain model according
to the program call graph, and designing call-return context
sensitiveness in the current algorithms. I finally plan to in-
tegrate other techniques for abstraction refinement, and in
particular I will study the applicability of interpolant based
predicate refinement [8].

To improve the constraint solving power, I need to com-
pare the performances of the different kinds of solvers in the
context of the target problem. I plan to work experimen-
tally by designing a parametric interface to integrate differ-
ent kinds of solvers in the ARC-B prototype tool and com-
pare the solvers experimentally in the filed. I am currently
introducing an homogeneous interface for SMT solvers and
implementing ad hoc techniques to treat specific nonlineari-
ties like the ones arising from the application of modulo and
division operators between integer variables and constants.

The improvement in the technique and in the prototype
tool will enable the collection of further experimental data
on the efficiency of the approach, while the identification of
possible bottlenecks will indicate the elements of the anal-
ysis that require further refinement. A key element for the
scalability of the approach is the new coarsening technique
that I introduced in the first part of my PhD, and that
succeeded in removing redundancy from the model and con-
trolling the state explosion issue. I believe that the core
technique can be further improved by introducing strategies
to prioritize and parallelize the selection of the frontier tran-
sitions to be traversed. An aggressive preprocessing step to
the analysis of the software could also improve the approach
considerably, in particular I will consider precise program
dependence analysis as a means to reduce the number of
transitions in the coverage domain model.

This first phase will result in an approach to increase
branch coverage up to approximating 100% coverage. In
the second and last phase, I plan to extend the approach
towards finer grain coverage criteria. In particular, I aim to
cover data flow criteria, since I expect the ARC approach to
be particularly suitable for these criteria that suffer greatly
from the presence of infeasible elements. Extending the ap-
proach to a wider class of coverage criteria would require
only the definition of different coverage domain models and
the adaptation of the coverage frontier monitor to the new
models. Coverage frontier analysis, refinement and coarsen-
ing depend only on the coverage frontier monitor and are
independent from the coverage criteria. Thus this second
phase should not be too demanding.

A continuous validation effort will highlight strengths and
weaknesses of the different analysis combinations and new
directions of improvement. The possibility to compare re-
sults from different analysis techniques on the same subjects
will increase confidence in the correctness of their implemen-
tation. I will evaluate the effectiveness of ARC against in-
creasingly large programs from open source domains (e.g.,
common UNIX utilities). Through all experiments, I will
evaluate the failure detection ability of the test suites com-
puted by the ARC framework, as the objective of any novel
testing method is to be effective in failure detection.

In the final evaluation I will try to quantify the testing
effort and effectiveness induced by ARC, and I will com-
pare the results both with other automated techniques (for
instance, random testing) and manual test-design strategies.

7. REFERENCES
[1] M. Baluda, P. Braione, G. Denaro, and M. Pezzè.

Structural coverage of feasible code. In Proceedings of
the 5th Workshop on Automation of Software Test,
AST ’10, pages 59–66, New York, NY, USA, 2010.

[2] M. Baluda, P. Braione, G. Denaro, and M. Pezzè.
Structural coverage of feasible code. In Software
Quality Journal, 2011, to appear.

[3] N. E. Beckman, A. V. Nori, S. K. Rajamani, and R. J.
Simmons. Proofs from tests. In Proceedings of the
2008 international symposium on Software testing and
analysis, ISSTA ’08, pages 3–14, New York, NY, USA,
2008. ACM.

[4] B. Elkarablieh, P. Godefroid, and M. Y. Levin. Precise
pointer reasoning for dynamic test generation. In
Proceedings of the eighteenth international symposium
on Software testing and analysis, ISSTA ’09, pages
129–140, New York, NY, USA, 2009. ACM.

[5] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed
automated random testing. In Proceedings of the 2005
ACM SIGPLAN conference on Programming language
design and implementation, PLDI ’05, pages 213–223,
New York, NY, USA, 2005. ACM.

[6] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V.
Nori, and S. K. Rajamani. Synergy: a new algorithm
for property checking. In Proceedings of the 14th ACM
SIGSOFT international symposium on Foundations of
software engineering, SIGSOFT ’06/FSE-14, pages
117–127, New York, NY, USA, 2006. ACM.

[7] T. A. Henzinger, R. Jhala, R. Majumdar, and
G. Sutre. Lazy abstraction. In Proceedings of the 29th
ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’02, pages 58–70, New
York, NY, USA, 2002. ACM.

[8] K. McMillan. Lazy annotation for program testing
and verification. In T. Touili, B. Cook, and
P. Jackson, editors, Computer Aided Verification,
volume 6174 of Lecture Notes in Computer Science,
pages 104–118. Springer Berlin / Heidelberg, 2010.

[9] N. Tillmann and J. De Halleux. Pex: white box test
generation for .net. In Proceedings of the 2nd
international conference on Tests and proofs, TAP’08,
pages 134–153, Berlin, Heidelberg, 2008.
Springer-Verlag.

[10] P. Tonella. Evolutionary testing of classes. In
Proceedings of the 2004 ACM SIGSOFT international
symposium on Software testing and analysis, ISSTA
’04, pages 119–128, New York, NY, USA, 2004. ACM.

[11] W. Visser, C. S. Pǎsǎreanu, and S. Khurshid. Test
input generation with java pathfinder. In Proceedings
of the 2004 ACM SIGSOFT international symposium
on Software testing and analysis, ISSTA ’04, pages
97–107, New York, NY, USA, 2004. ACM.

[12] E. J. Weyuker. The evaluation of program-based
software test data adequacy criteria. Communications
of The ACM, 31:668–675, June 1988.

[13] Z. Xu, Y. Kim, M. Kim, G. Rothermel, and M. B.
Cohen. Directed test suite augmentation: techniques
and tradeoffs. In Proceedings of the eighteenth ACM
SIGSOFT international symposium on Foundations of
software engineering, FSE ’10, pages 257–266, New
York, NY, USA, 2010. ACM.

403

