
Reuse and Variability in Large Software Applications
Jacky Estublier

LSR-IMAG
220, rue de la Chimie BP53
38041 Grenoble Cedex 9

France
jacky.estublier@imag.fr

German Vega
LSR-IMAG

220, rue de la Chimie BP53
38041 Grenoble Cedex 9

France
german.vega@imag.fr

ABSTRACT
Reuse has always been a major goal in software engineering,

since it promises large gains in productivity, quality and time to
market reduction. Practical experience has shown that substantial
reuse has only successfully happened in two cases: libraries, where
many generic and small components can be found; and product
lines, where domains-specific components can be assembled in
different ways to produce variations of a given product.

In this paper we examine how product lines have successfully
achieved reuse of coarse-grained components, and the underlying
factors limiting this approach to narrowly scoped domains. We
then build on this insight to present an approach, called software
federation, which proposes a mechanism to overcome the identified
limitations, and therefore makes reuse of coarse-grained
components possible over a larger range of applications. Our
approach extends and generalizes the product line approach,
extending the concepts and mechanisms available to manage
variability. The system is in use in different companies, validating
the claims made in this paper.

Categories and Subject Descriptors
D.2.2 Design Tools and Technique D.2.6 Programming
Environments, D.2.11 Software Architectures, D.2.12
Interoperability

General Terms: Design, Experimentation

Keywords: Reuse, Variability, Product families, Product line,
MDA, AOP, EAI, interoperability, Model Driven Software
Engineering, COTS, Process driven application, workflow.

1. INTRODUCTION
Reuse has always been considered the main approach to

achieve major improvements in productivity and quality in
software engineering. Consequently, much work, both from
academia and industry, has been undertaken with reuse as target.

The idea is straightforward, an application should be
developed by composing [reusable] components found in
repositories. These components, being well known and robust,
result in an application that should be easily assembled and robust
itself. All observers were predicting that by the year 2000, software
engineers would be assemblers of reusable components rather than
software developers.

Reuse is not a goal in itself; it aims at speeding up and
decreasing maintenance costs.

 To speed up the process of building a new application, the

reusable component should either exactly fit the needs or be easily
tailored to fit the needs of the target application. To decrease
maintenance costs, it should be easy to evolve the target
application, without having to evolve the reused components.

It is largely acknowledged that developing a really reusable
component has a significant cost; therefore, to be cost effective, a
reusable component must be widely reused.

At first glance, the success of reuse can be measured by two
factors only:

1. Reuse scope for a reusable component (see fig 1).
2. Reuse ratio in the target application (ratio total amount of

code / new code)
After two decades of work, the situation has clearly improved,

but the current state is far from satisfactory.
Currently, large reuse scope (factor 1) is achieved by libraries (e.g.,
the Swing library for Java). This is because library components are
generic, in the sense that they do not depend on the application
domain. Conversely, the level of functionality is relatively low. A
wide reuse scope is also achieved by very large components, like a
database management system. This success is due to the fact it is
not domain dependent, and they explicitly support internal
variability (e.g., schemas, configuration files, etc.).

In both cases, large reuse scope has been achieved only by
generic components, i.e. components that do not depend on a
particular domain or application. The fate of such components is to
be gradually included in the underlying operating system and
middleware, and not to be considered as pertaining to the
“application code”. Therefore the application itself is still to be
programmed, this is why, in both cases, the reuse ratio (success
factor 2) is not satisfied..

Large reuse ratios are only met by product line architectures.
Indeed, software product line [8][9] approaches also identified
reuse ratio as critical and proposed a systematic approach for the
development of reusable components in the limited scope of a
family of products. However, reuse occurs only in the narrow
scope of the family: success factor 1 is not met. Consequently, the
approach can be used only if the family has many members, which
occurs only in specific domains.

Since we have to satisfy success factor 2, section 2 analyzes
how product lines have reached this criteria and deduces what are
the criterion and constraints that should be satisfied to meet success
factor 2. Section 3 shows the different technical approaches used in
product lines. Section 4 presents our software federation approach
and shows it satisfies both success factors. Section 5 presents the
experience we gained in using federation in industrial products,
and section 6 concludes.

2. THE PRODUCT LINE APPROACH
To reach large reuse ratios, the product line architecture

approach had to significantly revisit what must be a reusable
component, to identify new mechanisms and to completely

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ESEC-FSE’05, September 5–9, 2005, Lisbon, Portugal.
Copyright 2005 ACM 1-59593-014-0/05/0009...$5.00.

316

redefine the development and maintenance process of an
application. We believe that the lessons learned in the product line
community can be applied in wider scope.

2.1 Product line lessons
Lesson 1: Rely on an abstract and stable description of the

problem to solve.

Most product lines approaches involve a top down approach,
in which an initial analysis phase identifies the commonalities and
differences among family members. This analysis is used to build a
common architecture with a number of variation points (places in
the architecture reflecting the expected variations among products)
to deal with diversity.

The goal of this architecture is precisely to identify the
common functionalities, their relationships and where differences
(variations) are expected among the family members.

This leads to an abstract architecture in terms of large
functionality sets and variations, not in terms of technical
components. This architecture describes the product, from its
functionality point of view (the problem to solve), rather than the
technique to use (the solution point of view).

This architecture is somehow independent from technology
changes; it is stable and for that reason, it is the cornerstone of the
family. Indeed, it is the prime reusable artifact. We conclude that
this is a required characteristic for high-level reuse.

Lesson 2: Identify explicitly the variations in terms of features,
not in terms of a solution.

Variation points are indicated with respect to the abstract

architecture and are therefore themselves expressed in terms of
abstract functionalities, often called “features,” rather than in terms
of technology. Consequently, they share the property of being
rather stable. It is the presence of variation points that allows the
architecture to be shared by a large number of products (the
family).

Lesson 3: Reuse coarse-grain, high-functionality components.

The architecture identifies large common functionality sets,

which become the reusable components. These components are
relatively large and exhibit high-level functionalities. We believe
this is an essential characteristic to avoid writing too much specific
code and therefore to satisfy reuse criteria.

Perhaps the strongest characteristic of product lines is the
reliance on upfront analysis of commonality and variation, and on
the assumption that it is stable enough and components are
specified and specifically developed in-house within the closed
context of the product family. Product line practitioners [2][10]
have already shown that the approach fails to broaden the scope of
the components beyond the product family, for instance toward an
entire application domain (see the following figure from [1]).

Single Product

Family domain

Population domain

Application Domain

Everything

Figure 1 The Spectrum of Product Scope, (from[1])

2.2 Reuse scope requirements
As they try to broaden the reach of the approach, the product

line community has already identified many limitations and
proposed appropriate enhancements. From their insight and from
our own experience, we have identified requirements that must be
satisfied for the product line family to reach the larger scope of
reuse.

Product lines rely strongly on the fact that the architecture and
its variation points are stable. Adding new variation points, as well
as changing the architecture have dramatic consequences; most
often it leads to the definition of a new family.

Requirement 1: Allow abstract architecture evolution.

Since the scope of reuse is related to the capability of the

variation mechanism to describe a large family, we conclude that
variation mechanisms must be improved.

Requirement 2: Variation mechanisms must be improved.

The code implementing a feature is usually scattered across
multiple modules and the product line community adopted many
aspect-oriented implementation techniques in order to handle this
crosscutting feature interaction problem. In general, there is no
direct relationship between a feature, described in abstract terms,
and the underlying implementation.

As identified in [13], a limitation of current product line
mechanisms, hindering its applicability, is the complexity of the
mapping between the high-level architectural view and the
component implementation view.

Requirement 3: A high level mapping between the abstract

architecture and the components.

So far, product line approaches reuse only the components
specifically developed for the targeted product line. It means that a
product line can only start from scratch; it is not possible to build a
product line from an existing initial member. Increasing reuse
scope requires reusing components developed elsewhere, for any
other purpose, including other product lines, legacy and
commercial components. It has been argued [1][10], that as one
moves away from the product line family scope, a balance between
the architectural (top-down) and the compositional (bottom-up)
approaches is necessary; but a bottom-up approach requires reusing
existing components developed elsewhere.

Requirement 4: Reuse components developed elsewhere.

In this paper we build from others' insight and from our previous
work in coarse-grained component architectures [19], to propose
software federations as an approach for the development of large-
scale domain components, combining the benefits of the product
line architectural view, with a rich compositional approach able to
achieve both large scale and large ratios of reuse.

3. SUPPORTED PRODUCT LINE
APPROACHES

 We believe that following the three lessons above is key to
ensure a successful product line, which means a good reuse rate,
but narrow reuse scope. We have identified that large scope of
reuse could be satisfied if our four requirements above are
satisfied.

317

Our hypothesis is that, if an automated support satisfies
simultaneously the 3 product line lessons and our 4 requirements,
both large rate and wide scope reuse can be achieved. We believe it
would also significantly improve the scope of usability of product
line approaches, and therefore its economic justification.

The following is a short characterization of the classes of
environments providing automated support for product lines, and
an assessment on how they satisfy, or not, the lessons and
requirements.

We present here shortly the most salient supported product
line approaches: Domain Specific Language (DSL), Generative
Programming (GP), Model Driven Engineering (MDE) and
Domain Specific Modeling (DSM).

3.1 Domain Specific Language (DSL)
A DSL is a textual or graphical language providing first class

abstractions that directly represent the concepts of the application
domain. A DSL is intended to be “simple” and natural to use by
domain professionals, but covering a limited application scope.
DSLs usually rely on classic programming language technology.
We discuss first why DSLs are a good approach to support product
lines.

In product line approaches, the actual architecture of one
family member must conform with the common abstract
architecture. A way to make the conformance formal and
verifiable, is to consider that the formal architecture is a language
and the actual architecture is a “program” written in that language
(Figure 2). If so, a compiler can check that the program conforms,
both syntactically and semantically, and can translate it to
executable code.The abstract architecture can therefore be
formalized as a Domain Specific Language (DSL).

The advantages of a DSL over a general purpose language are:

• high-level, domain-specific concepts are promoted as
first class entities,

• a syntax (graphical or not) natural to the user in the domain,
who are not necessarily “programmers,”

• much domain knowledge can be embedded in the compiler to
generate efficient executable code, and

• the compiler can rely on high-level specific libraries that
embed much domain expertise.

The main drawback of a DSL is that it covers only a limited
scope, i.e. what can be said in the language. This is not a serious
problem, as long as the language covers the whole family
spectrum.

Regarding the product line lessons, the DSL approach fares as
follows:

Lesson 1: Rely on an abstract and stable description of the
problem to solve. This lesson is satisfied since the abstract
architecture (the language) is stable and describes the problem
space.

Problem Space

Solution Space
Common impl.
Abstractions
Common
Implementation

Common domain
Abstractions

Specific member
Abstractions

Model
(Actual Architecture)

Meta Model
(Abstract architecture)

Conformance
Checking

Compiler /
Mapping

Conform to

Mapping
Specific member
Implementation Abstr.

Domain Library

Domain
Componnents

Figure 2 The DSL Approach

Lesson 2: Identify explicitly the variations in terms of features,
not in terms of a solution. This lesson is not satisfied, since DSLs
do not focus on variability in the problem space, but rather on
variability in the solution space. Their goal is mainly to support
transparent evolution in the solution space.

Lesson 3: Reuse coarse-grain, high-functionality components.
This lesson is satisfied, but only for specifically developed
components.

With respect to our requirements, DSLs fare as follows:
R1: Allow abstract architecture evolution. The language is

static and is not supposed to change.
R2: Variation mechanisms must be improved. DSLs do not

natively include variation facilities at the problem level.
R3: A high-level mapping between the abstract architecture

and the components. The compiler manages the mapping between
architecture and components, but this is hidden in the compiler
code.

R4: Reuse components developed elsewhere. No, DSLs
typically support a top-down approach only.

 L1 L2 L3 R1 R2 R3 R4
DSL *** ***

3.2 Generative Programming (GP)
 Generative programming is a system family approach, which

focuses on automating the creation of system family members; a
given system can be automatically generated from a specification
written in one or more textual or graphical DSLs. To reach this
objective, GSD uses DSL in a very specific way : the language is
directly designed after the feature model.

GP strongly emphasizes variation control; the first step is
feature model identification, through domain analysis. It
hypothesizes variations will be very stable all along the product
line life. The DSL mostly serves as a high-level way to select the
features, in conformance with the model feature semantics and
constraints. The architecture must be designed in such a way that
different feature combinations can be implemented easily; it is a
solution perspective.

There is not really a problem perspective in GP, only a feature
perspective in which different concerns, at different levels of
abstraction are intertwined (Figure 3).

318

Problem-space
perspective

Stakeholders and other information sources

Feature models

Architecture and components DSL

Domain analysis

Solution-space
perspective

Figure 3 Feature Oriented approach, from [35]

Regarding the product line lessons, the GP approach fares as

follows:
Lesson 1: Rely on an abstract and stable description of the

problem to solve. This lesson is not satisfied, since the architecture
is fully in the solution space, but the DSL can play that role and is
supposed to be in the problem space.

Lesson 2: Identify explicitly the variations in terms of features,
not in terms of a solution. This lesson is partially satisfied since
many features logically pertain to the solution space.

Lesson 3: Reuse coarse-grain, high-functionality components.
This lesson is satisfied only for the specifically developed
components.

With respect to our requirements, the GP approach fares as
follows:

R1: Allow abstract architecture evolution. The feature model
is very static. No evolution is possible.

R2: Variation mechanisms must be improved. The variation
mechanism is powerful (feature model), but it does not
differentiate between variations in the problem space and
variations in the solution space.

R3: A high-level mapping between the abstract architecture
and the components. The DSL compiler is in charge of this
mapping, it is fully hidden in the compiler implementation.

R4: Reuse components developed elsewhere. No, GP is
typically a top-down approach.

 L1 L2 L3 R1 R2 R3 R4
GP * ** *** **

3.3 Model Driven Engineering (MDE)
Fostered by the OMG Model Driven Approach (MDA)

proposal in 2000 [36], recent approaches, under the general name
Model Driven Engineering (MDE), are trying to leverage a model
approach. A recent line of work intends to adapt MDE approaches
to product lines. We discuss first the basic concepts underlying
MDE.

In the MDE community, a model is defined as a simplification
of a system built with an intended goal in mind. The model should
be able to answer questions in place of the actual system [25].
MDE is characterized by the fact that models conform to explicit
and formal meta-models. A meta-model is a model that defines the
language for expressing a model ([23], [30], MOF 2002). From
that point of view, MDE, DSLs and programming languages share
many concerns and techniques.

The MDA approach (proposed by the OMG) was the first
MDE proposal [36]. MDA is relies on an unique, universal, wide-
scope language: UML and its profiles. The recent trend in MDE is

to consider instead many specialized meta-models intended to
describe partial views of a system and only in a well defined and
limited area of concern.

The modern MDE approach is pretty close to a DSL approach,
but, in contrast with DSLs, MDE makes the hypothesis that the
target system is described by many different models, each one
describing a different view, and/or a different level of abstraction.
MDE relies on explicit and formal (executable) composition and
transformation models, to obtain new models and, gradually, an
executable system out of the many source models. For that reason
MDE heavily relies on formal meta-models, from which the
different tools (model editors, transformation, composition
languages and so on) can be generated.

MDE is primarily concerned in capitalizing on domain
knowledge through specific meta-models (expressing the relevant
domain concepts) and transformations (expressing expertise in the
translation between concepts and their implementation for a
specific platform). But MDE is (currently) a top-down approach,
not primarily concerned with variability and product line issues.

Regarding the product line lessons, the MDE approach fares
as follows:

Lesson 1: Rely on an abstract and stable description of the
problem to solve. Yes. It is what models and meta-models are
intended to do.

Lesson 2: Identify explicitly the variations in terms of features,
not in terms of a solution. No, variations can only be addressed if
alternatives are part of the meta-model.

Lesson 3: Reuse coarse-grain, high-functionality components.
This lesson is partially satisfied since it is a generative approach,
but it is not easy to reuse high-level components.

With respect to our requirements, the MDE approach fares as
follows:

R1: Allow abstract architecture evolution. No, meta-models
are very static.

R2: Variation mechanisms must be improved. No, there is no
variation mechanism at all.

R3: A high-level mapping between the abstract architecture
and the components. Yes, it is what transformations are intended to
do, but transformation technology is not really available today.

R4: Reuse components developed elsewhere. No, MDE is a
top-down approach, reuse of external component is very limited.

 L1 L2 L3 R1 R2 R3 R4
MDE *** * * (***)

3.4 Domain Specific Modeling (DSM)
The DSM approach looks similar to a generative approach, it

relies on three elements: a DSL, a generator and a framework. As
for generative programming, a domain analysis is performed first
with a model as output (see Figure 3), but in contrast with GP, this
model is a description of the domain concepts and behavior, not a
variation model. As in GP, this model serves as input for the
definition of the DSL: the domain model is also the application
meta-model.

The DSL is a language in which the domain concepts and
some of its high-level variations can be expressed. As such, de
facto, all applications defined with this DSL satisfy the domain
constraints and make some variations explicit.

DSM recognizes that there exists different kinds of variations
and that they should be handled differently. The high-level
variations, i.e., those directly affecting the concepts, should be part
of the DSL. They are visible to anyone designing a family member
and decisions are made in the model itself. Those related to target
variations should be part of the generator. They are managed by
those in charge of the generation. A third class of variations are

319

directly pushed down into the framework; they are defined and
implemented by the expert of each platform. DSM gets closer to
our requirements, in particular by having a better domain model
and a better feature model; nevertheless it follows the general DSL
strategy as exemplified in Figure 2 and as such has the same
drawbacks.

Regarding the product line lessons, the DSM approach fares as
follows:

Lesson 1: Rely on an abstract and stable description of the
problem to solve. Yes, this is the direct advantages of the MDE
approach.

Lesson 2: Identify explicitly the variations in terms of features,
not in terms of a solution. Yes, three levels of variations are
independently handled.

Lesson 3: Reuse coarse-grain, high-functionality components.
Yes, for components specifically defined for that domain.

With respect to our requirements, the MDE approach fares as
follows:

R1: Allow abstract architecture evolution. No, meta-models
are very static.

R2: Variation mechanisms must be improved. Yes, the three
levels of variation is a clear improvement.

R3: A high-level mapping between the abstract architecture
and the components. Yes, if explicit transformations are use, but it
is not the case; in current DSM tools, classic code generation is
used instead.

R4: Reuse components developed elsewhere. No, DSM is a
top-down approach, reuse of external component is very limited.

The following summarizes the strengths and weaknesses of
the various approaches.

 L1 L2 L3 R1 R2 R3 R4

DSL *** ***
GP * ** *** **

MDE *** * * (***)
DSM *** *** *** **

4. THE MÉLUSINE APPROACH

Mélusine is a system family approach based on MDE
technology, which emphasizes improvements on product line
approaches through the extension of the scope of reuse.
Motivations are twofold:
• Current approaches require starting a product line from

scratch, there is no way to define a product line from an
existing application. The product line approach is too
much of a big bang approach.

• The economic viability of the approach is based on how often
a component is reused. Extending the scope means improving
the opportunities to reuse a component.
As shown in 2.2 four requirements must be satisfied to reach

the objective; clearly no current approach can satisfy these
requirements. We have found that requirement 4 (reuse existing
components developed elsewhere), is probably the most critical one
for improving reuse scope.

4.1 R4: Reusing existing components:
Abstract execution vs. compilation

Our goal is to reuse components developed elsewhere as
much as possible. These components are not made for our product
line purposes; they can be different in many respects. These
components can use different technologies, different platforms,
propose different kinds of interfaces,; they can be interactive, run
on different computers, have overlapping functionalities; they

evolve under unplanned external constraints and so on. Reusing
externally developed components and avoiding the big bang
syndrome means it must be possible to add/remove/change
components, at any time, either for the whole family or for a single
family member.

This context defeats the implicit hypothesis made in MDE,
that transformations are performed for a target meta-model that is
stable and well known before hand. For example, in Figure 2, the
transformation consists of generating code for the domain library,
seen as the target meta-model. It is not economically feasible to
build a transformation tool or compiler for an unstable meta-model
(domain library).

In this case, the only stable meta-model is the domain model.
An application model is a “program” in the language defined by
the domain model. Interpretation is often defined as an execution in
terms of the language concepts themselves, i.e., an execution on
top of a virtual machine that is the domain model. To be able to
interpret the application model, we have to perform two
transformations:
1. transforming the domain model into an interpreter,
2. transforming the application models into a program

interpretable by that interpreter.

Problem Space

Model mapping

Solution Space
Implementation
Abstractions
Common
Implementation

Common domain
Abstractions

Specific member
Abstractions

Application Model
(Actual Architecture)

Domain Model
(Appli. Meta Model) Transformed to

Interpreter

Conform to

Abstract execution

AOP Machine

Mapping

Roles

Tools

Figure 4 Model interpretation and mappings

In Mélusine we are using a rather simple approach: the first
transformation consists in reifying the meta-model, i.e.,
transforming each domain concept into a (Java) class and its
operations into methods of that class. The second transformation
reifies the application models in terms of instances of these classes,
directly interpreted by the interpreter. Note that other
transformations leading to model interpretation are possible; we
use reification because it is natural and directly supported by most
UML environments. If the meta-model is itself defined in a formal
language (e.g., ENBF, MOF or UML), many tools can be
generated. It is the case for model editors and also for our
transformations (Meta model -> interpreter; Model -> program)
that tool generation can be highly automated. Mostly, the code of
the meta-model operations (the interpreter methods) need to be
defined. Such an interpreter is pretty easy to write, nothing
comparable with a DSL compiler.

The model interpretation remains in the problem space; we
have a symbolic execution of the family member, in problem
terms; it is easier to check and change the application to fit the
requirements (Figure 4).

320

4.2 R3: High-level mapping vs. code
generation

This approach satisfies R4: it is now possible to reuse
components defined elsewhere. Conversely, we are no longer
generating code for the domain library; the mapping has to be done
in other ways.

Classes found in the interpreter represent domain concepts.
The methods in these classes interpret the objects in terms of the
solution space. For example, if “product” is a product line concept,
its “getProduct(…)” method returns a Java object with the
attributes defined in the domain model. In the solution space, the
corresponding real data is usually not a Java object, it may be the
clustering of information coming from different sources, in
different tools. There is not necessarily a direct mapping between a
concept and an implementation of the concept.

Since we require the domain model to be independent from
the implementation, it is not possible to change the interpreter to
include the mapping. We rely instead on aspect-oriented
technology [14][15].

When a method of the interpreter is called (say “getData(..)”),
the associated implementation captures that call and translates it
into a number of calls on the actual components and fills the Java
object attribute values accordingly. More than one implementation
can be associated with a single domain model: they express
variations in the way the domain can be implemented. It is our
second degree of variation.

When compared with traditional compiler technology, the
compiler is split into three parts: the interpreter (in the problem
space), the interfaces and tools (in the solution space), and the
mapping.

R3: A high-level mapping between the abstract architecture
and the components is supported since:

1. The abstract architecture (the application model) does not
disappear, it is translated into an executable program at the
same abstraction level.
The rest of the mapping is explicitly defined in term of an

association between a concept (a class in the interpreter) and the
interfaces of the tools. Since the mapping relies on roles, not on
tools, this approach enables using different tools, without having to
change the mapping. This variability proves to be extremely
valuable. It allows an interface to have different implementations
either to fit the non-functional characteristics required by a specific
family member (size, speed, processors, and so on), or to satisfy
some client requirement, for example, (re)using the data base,
version manager and tools used by the client. It is the selection of
the “right” tool to play the role that will provide specific
characteristics to the role. Tool versions and alternative tools
provide a third degree of variability.
As with DSM, variability is handled at the three abstraction levels,
for three different reasons, and by three different kinds of persons:

• high-level variations are part of the domain model and defined
by each family member designer.

• Non-functional concept variations are handled in the mapping
layer by the configurator.

• Platform and tool variations are performed by platform and
tool experts.
As for DSM, most of the R2 requirement: improve variability

mechanism is satisfied. Only R1 is missing: improve abstract
domain variability.

4.3 R1: Abstract Domain variability
Abstract domain variability is supported by two mechanisms :

features and extensions.

Problem Space

Solution Space
Tool Abstractions

Tools & component
Implementation

Common domain
Abstractions &
Common Features

Specific F. member
Abstractions &
features

Application
Model

Domain Model
(Appli. Meta Model)

Transformed

Model
Interp.

Conform to

AOP Machine

Model
Mapping

F1 F3 F2

MF1
MF2

MF3

Model Mapping &
Feature Mappings

Feature
Selection

Feature
Meta ModelUML Domain indep.

Description lg.

Feat.
Interp.

Feature Model
F1, F2, F3, … Fn

Conform toConform to

Domain modeling Feature Modeling

Transformed Conform to

Figure 5 Feature and Domain modeling

321

4.3.1 Feature Management.
The domain model includes those variations that affect the

conceptual domain and the mapping variation on the
implementation of a given concept, but other variations are related
to behavioral variation or to non-functional properties, not related
to a single concept. For that reason, in Mélusine, the domain model
is complemented by a feature model, which captures optional
domain behavior.

In traditional product line approaches, features are part of the
abstract architecture (or DSL), they are statically defined a priori.
In Mélusine, features are not part of the domain model, therefore,
they can be identified a posteriori, incorporated into the system at
any time, and maintained independently.

Nevertheless, features are not independent from the domain
model; they provide extended or additional semantics for the

concepts present in the domain model. Features can be considered
as crosscutting concerns regarding the interpreter; for this reason,
we use aspect-oriented techniques to implement features and
articulate them with the domain concepts, along with the ideas of
feature refinements described in [12].

variability with respect to the domain model. Configurable

domains can be adapted to different contexts simply by selecting
among the available features, in a similar way as configurable
product families [11]. Since the conceptual domain and the
features are high level, the configuration model is simple and the
environment can perform a number of validations.

It is interesting to see that this approach merges the generative
programming (feature modeling) and DSM (domain modeling)
approaches, getting the best of both (Figure 5).

Domain
Problem Space

Solution Space
Tools Abstractions

Tools
Implementation

Common domain
Abstractions

Specific F. member
Abstractions

Core
Application

Model

Core
Domain Model

Transformed

Core
Interpreter

AOP Machine

Core Model
Mapping

Core Mapping &
Extention Mappings

UML Domain indep.
Description lg.

Ext1 Domain Core Domain Ext2. Domain

Domain
Ext. 2

Ext. 2
Interpreter

Transformed

Extention 2
Mapping

Domain
Ext. 1

Ext. 1
Interpreter.

Transformed

Extention 1
Mapping

Extended Domain Model

Ext.2
Application

Model

Ext1
Application

Model

Figure 6 Domain model extensions

4.3.2 Domain extensions
Features provide a level of variability in the domain model,

nevertheless, during the product line life span, it is likely some new
concepts appear, or therefore that the domain model itself will need
to be extended. This usually has dramatic consequences since the
generator and mapping need to be redone, and future family
members will not conform with the previous architecture: it is
more appropriate to say that we will have a new product line.

The challenge is to be able to extend the domain model
without any impact on the current domain model, called the core
domain model. To do so, we have designed an original model
composition approach in which a new set of concepts, called a
model extension, can be defined. These concepts can relate to each
other using the usual UML relationships, and can also refer to the
core concepts (some of their attribute can be references to the core
concepts), but not the other way around: core concepts do not refer
to the extended concepts. The consequence is that core domain
concepts, its (core) interpreter, the mapping and the application
models are totally unchanged.Each domain extension is
transformed, in the same way as the core domain model, in an
interpreter and mappings, for the same or different tools. Each

domain extension interprets a specific model, in which the specific
application use of the extended concepts is defined (Figure 6). An
extended model can refer to the core model.

The approach has three major benefits:
1. Extensions are independent: they depend on the core domain

only, not on other extensions.
2. Each family member uses the core domain model and zero or

more extensions.
3. New extensions can be defined at any time in the product line

life cycle.
This technology consists of composing the domains models

(composition common to each family member) and composing
application models (composition specific to each family member).

Features and extensions provide domain model variability
(R1), without compromising the stability property of the domain
model which is central to product line approaches (Lesson 1).

5. SUMMARY
Mélusine is a system family approach, which focuses on

reusing existing heterogeneous components and extending the
scope and rate of reuse, based on an MDE approach.

322

From one side, in Mélusine, the problem space is explicitly
modeled (it is the domain model), this model contains the most
relevant domain concepts, in which some variations can be
exposed (for example, in UML, a choice can be modeled as 2 sub-
classes of the same concept). Mandatory choices are part of the
domain meta model and, therefore, are expressed in the family
member model.

Mélusine extends MDE with a feature meta-model in exactly
the same way as in GSD. In Mélusine, features are optional
properties that can be present or not (turned on/off) for each family
member.

Conceptual extension of the domain model is attained by
domain extensions. Extensions can be defined at any point in time
and be use or not by sub-family members. Features and extensions
allow for abstract architecture evolution and variation.

The family member core model, extension models and feature
model are part of the problem space; it contrasts sharply with the
very static abstract architecture found in traditional product line
approaches.

The solution space is independent from the problem space.
Mélusine proposes a high-level mapping between the problem and
solution spaces, based on an AOP technology. This language,
another DSL, allows it to handle variability in the solution space.
We claim Mélusine satisfies both the lessons and our requirements.

Lesson 1: Rely on an abstract and stable description of the
problem to solve. Yes, this is the direct advantages of an MDE
approach.

Lesson 2: Identify explicitly the variations in terms of features,
not in terms of a solution. Yes, the three variation mechanisms:
domain model, features model and extensions models are provided
at the problem layer. Two other variation layers are also available
(mapping and tools).

Lesson 3: Reuse coarse-grain, high-functionality components.
Yes.

R1: Allow abstract architecture evolution. The feature
mechanism, for optional behavior, and domain extension for
conceptual extension allow for the extension of the domain model,
without compromising the stability of the core model.

R2: Variation mechanisms must be improved. Yes, 5 different
variation mechanisms, on three levels of abstraction are
independently handled.

R3: A high-level mapping between the abstract architecture
and the components. Yes, the mapping and the technology allows
one to define, at a high level, the mapping between concepts and
roles. However, a formal transformation approach, in the line of
QVT would provide better results, but it is not currently available.

R4: Reuse components developed elsewhere. This was the
primary goal of Mélusine. It relies on (1) making the application
model interpreter independent from implementation (abstract
execution); (2) making explicit the mapping between concept and
roles, and (3) defining an independent a mapping between roles
and the actual tools and components.

 L1 L2 L3 R1 R2 R3 R4
 *** *** *** *** *** ** ***

We believe our goal, following the three product line lessons

and satisfying our 5 requirements have been reached; accumulated
experience along the 5 last years tend to show our hypothesis is
verified in practice: we have both a pretty good product line
supported approach with both a good reuse rate and good reuse
scope.

6. EXPERIMENTATION AND
VALIDATION

Many of our claims have been substantiated by our experience
in developing several production systems using Mélusine; see [20]
for details. Most of our work concentrated on the area of Process
Support Systems. This is a challenging area since its original usage
in Workflow systems has been extended to encompass systems as
diverse as Business Process Management, Enterprise Application
Integration solutions, or Web Service orchestration and
choreography.

This diversity can also be exemplified by the variety of the
systems we have developed: document management for a transport
company, process support for the development of memories in the
ST microelectronics company, a process-driven system for large-
scale software deployment, or tool integration to support the
development of software reusable components. Even our own
Mélusine design and development environment has been designed
and developed as a Mélusine application.

Perhaps the most difficult task is to identify the core domain
model because it really requires domain expertise. In contrast to
other product line approaches, our extension mechanism pushes
designers toward very simple core domains, because they know it
will always be possible to add concepts and features later on. We
observed it had a dramatic effect on the size and complexity of the
core models. For example, we redesigned our workflow product
line Apel V4, and observed a 10 fold reduction of the core model
size; three years later, the first extension was designed (an
exception and error recovery extension).

We have developed different independent product lines for
independent customers and we observed a very good reuse of
components across these product lines, most notably process
management, product management, document management,
workspace management, resource management and concurrent
engineering domains. A project management and a configuration
management product line are under construction.

We observed that, once the domain model is defined, adding
new features is easy and powerful, adding extensions is a bit more
difficult, but still relatively easy.

7. CONCLUSION
The solution we propose can be seen as a generalization and

extension of the product line approach. Indeed we reused (sic) the
main ideas coming from product lines.

The idea to rely on a high-level abstract architecture (lesson 1)
has been extended to handle the populations scope instead of a
family; using a model / meta-model approach borrowed from the
MDA/MDE world.

Features are also defined in terms of the abstract architecture
(lesson 2); but are not part of the architecture, they can be defined
at any time. A third level of variability is achieved by conceptual
extensions. These three variability mechanisms at the problem
layer solve both the abstract architecture (R1) and the variability
extension (R2) issues.

We support the idea that high reuse rate can be achieved only
if it is possible to reuse coarse-grain components (lesson 3). But we
also believe the real challenge is to reuse coarse grain components
developed elsewhere, for other purposes (R4). Solving this issue
required reworking many aspects of the system. We had to use
abstract interpretation instead of compilation, to define high-level
mappings (R3) and to carefully manage tools abstractions and
variations.

Extending the scope of reuse is the main challenge addressed in
this work. Reaching this target required many deep changes. The

323

first one is to completely separate the problem layer from the
implementation layer.

The problem layer contains:
• a core domain model: a stable set of core concepts,
• a feature model: core model optional behavior,
• domain extensions: core model additional concepts.

The problem layer is transformed into an executable program,
and executed symbolically. The problem layer is also divided in
three parts:
• A mapping between the problem and implementation

layers.
• Roles, defining abstract components functionalities,
• Tools : software component capable to fill a role.

We believe this work contribute is different ways: We clearly

separate the problem layer from implementation. At the problem

layer, we provide three different variation mechanisms and two
extensions mechanism. A significant contribution is our technology
for meta model and model composition. The mapping language we
have developed links problem with implementation. We believe
our system is one of the few PL approach supporting bottom up
approaches.

The approach have been significantly tested in real size
operational applications.

In order to reach high reuse rates, the product family
approaches had to rework the usual software engineering concepts
and techniques, and to propose specific development processes and
environments. But in PL, reuse is limited to a narrow family scope.
It is not a surprise that, to obtain high reuse rate in a much wider
scope, we had to rework even deeper concepts, techniques and
processes, and to develop a completely new environment.

REFERENCES
[1] R. van Ommering. Roadmapping a Product Population

Architecture. In proceedings of the 4th International Workshop
on Product Family Engineering (PFE 4), October 2001.

[2] R. van Ommering. Mechanisms for handling diversity in a
Product Population. In proceedings of the 4th International
Software Architecture Workshop (ISAW 4), June 2000.

[3] E. Evans. Domain Driven Design: tackling complexity in the
heart of software. Addison-Wesley, 2003

[4] J. McGregor. “Domain *”. In Journal of Object Technology,
Vol. 3, No. 7, July-August 2004

[5] S. Henninger. “Supporting the Domain Lifecycle”. In
proceedings of the 7th Workshop on Computer Aided
Software Engineering (CASE 95), July 1995.

[6] S. Mellor, M. Balcer. Executable UML: A Foundation for
Model Driven Architecture. Addison-Wesley, 2002

[7] S. Mellor, K. Scott, A. Uhl, D. Weise. MDA Distilled:
Principles of Model-driven Architecture, Addison-Wesley,
2004

[8] P. Clements, L. Northrop. Software product lines: Practices
and Patterns. Addison-Wesley, 2001

[9] J. Bosch. Design and use of Software Architectures, adopting
and evolving a product-line approach. Addison-Wesley, 2000

[10] R. van Ommering, J. Bosch. Widening the scope of Software
product lines – From Variation to Composition. In
Proceedings of the 2nd Software product line Conference
(SPLC2), August 2002.

[11] S. Deelstra, M. Sinnema, J. van Gurp, J. Bosch. Model Driven
Architecture as Approach to Manage Variability in Software
Product Families. In MDAFA 2003, CTIT Technical Report
TR-CTIT-03-27, June 2003.

[12] D. Batory, J.N. Sarvela, A. Rauschmayer. Scaling step-wise
Refinement. In Proceedings of the 25th International
Conference on Software Engineering (ICSE 2003), May 2003

[13] M. Griss. Implementing Product-line Features by Composing
Component Aspects. In Proceedings of the 1st Software
product line Conference, August 2000

[14] M. Anastasopoulos, D. Muthig. An Evaluation of Aspect-
Oriented Programming as a product line Implementation

Technology. In Proceedings of the 8th International
Conference on Software Reuse (ICSR 2004), July 2004

[15] J. Hallstrom, N Sridhar, P. Silvilotti, A. Arora, W. Leal. A
container-based Approach to Object-Oriented product lines. In
Proceedings of the 44th Technology of Object-Oriented
Languages and Systems Conference (TOOLS USA 2003),
September 2003.

[16] D. Batory, R.E. Lopez-Herrejon, J.P. Martin. Generating
Product-lines of Product-Families. In Proceedings of the 17th
International Conference on Automated Software Engineering
(ASE’02), September 2002

[17] D. Fey, R. Fajita, A. Boros. Feature Modeling: A Meta-Model
to enhance Usability and Usefulness. In Proceedings of the 2nd
Software product line Conference (SPLC2), August 2002.

[18] H. Gomaa, M. Shin A Multiple-View Meta-modeling
Approach for Variability Management in Software product
lines. In Proceedings of the 8th International Conference on
Software Reuse (ICSR 2004), July 2004

[19] T. Le-Anh, J. Villalobos, J. Estublier. Multi-level
Composition for Software Federations. In Proceedings of the
6th European Joint Conferences on Theory and Practice of
Software (ETAPS 2003) Workshop on Software Composition,
April 2003

[20] J. Estublier, J. Villalobos, T. Le-Ahn, S. Sanlaville, G. Vega.
An Approach and Framework for Extensible Process Support
System. In Proceedings of the 9th European Workshop on
Software Process Technology (EWSPT 2003), September
2003

[21] Atkinson C., Kühne T., "Model-Driven Development: A
Metamodeling Foundation", IEEE Software, September 2003

[22] Bézivin, J. In search of a Basic Principle for Model Driven
Engineering, Novatica/Upgrade, Vol. V, N°2, (April 2004),
pp. 21-24, http://www.upgrade-
cepis.org/issues/2004/2/upgrade-vol-V-2.html

[23] OMG, "Meta Object Facility (MOF) Specification" Version
1.4, April 2002

[24] Bézivin, J., Gérard, S. Muller, P.A., Rioux, L. MDA
Components: Challenges and Opportunities, Metamodelling
for MDA, First International Workshop, York, UK,
(November 2003),
http://www.cs.york.ac.uk/metamodel4mda/onlineProceedings
Final.pdf

324

[25] Bézivin, J., Gerbé O., "Towards a Precise Definition of the
OMG/MDA Framework", ASE'01, Novembre 2001

[26] Booch G., Brown A., Iyengar S., Rumbaugh J., Selic B. The
IBM MDA Manifesto The MDA Journal, May 2004,
http://www.bptrends.com

[27] Favre J.M., "Towards a Basic Theory to Model Model Driven
Engineering", 3rd Workshop in Software Model Engineering,
WiSME 2004, http://www-adele.imag.fr/~jmfavre

[28] Greenfield, J. & Short, K. "Moving to Software factories",
Software development, http://www.sdmagazine.com, Juillet
2004.

[29] Groupe OFTA Ingénierie de Modèles logiciels et Systèmes,
Arago #30

[30] Kleppe, S. Warmer, W. Bast, "MDA Explained. The Model
Driven Architecture: Practice and Promise", Addison-Wesley,
April 2003

[31] Kurtev I., Bezivin J. , and Aksit M.. "Technological spaces:
an initial appraisal.", In CoopIS, DOA'2002 Federated
Conferences, Industrial track, Irvine, 2002

[32] Mellor S.J., Scott K., Uhl A., Weise D., "MDA Distilled:
Principles of Model-Driven Architecture", Addison Wesley,
March 2004

[33] OMG The MOF/QVT Queries, Views, Transformations
request for proposal Soley, R. & the OMG staff MDA,
Model-Driven Architecture, November 20000,
http://www.omg.org/mda/presentations.htm

[34] Seidwitz E., "What Models Mean", IEEE Software,
September 2003

[35] Czarnecki K. Overview of Generative Software Development

[36] Soley, R. and the OMG staff. “Model-Driven Architecture”.
White paper, Draft 3.2. Available at www.omg.org,
November 2000.

325

