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ABSTRACT 
Reuse has always been a major goal in software engineering, 

since it promises large gains in productivity, quality and time to 
market reduction. Practical experience has shown that substantial 
reuse has only successfully happened in two cases: libraries, where 
many generic and small components can be found; and product 
lines, where domains-specific components can be assembled in 
different ways to produce variations of a given product. 

In this paper we examine how product lines have successfully 
achieved reuse of coarse-grained components, and the underlying 
factors limiting this approach to narrowly scoped domains. We 
then build on this insight to present an approach, called software 
federation, which proposes a mechanism to overcome the identified 
limitations, and therefore makes reuse of coarse-grained 
components possible over a larger range of applications. Our 
approach extends and generalizes the product line approach, 
extending the concepts and mechanisms available to manage 
variability. The system is in use in different companies, validating 
the claims made in this paper. 

Categories and Subject Descriptors 
D.2.2 Design Tools and Technique D.2.6 Programming 
Environments, D.2.11 Software Architectures, D.2.12 
Interoperability 

General Terms: Design, Experimentation 

Keywords: Reuse, Variability, Product families, Product line, 
MDA, AOP, EAI, interoperability, Model Driven Software 
Engineering, COTS, Process driven application, workflow. 

1. INTRODUCTION 
Reuse has always been considered the main approach to 

achieve major improvements in productivity and quality in 
software engineering. Consequently, much work, both from 
academia and industry, has been undertaken with reuse as target.  

The idea is straightforward, an application should be 
developed by composing [reusable] components found in 
repositories. These components, being well known and robust, 
result in an application that should be easily assembled and robust 
itself. All observers were predicting that by the year 2000, software 
engineers would be assemblers of reusable components rather than 
software developers.  

Reuse is not a goal in itself; it aims at speeding up and 
decreasing maintenance costs. 

 
 
 
 

 
 To speed up the process of building a new application, the 

reusable component should either exactly fit the needs or be easily 
tailored to fit the needs of the target application. To decrease 
maintenance costs, it should be easy to evolve the target 
application, without having to evolve the reused components.  

It is largely acknowledged that developing a really reusable 
component has a significant cost; therefore, to be cost effective, a 
reusable component must be widely reused. 

At first glance, the success of reuse can be measured by two 
factors only:  

1. Reuse scope for a reusable component (see fig 1). 
2. Reuse ratio in the target application (ratio total amount of 

code  / new code) 
After two decades of work, the situation has clearly improved, 

but the current state is far from satisfactory. 
Currently, large reuse scope (factor 1) is achieved by libraries (e.g., 
the Swing library for Java). This is because library components are 
generic, in the sense that they do not depend on the application 
domain. Conversely, the level of functionality is relatively low. A 
wide reuse scope is also achieved by very large components, like a 
database management system. This success is due to the fact it is 
not domain dependent, and they explicitly support internal 
variability (e.g., schemas, configuration files, etc.).  

In both cases, large reuse scope has been achieved only by 
generic components, i.e. components that do not depend on a 
particular domain or application. The fate of such components is to 
be gradually included in the underlying operating system and 
middleware, and not to be considered as pertaining to the 
“application code”. Therefore the application itself is still to be 
programmed, this is why, in both cases, the reuse ratio (success 
factor 2) is not satisfied.. 

Large reuse ratios are only met by product line architectures. 
Indeed, software product line [8][9] approaches also identified 
reuse ratio as critical and proposed a systematic approach for the 
development of reusable components in the limited scope of a 
family of products. However, reuse occurs only in the narrow 
scope of the family: success factor 1 is not met. Consequently, the 
approach can be used only if the family has many members, which 
occurs only in specific domains. 

Since we have to satisfy success factor 2, section 2  analyzes 
how product lines have reached this criteria and deduces what are 
the criterion and constraints that should be satisfied to meet success 
factor 2. Section 3 shows the different technical approaches used in 
product lines. Section 4 presents our software federation approach 
and shows it satisfies both success factors. Section 5 presents the 
experience we gained in using federation in industrial products, 
and section 6 concludes. 

2. THE PRODUCT LINE APPROACH 
To reach large reuse ratios, the product line architecture 

approach had to significantly revisit what must be a reusable 
component, to identify new mechanisms and to completely 
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redefine the development and maintenance process of an 
application. We believe that the lessons learned in the product line 
community can be applied in wider scope.  

2.1 Product line lessons 
Lesson 1: Rely on an abstract and stable description of the 

problem to solve. 
 

Most product lines approaches involve a top down approach, 
in which an initial analysis phase identifies the commonalities and 
differences among family members. This analysis is used to build a 
common architecture with a number of variation points (places in 
the architecture reflecting the expected variations among products) 
to deal with diversity. 

The goal of this architecture is precisely to identify the 
common functionalities, their relationships and where differences 
(variations) are expected among the family members. 

This leads to an abstract architecture in terms of large 
functionality sets and variations, not in terms of technical 
components. This architecture describes the product, from its 
functionality point of view (the problem to solve), rather than the 
technique to use (the solution point of view).  

This architecture is somehow independent from technology 
changes; it is stable and for that reason, it is the cornerstone of the 
family. Indeed, it is the prime reusable artifact. We conclude that 
this is a required characteristic for high-level reuse. 
 

Lesson 2: Identify explicitly the variations in terms of features, 
not in terms of a solution. 

 
Variation points are indicated with respect to the abstract 

architecture and are therefore themselves expressed in terms of 
abstract functionalities, often called “features,” rather than in terms 
of technology. Consequently, they share the property of being 
rather stable. It is the presence of variation points that allows the 
architecture to be shared by a large number of products (the 
family). 

Lesson 3: Reuse coarse-grain, high-functionality components. 

 
The architecture identifies large common functionality sets, 

which become the reusable components. These components are 
relatively large and exhibit high-level functionalities. We believe 
this is an essential characteristic to avoid writing too much specific 
code and therefore to satisfy reuse criteria. 

Perhaps the strongest characteristic of product lines is the 
reliance on upfront analysis of commonality and variation, and on 
the assumption that it is stable enough and components are 
specified and specifically developed in-house within the closed 
context of the product family. Product line practitioners [2][10] 
have already shown that the approach fails to broaden the scope of 
the components beyond the product family, for instance toward an 
entire application domain (see the following figure from [1]). 

 

Single Product 

Family domain 

Population domain 

Application Domain 

Everything 
 

Figure 1  The Spectrum of Product Scope, (from[1]) 

2.2 Reuse scope requirements 
As they try to broaden the reach of the approach, the product 

line community has already identified many limitations and 
proposed appropriate enhancements. From their insight and from 
our own experience, we have identified requirements that must be 
satisfied for the product line family to reach the larger scope of 
reuse. 

Product lines rely strongly on the fact that the architecture and 
its variation points are stable. Adding new variation points, as well 
as changing the architecture have dramatic consequences; most 
often it leads to the definition of a new family.  

 
Requirement 1: Allow abstract architecture evolution. 

 
Since the scope of reuse is related to the capability of the 

variation mechanism to describe a large family, we conclude that 
variation mechanisms must be improved. 

 
Requirement 2: Variation mechanisms must be improved. 

 
The code implementing a feature is usually scattered across 
multiple modules and the product line community adopted many 
aspect-oriented implementation techniques in order to handle this 
crosscutting feature interaction problem. In general, there is no 
direct relationship between a feature, described in abstract terms, 
and the underlying implementation. 

As identified in [13], a limitation of current product line 
mechanisms, hindering its applicability, is the complexity of the 
mapping between the high-level architectural view and the 
component implementation view.  

 
Requirement 3: A high level mapping between the abstract 

architecture and the components. 
 
So far, product line approaches reuse only the components 
specifically developed for the targeted product line.  It means that a 
product line can only start from scratch; it is not possible to build a 
product line from an existing initial member. Increasing reuse 
scope requires reusing components developed elsewhere, for any 
other purpose, including other product lines, legacy and 
commercial components. It has been argued [1][10], that as one 
moves away from the product line family scope, a balance between 
the architectural (top-down) and the compositional (bottom-up) 
approaches is necessary; but a bottom-up approach requires reusing 
existing components developed elsewhere. 
 

Requirement  4:  Reuse components developed elsewhere. 

 
In this paper we build from others' insight and from our previous 
work in coarse-grained component architectures [19], to propose 
software federations as an approach for the development of large-
scale domain components, combining the benefits of the product 
line architectural view, with a rich compositional approach able to 
achieve both large scale and large ratios of reuse.  

3. SUPPORTED PRODUCT LINE 
APPROACHES 

 We believe that following the three lessons above is key to 
ensure a successful product line, which means a good reuse rate, 
but narrow reuse scope. We have identified that large scope of 
reuse could be satisfied if our four requirements above are 
satisfied. 
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Our hypothesis is that, if an automated support satisfies 
simultaneously the 3 product line lessons and our 4 requirements, 
both large rate and wide scope reuse can be achieved. We believe it 
would also significantly improve the scope of usability of product 
line approaches, and therefore its economic justification.                                                     

The following is a short characterization of the classes of 
environments providing automated support for product lines, and 
an assessment on how they satisfy, or not, the lessons and 
requirements. 

We present here shortly the most salient supported product 
line approaches: Domain Specific Language (DSL), Generative 
Programming (GP), Model Driven Engineering (MDE) and 
Domain Specific Modeling (DSM).   

3.1 Domain Specific Language (DSL) 
A DSL is a textual or graphical language providing first class 

abstractions that directly represent the concepts of the application 
domain. A DSL is intended to be “simple” and natural to use by 
domain professionals, but covering a limited application scope. 
DSLs usually rely on classic programming language technology. 
We discuss first why DSLs are a good approach to support product 
lines. 

In product line approaches, the actual architecture of one 
family member must conform with the common abstract 
architecture. A way to make the conformance formal and 
verifiable, is to consider that the formal architecture is a language 
and the actual architecture is a “program” written in that language 
(Figure 2). If so, a compiler can check that the program conforms, 
both syntactically and semantically, and can translate it to 
executable code.The abstract architecture can therefore be 
formalized as a Domain Specific Language (DSL).  

The advantages of a DSL over a general purpose language are: 

• high-level, domain-specific concepts are promoted as 
first class entities, 

• a syntax (graphical or not) natural to the user in the domain, 
who are not necessarily “programmers,” 

• much domain knowledge can be embedded in the compiler to 
generate efficient executable code, and 

• the compiler can rely on high-level specific libraries that 
embed much domain expertise. 

The main drawback of  a DSL is that it covers only a limited 
scope, i.e. what can be said in the language. This is not a serious 
problem, as long as the language covers the whole family 
spectrum. 

Regarding the product line lessons, the DSL approach fares as 
follows: 

Lesson 1:  Rely on an abstract and stable description of the 
problem to solve. This lesson is satisfied since the abstract 
architecture (the language) is stable and describes the problem 
space. 

Problem Space

Solution Space
Common impl. 
Abstractions
Common
Implementation

Common domain 
Abstractions

Specific member 
Abstractions

Model
(Actual Architecture)

Meta Model
(Abstract architecture)

Conformance
Checking

Compiler /
Mapping

Conform to

Mapping
Specific member
Implementation Abstr.

Domain Library

Domain
Componnents

 
Figure 2  The DSL Approach 

Lesson 2: Identify explicitly the variations in terms of features, 
not in terms of a solution. This lesson is not satisfied, since DSLs 
do not focus on variability in the problem space, but rather on 
variability in the solution space. Their goal is mainly to support 
transparent evolution in the solution space.  

Lesson 3: Reuse coarse-grain, high-functionality components. 
This lesson is satisfied, but only for specifically developed 
components. 

With respect to our requirements, DSLs fare as follows: 
R1: Allow abstract architecture evolution. The language is 

static and is not supposed to change. 
R2: Variation mechanisms must be improved. DSLs do not 

natively include variation facilities at the problem level. 
R3: A high-level mapping between the abstract architecture 

and the components. The compiler manages the mapping between 
architecture and components, but this is hidden in the compiler 
code. 

R4: Reuse components developed elsewhere. No, DSLs 
typically support a top-down approach only. 

 
 L1 L2 L3 R1 R2 R3 R4 
DSL ***  ***     

3.2 Generative Programming (GP) 
 Generative programming is a system family approach, which 

focuses on automating the creation of system family members; a 
given system can be automatically generated from a specification 
written in one or more textual or graphical DSLs. To reach this 
objective, GSD uses DSL in a very specific way : the language is 
directly designed after the feature model. 

GP strongly emphasizes variation control; the first step is 
feature model identification, through domain analysis. It 
hypothesizes variations will be very stable all along the product 
line life. The DSL mostly serves as a high-level way to select the 
features, in conformance with the model feature semantics and 
constraints. The architecture must be designed in such a way that 
different feature combinations can be implemented easily; it is a 
solution perspective. 

There is not really a problem perspective in GP, only a feature 
perspective in which different concerns, at different levels of 
abstraction are intertwined (Figure 3). 
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Stakeholders and other information sources
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Architecture and components DSL

Domain analysis

Solution-space
perspective

 
Figure 3  Feature Oriented approach, from [35] 

 
Regarding the product line lessons, the GP approach fares as 

follows: 
Lesson 1:  Rely on an abstract and stable description of the 

problem to solve. This lesson is not satisfied, since the architecture 
is fully in the solution space, but the DSL can play that role and is 
supposed to be in the problem space. 

Lesson 2: Identify explicitly the variations in terms of features, 
not in terms of a solution. This lesson is partially satisfied since 
many features logically pertain to the solution space. 

Lesson 3: Reuse coarse-grain, high-functionality components. 
This lesson is satisfied only for the specifically developed 
components. 

With respect to our requirements, the GP approach fares as 
follows: 

R1: Allow abstract architecture evolution. The feature model 
is very static. No evolution is possible. 

R2: Variation mechanisms must be improved. The variation 
mechanism is powerful (feature model), but it does not 
differentiate between variations in the problem space and 
variations in the solution space. 

R3: A high-level mapping between the abstract architecture 
and the components. The DSL compiler is in charge of this 
mapping, it is fully hidden in the compiler implementation. 

R4: Reuse components developed elsewhere. No, GP is 
typically a top-down approach. 

 
 L1 L2 L3 R1 R2 R3 R4 
GP * ** ***  **   

3.3 Model Driven Engineering (MDE) 
Fostered by the OMG Model Driven Approach (MDA) 

proposal in 2000 [36], recent approaches, under the general name 
Model Driven Engineering (MDE), are trying to leverage a model 
approach. A recent line of work intends to adapt MDE approaches 
to product lines. We discuss first the basic concepts underlying 
MDE. 

In the MDE community, a model is defined as a simplification 
of a system built with an intended goal in mind. The model should 
be able to answer questions in place of the actual system [25]. 
MDE is characterized by the fact that models conform to explicit 
and formal meta-models. A meta-model is a model that defines the 
language for expressing a model ([23], [30], MOF 2002). From 
that point of view, MDE, DSLs and programming languages share 
many concerns and techniques. 

The MDA approach (proposed by the OMG) was the first 
MDE proposal [36]. MDA is relies on an unique, universal, wide-
scope language: UML and its profiles. The recent trend in MDE is 

to consider instead many specialized meta-models intended to 
describe partial views of a system and only in a well defined and 
limited area of concern.  

The modern MDE approach is pretty close to a DSL approach, 
but, in contrast with DSLs, MDE makes the hypothesis that the 
target system is described by many different models, each one 
describing a different view, and/or a different level of abstraction. 
MDE relies on explicit and formal (executable) composition and 
transformation models, to obtain new models and, gradually, an 
executable system out of the many source models. For that reason 
MDE heavily relies on formal meta-models, from which the 
different tools (model editors, transformation, composition 
languages and so on) can be generated. 

MDE is primarily concerned in capitalizing on domain 
knowledge through specific meta-models (expressing the relevant 
domain concepts) and transformations (expressing expertise in the 
translation between concepts and their implementation for a 
specific platform). But MDE is (currently) a top-down approach, 
not primarily concerned with variability and product line issues. 

Regarding the product line lessons, the MDE approach fares 
as follows: 

Lesson 1:  Rely on an abstract and stable description of the 
problem to solve. Yes. It is what models and meta-models are 
intended to do. 

Lesson 2: Identify explicitly the variations in terms of features, 
not in terms of a solution. No, variations can only be addressed if 
alternatives are part of the meta-model. 

Lesson 3: Reuse coarse-grain, high-functionality components. 
This lesson is partially satisfied since it is a generative approach, 
but it is not easy to reuse high-level components. 

With respect to our requirements, the MDE approach fares as 
follows: 

R1: Allow abstract architecture evolution. No, meta-models 
are very static. 

R2: Variation mechanisms must be improved. No, there is no 
variation mechanism at all. 

R3: A high-level mapping between the abstract architecture 
and the components. Yes, it is what transformations are intended to 
do, but transformation technology is not really available today. 

R4: Reuse components developed elsewhere. No, MDE is a 
top-down approach, reuse of external component is very limited. 

 
 L1 L2 L3 R1 R2 R3 R4 
MDE *** * *   (***)  

3.4 Domain Specific Modeling (DSM) 
The DSM approach looks similar to a generative approach, it 

relies on three elements: a DSL, a generator and a framework. As 
for generative programming, a domain  analysis is performed first 
with a model as output (see Figure 3), but in contrast with GP, this 
model is a description of the domain concepts and behavior, not a 
variation model. As in GP, this model serves as input for the 
definition of the DSL: the domain model is also the application 
meta-model.  

The DSL is a language in which the domain concepts and 
some of its high-level variations can be expressed. As such, de 
facto, all applications defined with this DSL satisfy the domain 
constraints and make some variations explicit. 

DSM recognizes that there exists different kinds of variations 
and that they should be handled differently. The high-level 
variations, i.e., those directly affecting the concepts, should be part 
of the DSL. They are visible to anyone designing a family member 
and decisions are made in the model itself. Those related to target 
variations should be part of the generator. They are managed by 
those in charge of the generation. A third class of variations are 
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directly pushed down into the framework; they are defined and 
implemented by the expert of each platform. DSM gets closer to 
our requirements, in particular by having a better domain model 
and a better feature model; nevertheless it follows the general DSL 
strategy as exemplified in Figure 2 and as such has the same 
drawbacks. 

Regarding the product line lessons, the DSM approach fares as 
follows: 

Lesson 1:  Rely on an abstract and stable description of the 
problem to solve. Yes, this is the direct advantages of the MDE 
approach. 

Lesson 2: Identify explicitly the variations in terms of features, 
not in terms of a solution. Yes, three levels of variations are 
independently handled. 

Lesson 3: Reuse coarse-grain, high-functionality components. 
Yes, for components specifically defined for that domain. 

With respect to our requirements, the MDE approach fares as 
follows: 

R1: Allow abstract architecture evolution. No, meta-models 
are very static. 

R2: Variation mechanisms must be improved. Yes, the three 
levels of variation is a clear improvement. 

R3: A high-level mapping between the abstract architecture 
and the components. Yes, if explicit transformations are use, but it 
is not the case; in current DSM tools,  classic code generation is 
used instead. 

R4: Reuse components developed elsewhere. No, DSM is a 
top-down approach, reuse of external component is very limited. 

The following summarizes the strengths and weaknesses of 
the various approaches. 

 
 L1 L2 L3 R1 R2 R3 R4 

DSL ***  ***     
GP * ** ***  **   

MDE *** * *   (***)  
DSM *** *** ***  **   

 
4. THE MÉLUSINE APPROACH 

Mélusine is a system family approach based on MDE 
technology, which emphasizes improvements on product line 
approaches through the extension of the scope of reuse. 
Motivations are twofold: 
• Current approaches require starting a product line from 

scratch, there is no way to define a product line from an 
existing application. The product line approach is too 
much of a big bang approach. 

• The economic viability of the approach is based on how often 
a component is reused. Extending the scope means improving 
the opportunities to reuse a component. 
As shown in 2.2 four requirements must be satisfied to reach 

the objective; clearly no current approach can satisfy these 
requirements. We have found that requirement 4 (reuse existing 
components developed elsewhere), is probably the most critical one 
for improving reuse scope. 

4.1 R4: Reusing existing  components: 
Abstract execution vs. compilation 

Our goal is to reuse  components developed elsewhere as 
much as possible. These components are not made for our product 
line purposes; they can be different in many respects. These 
components can use different technologies, different platforms, 
propose different kinds of interfaces,; they can be interactive, run 
on different computers, have overlapping functionalities; they 

evolve under unplanned external constraints and so on. Reusing 
externally developed components and avoiding the big bang 
syndrome means it must be possible to add/remove/change 
components, at any time, either for the whole family or for a single 
family member. 

This context defeats the implicit hypothesis made in MDE, 
that transformations are performed for a target meta-model that is 
stable and well known before hand. For example, in Figure 2, the 
transformation consists of generating code for the domain library, 
seen as the target meta-model. It is not economically feasible to 
build a transformation tool or compiler for an unstable meta-model 
(domain library).  

In this case, the only stable meta-model is the domain model. 
An application model is a “program” in the language defined by 
the domain model. Interpretation is often defined as an execution in 
terms of the language concepts themselves, i.e., an execution on 
top of a virtual machine that is the domain model. To be able to 
interpret the application model, we have to perform two 
transformations:  
1. transforming the domain model into an interpreter, 
2. transforming the application models into a program 

interpretable by that interpreter. 

Problem Space

Model mapping

Solution Space
Implementation 
Abstractions
Common 
Implementation 

Common domain 
Abstractions

Specific member 
Abstractions

Application Model
(Actual Architecture)

Domain Model
(Appli. Meta Model) Transformed to

Interpreter

Conform to

Abstract execution

AOP Machine

Mapping

Roles

Tools

 
Figure 4  Model interpretation and mappings 

In Mélusine we are using a rather simple approach: the first 
transformation consists in reifying the meta-model, i.e., 
transforming each domain concept into a (Java) class and its 
operations into methods of that class. The second transformation 
reifies the application models in terms of instances of these classes, 
directly interpreted by the interpreter. Note that other 
transformations leading to model interpretation are possible; we 
use reification because it is natural and directly supported by most 
UML environments. If the meta-model is itself defined in a formal 
language (e.g., ENBF, MOF or UML), many tools can be 
generated. It is the case for model editors and also for our 
transformations (Meta model -> interpreter; Model -> program) 
that tool generation can be highly automated. Mostly, the code of 
the meta-model operations (the interpreter methods) need to be 
defined. Such an interpreter is pretty easy to write, nothing 
comparable with a DSL compiler. 

The model interpretation remains in the problem space; we 
have a symbolic execution of the family member, in problem 
terms; it is easier to check and change the application to fit the 
requirements (Figure 4). 
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4.2 R3: High-level mapping vs. code 
generation 

This approach satisfies R4: it is now possible to reuse 
components defined elsewhere. Conversely, we are no longer 
generating code for the domain library; the mapping has to be done 
in other ways. 

Classes found in the interpreter represent domain concepts. 
The methods in these classes interpret the objects in terms of the 
solution space. For example, if “product” is a product line concept, 
its “getProduct(…)” method returns a Java object with the 
attributes defined in the domain model. In the solution space, the 
corresponding real data is usually not a Java object, it may be the 
clustering of information coming from different sources, in 
different tools. There is not necessarily a direct mapping between a 
concept and an implementation of the concept. 

Since we require the domain model to be independent from 
the implementation, it is not possible to change the interpreter to 
include the mapping. We rely instead on aspect-oriented 
technology [14][15]. 

When a method of the interpreter is called (say “getData(..)” ), 
the associated implementation captures that call and translates it 
into a number of calls on the actual components and fills the Java 
object attribute values accordingly. More than one implementation 
can be associated with a single domain model: they express 
variations in the way the domain can be implemented. It is our 
second degree of variation. 

When compared with traditional compiler technology, the 
compiler is split into three parts: the interpreter (in the problem 
space), the interfaces and tools (in the solution space), and the 
mapping. 

R3: A high-level mapping between the abstract architecture 
and the components is supported since: 

1. The abstract architecture (the application model) does not 
disappear, it is translated into an executable program at the 
same abstraction level.  
The rest of the mapping is explicitly defined in term of an 

association between a concept (a class in the interpreter) and the 
interfaces of the tools. Since the mapping relies on roles, not on 
tools, this approach enables using different tools, without having to 
change the mapping. This variability proves to be extremely 
valuable. It allows an interface to have different implementations 
either to fit the non-functional characteristics required by a specific 
family member (size, speed, processors, and so on), or to satisfy 
some client requirement, for example, (re)using the data base, 
version manager and tools used by the client. It is the selection of 
the “right” tool to play the role that will provide specific 
characteristics to the role. Tool versions and alternative tools 
provide a third degree of variability. 
As with DSM, variability is handled at the three abstraction levels, 
for three different reasons, and by three different kinds of persons:  

• high-level variations are part of the domain model and defined 
by each family member designer. 

• Non-functional concept variations are handled in the mapping 
layer by the configurator. 

• Platform and tool variations are performed by platform and 
tool experts. 
As for DSM, most of the R2 requirement: improve variability 

mechanism is satisfied. Only R1 is missing: improve abstract 
domain variability. 

4.3 R1: Abstract Domain variability  
Abstract domain variability is supported by two mechanisms : 

features and extensions. 
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Figure 5  Feature and Domain modeling
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4.3.1 Feature Management. 
The domain model includes those variations that affect the 

conceptual domain and the mapping variation on the 
implementation of a given concept, but other variations are related 
to behavioral variation or to non-functional properties, not related 
to a single concept. For that reason, in Mélusine, the domain model 
is complemented by a feature model, which captures optional 
domain behavior. 

In traditional product line approaches, features are part of the 
abstract architecture (or DSL), they are statically defined a priori. 
In Mélusine, features are not part of the domain model, therefore, 
they can be identified a posteriori, incorporated into the system at 
any time, and maintained independently. 

Nevertheless, features are not independent from the domain 
model; they provide extended or additional semantics for the 

concepts present in the domain model. Features can be considered 
as crosscutting concerns regarding the interpreter; for this reason, 
we use aspect-oriented techniques to implement features and 
articulate them with the domain concepts, along with the ideas of 
feature refinements described in [12]. 

 
variability with respect to the domain model. Configurable 

domains can be adapted to different contexts simply by selecting 
among the available features, in a similar way as configurable 
product families [11].  Since the conceptual domain and the 
features are high level, the configuration model is simple and the 
environment can perform a number of validations. 

It is interesting to see that this approach merges the generative 
programming (feature modeling) and DSM (domain modeling) 
approaches, getting the best of both (Figure 5).
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Figure 6   Domain model extensions 

4.3.2 Domain extensions 
Features provide a level of variability in the domain model, 

nevertheless, during the product line life span, it is likely some new 
concepts appear, or therefore that the domain model itself will need 
to be extended. This usually has dramatic consequences since the 
generator and mapping need to be redone, and future family 
members will not conform with the previous architecture: it is 
more appropriate to say that we will have a new product line. 

The challenge is to be able to extend the domain model 
without any impact on the current domain model, called the core 
domain model. To do so, we have designed an original model 
composition approach in which a new set of concepts, called a 
model extension, can be defined. These concepts can relate to each 
other using the usual UML relationships, and can also refer to the 
core concepts (some of their attribute can be references to the core 
concepts), but not the other way around: core concepts do not refer 
to the extended concepts. The consequence is that core domain 
concepts, its (core) interpreter, the mapping and the application 
models are totally unchanged.Each domain extension is 
transformed, in the same way as the core domain model, in an 
interpreter and mappings, for the same or different tools. Each  

 
 
domain extension interprets a specific model, in which the specific 
application use of the extended concepts is defined (Figure 6). An 
extended model can refer to the core model. 

The approach has three major benefits: 
1. Extensions are independent: they depend on the core domain 

only, not on other extensions. 
2. Each family member uses the core domain model and zero or 

more extensions. 
3. New extensions can be defined at any time in the product line 

life cycle. 
This technology consists of composing the domains models 

(composition common to each family member) and composing 
application models (composition specific to each family member). 

Features and extensions provide domain model variability 
(R1), without compromising the stability property of the domain 
model which is central to product line approaches (Lesson 1). 

5. SUMMARY  
Mélusine is a system family approach, which focuses on  

reusing existing heterogeneous components and extending the 
scope and rate of reuse, based on an MDE approach. 
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From one side, in Mélusine, the problem space is explicitly 
modeled (it is the domain model), this model contains the most 
relevant domain concepts, in which some variations can be 
exposed (for example, in UML, a choice can be modeled as 2 sub-
classes of the same concept). Mandatory choices are part of the 
domain meta model and, therefore, are expressed in the family 
member model. 

Mélusine extends MDE with a feature meta-model in exactly 
the same way as in GSD. In Mélusine, features are optional 
properties that can be present or not (turned on/off) for each family 
member. 

Conceptual extension of the domain model is attained by 
domain extensions. Extensions can be defined at any point in time 
and be use or not by sub-family members. Features and extensions 
allow for abstract architecture evolution and variation. 

The family member core model, extension models and feature 
model are part of the problem space; it contrasts sharply with the 
very static abstract architecture found in traditional product line 
approaches. 

The solution space is independent from the problem space. 
Mélusine proposes a high-level mapping between the problem and 
solution spaces, based on an AOP technology. This language, 
another DSL, allows it to handle variability in the solution space. 
We claim Mélusine satisfies both the lessons and our requirements. 

Lesson 1:  Rely on an abstract and stable description of the 
problem to solve. Yes, this is the direct advantages of an MDE 
approach. 

Lesson 2: Identify explicitly the variations in terms of features, 
not in terms of a solution. Yes, the three variation mechanisms: 
domain model, features model and extensions models are provided 
at the problem layer. Two other variation layers are also available 
(mapping and tools). 

Lesson 3: Reuse coarse-grain, high-functionality components. 
Yes.  

R1: Allow abstract architecture evolution. The feature 
mechanism, for optional behavior, and domain extension for 
conceptual extension allow for the extension of the domain model, 
without compromising the stability of the core model. 

R2: Variation mechanisms must be improved. Yes, 5 different 
variation mechanisms, on three levels of abstraction are 
independently handled. 

R3: A high-level mapping between the abstract architecture 
and the components. Yes,  the mapping and the technology allows 
one to define, at a high level, the mapping between concepts and 
roles. However, a formal transformation approach, in the line of 
QVT would provide better results, but it is not currently available. 

R4: Reuse components developed elsewhere. This was the 
primary goal of Mélusine. It relies on (1) making the application 
model interpreter independent from implementation (abstract 
execution); (2) making explicit the mapping between concept and 
roles, and (3) defining an independent a mapping between roles 
and the actual tools and components. 

 
 L1 L2 L3 R1 R2 R3 R4 
 *** *** *** *** *** ** *** 

 
We believe our goal, following the three product line lessons 

and satisfying our 5 requirements have been reached; accumulated 
experience along the 5 last years tend to show our hypothesis is 
verified in practice: we have both a pretty good product line 
supported approach with both a good reuse rate and good reuse 
scope.  

 

6. EXPERIMENTATION AND  
VALIDATION 

Many of our claims have been substantiated by our experience 
in developing several production systems using Mélusine; see [20] 
for details. Most of our work concentrated on the area of Process 
Support Systems. This is a challenging area since its original usage 
in Workflow systems has been extended to encompass systems as 
diverse as Business Process Management, Enterprise Application 
Integration solutions, or Web Service orchestration and 
choreography. 

This diversity can also be exemplified by the variety of the 
systems we have developed: document management for a transport 
company, process support for the development of memories in the 
ST microelectronics company, a process-driven system for large-
scale software deployment, or tool integration to support the 
development of software reusable components. Even our own 
Mélusine design and development environment has been designed 
and developed as a Mélusine application. 

Perhaps the most difficult task is to identify the core domain 
model because it really requires domain expertise. In contrast to 
other product line approaches, our extension mechanism pushes 
designers toward very simple core domains, because they know it 
will always be possible to add concepts and features later on. We 
observed it had a dramatic effect on the size and complexity of the 
core models. For example, we redesigned our workflow product 
line Apel V4, and observed a 10 fold reduction of the core model 
size; three years later, the first extension was designed (an 
exception and error recovery extension).  

We have developed different independent product lines for 
independent customers and we observed a very good reuse of 
components across these product lines, most notably process 
management, product management, document management, 
workspace management, resource management and concurrent 
engineering domains. A project management and a configuration 
management product line are under construction. 

We observed that, once the domain model is defined, adding 
new features is easy and powerful, adding extensions is a bit more 
difficult, but still relatively easy.  

7. CONCLUSION  
The solution we propose can be seen as a generalization and 

extension of the product line approach. Indeed we reused (sic) the 
main ideas coming from product lines. 

The idea to rely on a high-level abstract architecture (lesson 1) 
has been extended to handle the populations scope instead of a 
family; using a model / meta-model approach borrowed from the 
MDA/MDE world.  

Features are also defined in terms of the abstract architecture 
(lesson 2); but are not part of the architecture, they can be defined 
at any time. A third level of variability is achieved by conceptual 
extensions. These three variability mechanisms at the problem 
layer solve both the abstract architecture (R1) and the variability 
extension (R2) issues. 

We support the idea that high reuse rate can be achieved only 
if it is possible to reuse coarse-grain components (lesson 3). But we 
also believe the real challenge is to reuse coarse grain components 
developed elsewhere, for other purposes (R4). Solving this issue 
required reworking many aspects of the system. We had to use 
abstract interpretation instead of compilation, to define high-level 
mappings (R3) and to carefully manage tools abstractions and 
variations. 

Extending the scope of reuse is the main challenge addressed in 
this work. Reaching this target required many deep changes. The 
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first one is to completely separate the problem layer from the 
implementation layer. 

The problem layer contains: 
• a core domain model: a stable set of core concepts, 
• a feature model: core model optional behavior, 
• domain extensions: core model additional concepts. 

The problem layer is transformed into an executable program, 
and executed symbolically. The problem layer is also divided in 
three parts: 
• A mapping between the problem and implementation 

layers. 
• Roles, defining abstract components functionalities, 
• Tools : software component capable to fill  a role. 

 
We believe this work contribute is different ways: We clearly 

separate the problem layer from implementation. At the problem 

layer, we provide three different variation mechanisms and two 
extensions mechanism. A significant contribution is our technology 
for meta model and model composition. The mapping language we 
have developed links problem with implementation. We believe 
our system is one of the few PL approach supporting bottom up 
approaches. 

The approach have been significantly tested in real size 
operational applications. 

In order to reach high reuse rates, the product family 
approaches had to rework the usual software engineering concepts 
and techniques, and to propose specific development processes and 
environments. But in PL, reuse is limited to a narrow family scope. 
It is not a surprise that, to obtain high reuse rate in a much wider 
scope, we had to rework even deeper concepts, techniques and 
processes, and to develop a completely new environment. 
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