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ABSTRACT
There is a widely held belief that whole program analysis
is intractable for large complex software systems, and there
can be little doubt that this is true for program analyses
based on model checking. Model checking selected program
components that comprise a cohesive unit, however, can be
an effective way of uncovering subtle coding errors, espe-
cially for components of multi-threaded programs. In this
setting, one of the chief problems is how to safely approxi-
mate the behavior of the rest of the application as it relates
to the unit being analyzed.
Non-unit application components are collectively referred

to as the environment. In this paper, we describe how
points-to and side-effects analyses can be adapted to support
generation of summaries of environment behavior that can
be reified into Java code using special modeling primitives.
The resulting abstract models of the environment can be
combined with the code of the unit and then model checked
against unit properties. We present our analysis framework,
illustrate its flexibility in generating several types of models,
and present experience that provides evidence of the scala-
bility of the approach.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Model Checking

General Terms
Verification

Keywords
Modular Flow Analysis, Model Checking, Assume-Guarantee

1. INTRODUCTION
Model checking programs is a rapidly growing sub-field

of program analysis (e.g., [4, 8, 18]). Experience analyzing
programs with model checking techniques has proven to be
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useful in finding defects in portions of real code bases. These
successes have been enabled in large part by the use of tech-
niques for automating the abstraction of program data (e.g.,
[8]). Another key factor in these successes is the restriction
of analysis to selected parts of a program. One well-studied
method for modular model checking is the assume-guarantee
paradigm [9, 12] where a system is decomposed into two
subsystems: one that is modeled explicitly and one that
is represented by user supplied specifications that capture
assumptions about its behavior. A model checker can then
prove properties of the first subsystem under the assumption
that the second satisfies its specification. The final step in
this paradigm is checking that a subsystem implementation
satisfies the stated assumptions.
Most work on assume-guarantee model checking has fo-

cused on the patterns of control actions (e.g., process syn-
chronizations) that subsystems expose to one another. Our
work adapts the assume-guarantee paradigm to treat the
data interaction between a cohesive group of components,
called a unit, and the rest of the program components, which
are collectively termed the environment. Whereas tradi-
tional assume-guarantee reasoning requires the user to man-
ually specify environment assumptions, our approach uses
static analysis to automatically extract abstract behavioral
models from environment implementations. In addition to
relieving the user of the need to specify assumptions, by
reifying abstract environment models as source code our
approach can compactly express data-oriented assumptions
that are difficult to express in the specification languages
typically accepted by model checkers. Furthermore, the re-
sulting models can be combined with the unit’s implemen-
tation and submitted to existing program model checking
frameworks to verify properties of the unit. Finally, the
soundness of our static analyses and model generation elim-
inates the need to discharge environment assumptions.
In this paper we define modular program analysis and

generation techniques that underly the modular program
checking approach outlined in Figure 1. Users begin by iden-
tifying unit properties that characterize the correct behavior
of a subsystem. Based on these properties a user manually
identifies the set of classes, methods and fields that are rele-
vant to the property and those form the unit. The environ-
ment is automatically identified and analyzed in two stages
to determine its influence on unit data (i.e., objects whose
type is a unit class). The first stage performs a scope-based
analysis of the environment classes to determine, and elim-
inate, those classes and methods that cannot modify unit
data. The second stage performs a modular flow-based side-
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Figure 1: Analysis Framework Architecture

effects analysis for each environment method that calculates
a safe, yet precise, summary of how the environment may
modify the unit data. Analysis summaries drive the gen-
eration of Java code that references special modeling prim-
itives designed to capture analysis approximations. These
code models are combined with the unit class to form a le-
gal abstract Java program that is amenable to abstraction
and whose properties can be model checked using existing
frameworks such as Bandera [4] and JPF [18].
Side-effects analyses have been widely used for optimiza-

tion and software engineering applications (e.g. [1, 10]).
These analyses typically calculate may side-effects informa-
tion, which represents the set of non-local memory locations
that are possibly modified on some execution of the method
(e.g., definitions of global variables or fields of method pa-
rameters). In general, the side-effects of any individual
method call are a subset of the may side-effects. Unfor-
tunately, modeling each of those subsets can dramatically
increase the cost (since the number of subsets grows expo-
nentially with the total number of possible side-effects) and
imprecision of model checking (since groups of side-effects
are typically correlated). We address the problems with
using may side-effects analysis results through the use of
two refinements: must side-effects analysis, which calculates
data modifications that occur on all executions of a method,
and return-sensitive side-effects analysis, which calculates
the set of side-effects for each exit point of a method.
For languages like Java, side-effects analysis is compli-

cated by the presence of references, which allow indirect
memory access. For example, in order to identify the data
effects of the statement l.f = r, one needs to know the ob-
jects that l may refer to in order to conclude that the f field
of those objects is modified. Side-effects analyses use the re-
sults of a points-to analysis, which approximates the set of
objects pointed to by a reference variable. Approximation
in points-to analysis leads to approximation in side-effects
analysis. We address the need for precision by employing
flow and context-sensitive points-to and side-effects analyses
(e.g., [1, 10]) that take into account the order of statements
in a method and gain a measure of context-sensitivity by cal-
culating parameterized pointer information (e.g., [11]). Our
analyses builds off of the approach of [10] and represents
memory locations using access paths (i.e., chains of pointer
references that a program may execute) that are limited to a
maximum length k (i.e., are k-limited). We extend existing
approaches to provide a means of tracking object types and
whether an object is reachable via reference chains of length
greater than k.
Finally, traditional side-effects analyses do not capture the

possible values written into the side-effected location (e.g.,
for l.f = r they only calculate the possible values of l.f).
We address this problem in our analysis by tracking assigned

public class Subject {
boolean changed = false;
Buffer obs;
public Subject () { obs = new Buffer (); }
public synchronized void add(Watcher o)
{ obs.register (o);}

public synchronized void delete(Watcher o)
{ obs.unregister(o);}

public void notify(Object arg) {
Watcher cw;
Buffer lb = new Buffer ();
synchronized ( this) {
if (! changed ) return;
obs.copy(lb);
changed = false;

}
if (obs.size() != lb.size())

cw = null;
while (!lb.isEmpty ()) {
cw = lb.removeFirst();
cw.update(this , arg);}

}
protected synchronized void setChanged()
{ changed = true;}

}
public class Watcher {

public int attempts = 0;
public int aborts = 0;
public boolean registered = false;
public void update(Watcher o,

Object arg) { }
}

Figure 2: Custom Observer (excerpts)

values in side-effecting statements (e.g., we calculate both
the values of l.f and r). This leads to significantly more
precise and efficient models for subsequent reasoning.
In summary, our work makes several technical contribu-

tions, including (i) the adaptation of existing k-limited ac-
cess path-based points-to analyses to exploit the partition-
ing of a program into unit and environment and provide
a degree of precision for paths of length greater than k;
(ii) the adaptation of existing side-effects analysis frame-
works to model side-effecting values and to improve preci-
sion via return sensitive and must side-effects analyses; (iii)
strategies for exploiting calculated data effects to generate
safe abstract models of environment behavior; (iv) identi-
fication of model checker functionality required to support
environment data modeling; and (v) a method for reifying
abstract behavioral models as Java code that can be pro-
cessed by Java abstraction and model checking tools. These
analysis and environment generation techniques are modular
(i.e., they consider only a single method at a time). Conse-
quently, they scale effectively to large applications and can
reduce large portions of an application to a compact model
that is amenable to exhaustive analysis via model check-
ing. The techniques have been implemented and applied to
check properties of subsystems of large multi-threaded Java
applications.
The next Section gives an overview of our basic approach.

Section 3 describes our analysis framework for calculating
environment data effect summaries. Section 4 describes how
those summaries drive environment model generation. An
overview of several case studies using our environment gen-
eration tools is presented in Section 5. Section 6 presents
related work and Section 7 concludes by placing the contri-
butions of this paper in the context of our broader tool-based
methodology for environment generation.
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public class Buffer extends Vector {
public boolean register (Watcher w) {
w.attempts ++;
if (!contains (w)) {
w.registered = true;
super.addElement(w);
return true;

}
w.aborts ++; return false;

}
public boolean unregister(Watcher w) {
if (super.removeElement(w)) {
w.registered = false;
return true;

} else return false;
}
public Watcher removeFirst() {
Watcher result = elementAtIndex(0);
removeElement(result );
return result;

}
}

public class Buffer {
public static Buffer top = new Buffer ();
public Buffer newBuffer() { return this.top; }
public boolean register (Watcher p0){
if(choose ()) p0.attempts = TOP_INT ;
if(choose ()) p0. registered = true;
if(choose ()) p0.aborts = TOP_INT ;
return TOP_BOOL ;

}
public boolean unregister(Watcher p0){
if(choose ()) p0. registered = false;
return TOP_BOOL ;

}
public Watcher removeFirst() {
return choose("Watcher ");

}
}

Figure 3: Buffer Implementation and Generated Environment

2. OVERVIEW
Our analysis supports users who are interested in perform-

ing precise reasoning about correctness properties related to
a known group of classes, fields and methods (i.e., the unit);
for simplicity we restrict our presentation to units that con-
sist of classes. We retain unit classes in the resulting system
model, safely approximate the data effects of classes that
interact with the unit classes, and safely eliminate classes
and methods that do not effect data of unit type. In the
remainder of this Section, we illustrate the main steps of
this approach on a small publish-subscribe program. Fig-
ure 2 shows class Watcher whose instances observe changes
to instances of class Subject. A field obs of type Buffer,
shown on the left side of Figure 3, is a container for Watchers
that are registered for the Subject. The Watcher class con-
tains bookkeeping fields that record the total number of
registration attempts, the number of aborts, and whether
the Watcher is registered on some Subject. Suppose, we
are interested in reasoning about whether “Only registered
Watchers are notified of Subject updates”. This can be
specified in several ways, but one approach is to test whether
the registered field of Watchers is true at the point where
a Subject calls update().

2.1 Identifying the Unit
Unit selection is driven by the unit properties; classes

mentioned in the properties should be included in the unit.
The above mentioned property indicates that classes Subject
and Watcher should be in the unit. In general, the unit con-
sists of identified classes extended with fields and methods of
super-type classes that are referenced by the methods of the
identified classes. In our example, Subject and Watcher will
be in the unit, but Buffer will be part of the environment.

2.2 Detecting Independent Classes/Methods
Even for relatively small Java systems, the environment

may be very large and complex due to transitive class and
method dependences. Scope-based information can be used
to calculate an initial estimate of the classes and methods
that cannot effect the unit data. Such methods can be omit-
ted when building a procedure call graph, thus reducing the
number of methods to be analyzed. For example, method
register() calls addElement() of java.util.Vector. Since
1) none of the unit classes inherit fields from
java.util.Vector and 2) class java.util.Vector has no

public class Buffer {
Watcher [] elementData;
public void register (Watcher p0){
if choose () elementData[ TOP_INT ] = p0; ...

}
public Watcher removeFirst(){
return chooseReachable(" Watcher ",this);

}
Figure 4: Generated Buffer Container

knowledge of user-defined classes that make up the unit,
then none of the methods of java.util.Vector can effect
the unit data. Therefore, method addElement() can safely
be excluded from further analysis.

2.3 Analyzing Dependent Classes/Methods
A series of static analyses, including points-to and side-

effects analyses, are applied to determine how the remaining
methods of environment classes may influence the unit data.
For the example, the analysis of the register(Watcher w)

method in Buffer calculates that the assignment
w.registered = true may effect the unit data.

2.4 Environment Properties
One of the hardest questions in environment modeling

is “how much environment behavior may be ignored and
what behavior should be preserved?”. Rather than solve
this problem in general, we have identified a property that
occurs commonly for objects in Java programs: contain-
ment. An object contains another object if the latter is
reachable through some chain of references from the for-
mer in a given program state. By treating selected envi-
ronment fields (e.g., fields of Buffer) as part of the unit,
our analyses can track data effects to such fields and gener-
ate more precise environment models. Such an analysis of
Buffer.removeFirst() produces a summary that indicates
that upon completion the method will return a Watcher

that is reachable through the heap from the buffer instance
(i.e., this). Figure 4 illustrates the use of non-determinism
primitives (e.g., chooseReachable("Watcher", this)), dis-
cussed in the next section, to implement an abstraction of
the Buffer’s containment relation.

2.5 Generating Environment Models
Models are generated to reflect all possible data effects

as calculated by the preceding analyses. To safely reflect
the possibility of a side-effect, code is generated to execute
abstract assignments non-deterministically. This is achieved
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by using a special modeling primitive, choose(), that is in-
terpreted as either true or false by the model checker. The
right side of Figure 3 shows the generated environment for
Buffer. The assignment w.registered = true in method
register() is approximated as the non-deterministic exe-
cution of assignment w.registered = true in the environ-
ment method to model the fact that according to the anal-
ysis results the assignment may cause a side-effect, but it
may not.
Values assigned in statements with side-effects are also

approximated. For scalars, constant values are preserved,
as shown for w.registered = true, but for more complex
expressions a �t (denoted TOP_t in code) value is used. �t

represents all possible values of type t and the model checker
is able to perform abstract calculations with such values [5].
For heap allocated data of unit classes, special modeling
primitives are used to model the set of all instances of a
class that are allocated in the current system state (e.g.,
choose("Watcher")). More precise modeling primitives are
used to describe instances that are reachable from other in-
stances (e.g., chooseReachable("Watcher",this)).
For environment classes, a per-type summary object is

used to model all instances of a type (e.g., Buffer top).
Unit statements that allocate, assign or compare values of
environment data are modified to safely operate on these
summary objects.

2.6 Abstraction and Model Checking
Model checking the example from Figure 2 with JPF us-

ing the environment model from Figure 3 yields a spurious
counter-example where an unregistered Watcher is notified
of an update. This is due to the imprecision of the gener-
ated removeFirst() which can return any allocated instance
of type Watcher. Boosting the precision of the generated
environment to model containment as shown in Figure 4
eliminates the spurious counter-example and reveals a race
condition in the implementation of notify() that is due to
the intentional limitation of the scope of the synchronized
statement for improved performance.

3. DATA-EFFECTS ANALYSES
As described in Section 2, generated environment mod-

els are subjected to model checking. Given this we would
like to generate environment models that can be parameter-
ized by the information calculated during model checking to
maximize the precision with which environment effects are
approximated. To ensure safety of environments we must
analyze all of the environment implementation to determine
its potential effects on the unit data; this can be very expen-
sive. We balance the tradeoff between the cost of analysis
and precision of analysis results by employing a staged mod-
ular analysis.

3.1 Detecting Independent Classes/Methods
As the first stage of the analysis, we construct a call graph

that is customized for subsequent analyses based on scope
information extracted from environment methods. The scope-
based analysis is a quick way to determine whether an en-
vironment method can access unit data without analyzing
the actual code of the method. If the declared class of the
environment method is a part of one package and the unit
is a part of another package and these packages do not ref-
erence each other, then the environment method can not

modify the unit data. For example, if the environment class
is in a library and the unit contains only non-library classes
that do not inherit fields from the environment classes, then
the environment has no knowledge of the unit data. During
the call graph construction, we filter out methods based on
the criteria described above, and the resulting call graph is
guaranteed to contain all methods that may effect the unit
data. In the worst-case, the call graph is the same as the
one that would be constructed by traditional methods; in
practice, as discussed in Section 5, our side-effects preserv-
ing call graph can be orders of magnitude smaller. Despite
its simplicity experience has shown that this analysis is very
effective in pruning library code.

3.2 Analyzing Dependent Classes/Methods
Traditional side-effects analysis determines the set of mem-

ory locations that may be modified by some method exe-
cution. For object-oriented software, this requires points-
to analysis to determine the set of objects that may be
pointed by a reference. Points-to and side-effects analy-
ses have been designed primarily to enable program opti-
mization [1, 10]. For example, one may be interested in
the locations that are not defined by a method so that val-
ues involving those locations can be safely reused across the
method call. For such applications a may side-effect analysis
that over-approximates the set of objects that are possibly
side-effected by a method is appropriate.
We are also interested in calculating a safe approxima-

tion of method side-effects, but find that there are two de-
ficiencies with existing approaches: (1) they do not ap-
proximate the values that are assigned in a side-effecting
statement and (2) may side-effects results are very impre-
cise. The first problem is resolved by recording side-effects
as pairs approximating the effected memory location and
an approximation of the effecting value. Figure 3 illus-
trated the second problem where the environment method
for register() allows several infeasible sets of side-effects
(e.g., setting of p0.attempts may be skipped and setting
p0.registered and p0.aborts may happen in the same
method execution). May side-effects analysis results must
be interpreted as defining the set of possible side-effects
for all possible method executions. Since there may be
method executions that only perform a subset of those side-
effects, a safe environment model must reflect that possi-
bility. Since the number of such subsets grows combinato-
rially with the number of individual side-effect statements,
this can pose both performance and precision problems for
subsequent analyses. Figure 5 illustrates two refinements
of may side-effects analysis that lead to more compact and
precise generated environment models. We can refine our
environment generation by starting with may side-effects,
factoring out the must side-effects that occur on all exe-
cutions, and reifying them as unconditional assignments as
shown in registerMust() of Figure 5 for p0.attempts. An
additional refinement is to apply a simple form of path-
sensitivity to distinguish side-effects resulting from paths
exiting the method at different return statements. These re-
turn sensitive analysis results are achieved at no additional
cost and can improve the precision of generated environ-
ments as shown in registerReturnSensitive() of Figure 5
where p0.registered’s side-effect is associated with return
of true.
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public boolean registerMust(Watcher p0) {
p0.attempts = TOP_INT ;
if (choose ()) p0. registered = true;
if (choose ()) p0.aborts = TOP_INT ;
return TOP_BOOL ;

}
public boolean registerReturnSensitive( Watcher p0) {
p0.attempts = TOP_INT ;
if (choose ()) {
if (choose ()) p0. registered = true;
return true;

} else {
if (choose ()) p0.aborts = TOP_INT ;
return false;

}
}

Figure 5: Side-effects Refinements

3.2.1 Program Representation
We describe our Java program analyses in terms of Jim-

ple, a three-address representation of JVM byte-codes used
in the Soot framework [17]. Our analyses proceed on a per-
method basis. The variables, V ar, accessed in a method
consist of parameters, pi ∈ V ar, where p0 refers to the re-
ceiver object, and locals, li, ri ∈ V ar. A class, c ∈ Class,
has a set of associated fields, fi ∈ Field, and methods,
mi ∈ Method; when not clear from the context we name
a class’ fields and methods explicitly as c.fi or c.mi. We
denote the classes identified as the unit as U ⊆ Class. We
assume the presence of operators for accessing the type of
expressions, type(li), and for relating fields and methods to
their containing class, class(f). For convenience, we use fU

to denote the set of fields where type(f) ∈ U .
Points-to and side-effects analysis results are only depen-

dent on assignment statements and method calls. Assign-
ments in three-address form, li.fn = rj , always refer to
a local variable li in forming the target address; we do
not need to consider complex dereference expressions on the
left-hand side of assignments. The following statements are
treated by our analyses:

identity li = pj

allocation li = new c

copy li = rj

load li = rj.fn

store li.fn = rj

invoke expression li = r0.m(r1, ...,rn)

invoke statement r0.m(r1, ...,rn)

Our analysis treats array and field access expressions simi-
larly, but for simplicity we limit our presentation to reference
and scalar types.

3.2.2 Symbolic Locations
Fundamental to our analyses is our approach for repre-

senting the memory locations that a statement may refer-
ence. Our approach is based on length-limited access path
based analyses (e.g., [10]) and symbolic analyses (e.g., [11]).
We combine these approaches and adapt them to our setting
in which the analysis distinguishes between unit data and
environment data in order to precisely characterize points-to
information for the former, but not the latter.
The goal of our analysis is different from the traditional

goal of points-to analyses. In particular, we do not use anal-
ysis results to determine potential aliasing relationships and
therefore do not require a canonical representation of points-
to information. Our analyses are used to safely represent, at

each program point, the state of the program, which maps
variables to their values; values can be heap locations, a spe-
cial value null denoting a null pointer, or scalar values (e.g.,
integers, reals, etc.).
Our points-to representation captures information relative

to a given method and is parameterized by a root symbol
that represents memory locations. There are three kinds of
memory locations that may serve as a root: public static

fields of classes (denoted dc.fi), method parameters (denotedbpi), and newly allocated data (denoted n̂ewc,s for class c
allocated at statement s). New locations are modeled as
per-allocator summary locations which are supported by the
environment code generation described in Section 4. Our
representation makes use of operations that denote sets of
heap allocated objects in a given state. One can access the
set of all allocated instances of class c (denoted choosec), and
the set of allocated instances of class c that are reachable
from memory location l via paths through the heap that
only reference unit data (denoted reachUnitc(l)).
A symbolic location (denoted sl ∈ SL) is a null, choosec

expression or a length-limited access path (denoted π) of the
form defined by this regular expression:

(dc.fi | bpj | n̂ewc,s)f
0−k
U (reachUnitc)?

An access path starts at a root symbol, consists of 0 to k
dereferences of field accessors of unit type, and is optionally
terminated in a reachable expression (where the parameter
is understood to be the path prefix). We refer to a prefix
of a path with j field dereferences as π[j]. The semantics
of a path are defined relative to a program state, s. Paths
represent field accesses that are type correct in the sense that
π[j] with type c can only be extended to length π[j+1] by a
field f where class(f) is c. Paths end in either the location
referred to by the field access sequence or a reachUnitc(π[k])
expression. In the former case, the access path represents
instances of class c that are reachable via the chain of field
dereferences denoted by π in state s. In the latter case, the
access path represents instances of class c that are reachable
via a chain of field dereferences through unit data from any
of the memory locations denoted by π[k] in state s. Note
that a variable, l ∈ V ar, of a reference type may point to
a set of symbolic locations, S ∈ P(SL), whose types are
assignment-compatible, sl ∈ S ⇒ type(sl) ≤ type(l), where
≤ is the sub-typing relation.
Our symbolic locations provide a different degree of pre-

cision compared to traditional k-limited access path based
representations (e.g., [10]) in that they are well-typed and
they are able to represent heap reachability relationships
between locations.
A pair of symbolic locations is ordered (≤) based on the

containment order of the sets of memory locations denoted
by the pair. According to the semantics described above the
order is:

∀j≤i π[i] ≤ reachUnittype(π[i])(π[j])

∀c,i reachUnitc(π[i]) ≤ choosec

This ordering is lifted to sets of symbolic locations as follows:

(∀a∈S∃b∈S′a ≤ b)→ S ≤ S′

A symbolic location can be extended by a field derefer-
ence (denoted sl.f) using the following rules: (a) if sl =
choosetype(c) then sl.f = choosetype(f), (b) if sl = π and
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type(f) ∈ U then sl.f = choosetype(f), and (c) for the re-
maining cases, we must consider the structure of π:

π.f =

8<
:

drootf i
Uf if π = drootf i

U ∧ i < k

reachUnittype(f)(π) if π = drootfk
U

reachUnittype(f)(π
′) if π = reachUnitc(π

′)

Symbolic locations can be prefixed (denoted sl[[π̄/p̄]]) by
substituting the symbolic names of parameters, pi ∈ p̄, used
in defining access path with type and length appropriate
path prefixes, πi ∈ π̄. If a prefix operation causes the se-
quence of field dereferences to exceed k then the extension
operator is applied for each field dereference beyond k. The
intuition here is that we calculate a symbolic analysis sum-
mary for a method m and then use the extension operator
(denoted m[[ā/p̄]]) to determine the effects at a call site by
substituting the actual parameters, ā, for the symbols rep-
resenting the formal parameters, p̄, of m.
Extension and prefixing operations can be lifted to sets

of symbolic locations S ∈ P(SL) by extending or prefixing
each constituent location (denoted S.f and S[[π̄/p̄]]).

3.2.3 Points-to Analysis
This is a flow-sensitive, forward flow analysis. A set of

points-to mappings from method locals to sets of symbolic
locations (denoted Pt : V ar → P(SL)) is calculated for
entry and exit of each statement in the flow graph. An ad-
ditional mapping Ptm : Method → P(SL) maps methods
to their return locations as calculated by the points-to anal-
ysis at the exit point of the methods. The initial data flow
set is empty. Sets are combined at flow-graph merge points
by unioning the images of mappings with the same domain
element.
Gen/Kill transfer functions are defined for assignment

statements, s, mentioned above as follows:

Ptentry(s) =
[

{Ptexit(s
′) | s′ ∈ pred(s)}

Ptexit(s) = (Ptentry(s)−Kill(s)) ∪Gen(s)

For clarity we define Locs(l) = S | (l → S) ∈ Ptentry(s),
the set of locations that l points to at the entry point of
statement s.
The identity function is used for all statements that do not

assign a reference variable. For the remaining statements,
the Kill sets are of the form:

Kill(l = ...) = {l → S | (l → S) ∈ Ptentry(s)}
Kill(l.f = r) = {x→ sl | (x→ sl) ∈ Ptentry(s) ∧

∃k | sl[k] ∈ Locs(l).f}

The Kill function for the store statement calculates all ref-
erences x that point to a location sl whose access paths
contain the heap reference f that gets modified by the state-
ment. As a safe approximation, such variables will point to
choosetype(x) after the statement.
For statements whose assigned type is not in the unit the

Gen set is:

Gen(l = ...) = {l → choosetype(l)}

In all other cases the Gen sets for statement, s, are:

Gen(l = p) = {l → {p}}
Gen(si: l = new C) = {l → {newc,i}}

Gen(l = c.f) = {l → {c.f}}
Gen(l = r) = {l → Locs(r)}

Gen(l = r.f) = {l → Locs(r).f}
Gen(l.f = r) = {x→ choosetype(x) |

(x→ sl) ∈ Kill(s)}
Gen(l = r0.m(r1, . . . )) = {l → Ptm(m)[[ ¯Locs(ri)/p̄i]]}
where Ptm(m) is a set of return locations as calculated by
the points-to analysis for m.

3.2.4 Side-Effects Analysis
Side effects occur in store statements of the form:

li.fn = rj Our side-effects analysis uses the symbolic loca-
tions calculated for li at an assignment statement to deter-
mine the set of objects whose fields may be referenced as
the target of the assignment. The value of the right-hand
side of such an assignment is also safely approximated by
looking up the symbolic values referenced by rj .
As mentioned previously, we calculate both may and must

side-effects information. These are flow-sensitive, forward
flow analyses. The analyses relate side-effected symbolic
locations to sets of symbolic values, SV = {SL∪Scalar}.
Scalar is the domain of values for all non-reference variables
lifted to contain a �t value, for each type t, that represent
all possible values of type t; the values in Scalar are similar
to values in a constant propagation lattice [13], however,
our analysis can keep track of a set of constant values. A
set of side-effects mappings from symbolic locations to sets
of symbolic values (denoted Semay, Semust : SL → P(SV))
is calculated for entry and exit of each statement in the flow
graph. Sets are combined at flow-graph merge points by
unioning domain values with the same SL elements for may
analysis and by intersecting them for must analysis. The
initial data flow sets for may and must analyses are empty.
Transfer functions are defined for store and invoke state-

ments, s, as follows:

Semay
entry(s) =

[
{Semay

exit (s
′) | s′ ∈ pred(s)}

Semay
exit (s) = (Semay

entry(s)−Killmay(s)) ∪Genmay(s)

Semust
entry(s) =

\
{Semust

exit (s
′) | s′ ∈ pred(s)}

Semust
exit (s) = (Semust

entry(s)−Killmust(s)) ∪Genmust(s)

A set of symbolic values is denoted V ∈ P(SV). Sym-
bolic value prefixing (denoted sv[[π̄/p̄]]) is defined analo-
gously to prefixing for symbolic locations except that the
identity function is used for scalar values. For clarity we
define V als(r) = Locs(r) ∪ Scalars(r), where Scalars(r) is
defined for a scalar type r and returns a set of scalar val-
ues r may be assigned to. Kill sets are defined for store
statements:

Kill(l.f = r) = {sl.f → V | sl ∈ Locs(l) ∧
(sl.f → V ) ∈ Seentry(s)}

Gen sets for store and invoke statements, s, are defined
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as:

Gen(l.f = r) = {sl.f → V als(r) | sl ∈ Locs(l)}
Gen(r0.m(r1, . . . )) = {sl[[ ¯Locs(ri)/p̄i]]→ V [[ ¯Locs(ri)/p̄i]] |

(sl → V ) ∈ Sem)}

where Sem denotes either themust ormay analysis summary
form. For all other statements the identity transfer function
is used.
Calculating must side-effects relies on may Pt informa-

tion. To incorporate that information safely, the Gen/Kill
functions for must side-effects analysis are defined as for may
analysis except for store statements, l.f = r. In that case,
if variable l may point to more than one symbolic location,
then Gen returns the empty set. This is safe because if may
points-to analysis calculates that l may point to a single
location, then it must point to exactly one location. To see
this consider the case where the may points-to analysis cal-
culates that at state s, the variable l points-to one symbolic
location sl. If there is another path leading to s, then l is
either null, sl, or is assigned to another value sl′ on that
path. Locs(l) will have size one only if l is assigned the
same value on all paths leading to state s, thus that sin-
gleton points-to information can be safely used to calculate
must side-effects information.

3.2.5 Return-Sensitive Side-Effects Analysis
For methods with multiple return points, due to the flow-

sensitive nature of our analysis there may be different side-
effects summaries calculated at each method return point.
Rather than merge those sets to produce a single summary
of side-effects for the method, we produce a side-effects sum-
mary for each return point and consider the method sum-
mary as the set of those summaries.

3.3 Safety of Side-Effects Analysis Results
To prove the correctness of points-to/side-effects analysis

we define a simulation relation between the true state of
the program, as recorded by the program’s semantics, and
the abstract information about the state of the program, as
recorded by points-to/side-effects analysis. We prove that
the simulation relation holds in [15].

4. GENERATING ENVIRONMENT MODELS
In this section, we describe how special modeling primi-

tives may be used to generate environment abstract models
from the analysis summaries.

4.1 Modeling Environment Data
By design the analyses of the preceding section intention-

ally ignore any differences between instances of objects of
environment types. To minimize the state space of the en-
vironment, for each environment type our models store a
single object instance that summarizes the state of all con-
crete instances. Every allocation of an environment type is
transformed to a call to a method, for example newBuffer()
in Figure 3, that returns a reference to the single class sum-
mary instance. Field values are approximated by using �t

values for each summary instance field; we note that for
reference fields a �c has the semantics of choosec. Object
identity (i.e., reference value) is used in object equality com-
parisons. Where these occur in unit code a transformation

is necessary that replaces the == expression with a call to an
equals() method that uses choose() to reflect the inability
of environment summary instance to distinguish identity.
For the example in Figure 2, the placement of Buffer in
the environment requires the following definition of object
equality:

public static boolean equals (Object x, Object y){
if(x instanceof Buffer || y instanceof Buffer)
return choose ();

else
return x == y;

}

4.2 Modeling Primitives
Reifying analysis results as environment models encoded

as Java program fragments requires primitives for express-
ing the approximations that naturally arise in points-to and
side-effects analyses. Our approach to environment gener-
ation is model checker independent to a great extent, but
it does require model checking framework to support these
primitives; currently JPF and Bandera provide such sup-
port.
We define modeling primitives that capture the primi-

tives used in defining symbolic locations. We introduce
non-deterministic choice primitives over heap allocated data,
choose("C") and chooseReachable("C",l) where l is any
object reference expression. The semantics of these primi-
tives correspond to the meaning of choosec and reachUnitc(l)
from Section 3.

4.3 From Side-Effects to Code
Environment code generation is based on the analysis

summaries from the previous section. For each environment
method that may be invoked by the unit, we generate an
environment method and its enclosing class.
Side-effecting statements are modeled as abstract assign-

ments that may write to a set of unit locations. The writ-
ten locations are elements of SL. There are three possibil-
ities for such values: (1) the location is choosec in which
case choose("C") is emitted; (2) the location is pif1f2 . . . fk

in which case the unit expression, e, that is passed as pa-
rameter pi is used to expand the symbolic location to emit
e.f1.f2...fk ; and (3) the location is pif1f2 . . . fkreachUnitc
in which case the unit expression, e, that is passed as pi is
used to expand the symbolic location to emit
chooseReachable("C", e.f1.f2...fk). Note that for access
paths rooted at new locations and globals no path extension
is required. Scalar values in side-effect statements are emit-
ted either as the appropriate literal value or as enumerated
TOP values whose semantics are recognized by the model
checking framework. The resulting assignments may have
non-determinism on both their left and right-hand sides.
Model checkers that support the required modeling meth-
ods will generate each possible pair of left and right-hand
side values in order to safely approximate all possible as-
signments.
For must side-effects, assignments are guaranteed to occur

in any method execution, thus the abstract assignments are
included directly in the environment method body. For may
side-effects, assignments can possibly occur in any method
execution, thus the abstract assignments are included in the
consequent of a conditional statement with choose() as the
condition expression. For return-sensitive side-effects, the
summary is a set of sets of side-effects. We generate a chain

194



of conditionals each guarded by choose() such that the con-
ditional bodies are mutually disjoint and each of the abstract
assignments for each set of side-effects is placed in its own
body. Figure 5 illustrates the three code generation cases.
Since environment code generation is essentially a direct

encoding of side-effects analysis results, the safety of those
environments follows from the safety of the preceding anal-
yses and the semantics of the modeling primitives.

5. EXPERIENCE WITH TOOLS
We have applied our tools to several large Java applica-

tions to assess the scalability of our techniques and to several
smaller programs that use collection data structures from
libraries to assess the tool’s ability to identify containment
properties of the environment.
For many of these programs, the primary benefit of the

environment analysis and generation tools is to eliminate
library code from the system that is subsequently model
checked. While this is clearly useful, one might question
the need for the sophistication of our approach when one
can simply assume that library code can be “ignored” as
is done in many other program analysis tools. We contend
that a general analysis capability like ours not only handles
pre-defined library code in a rigorous way, but it allows for
arbitrary parts of the program to be treated as libraries and
abstracted as part of the environment.
The model checks of the real programs, discussed be-

low, involved local properties of individual classes or small
tightly-coupled groups of classes. The environment classes
in those programs had few side-effects which resulted in gen-
erated environments that were simple in terms of their struc-
ture, however, they were large enough to make manual en-
vironment definition a tedious and error prone task. In con-
trast, the examples that used collections needed the more so-
phisticated analysis framework to generate sufficiently pre-
cise models. Clearly more experience with our environment
generation tools is needed to understand the degrees of con-
trol that users may require in adjusting the precision of gen-
erated environments.

5.1 Replicated Workers
Replicated workers is a configurable framework designed

to support the parallelization of simulations. The replicated
workers architecture includes a shared pool and a number
of workers that repeatedly access the data from the pool,
perform the computation, and put the new data back to
the pool. The job is finished when the work pool becomes
empty. The user can specify the number of workers ex-
ecuting concurrently and several other attributes of their
collaborative execution. We studied an application of the
replicated workers that used it to solve a standard Jacobi
relaxation problem. The goal was to extract the replicated
workers framework from the application while safely model-
ing the effects of the framework. Scope-based analysis was
very effective; it reduced the number of classes that had to
be considered by side-effects analysis from 431 to 31. The
resulting unit was comprised of 6 classes and approximately
500 lines of code; the generated environment consisted of 3
classes and very little code since it was determined that the
application caused no side-effects on the framework except
for boolean return values.
We checked several properties from [6] using both Ban-

dera and got the same results as in that study. In one case,

however, our results diverged from what we expected. When
checked a framework instance for deadlock, we found an ac-
tual deadlock. The bug was in the implementation of a
barrier synchronization utility. Its discovery was surprising
since the framework has been used in implementing more
than ten non-trivial parallel simulation applications and this
bug was never discovered. We replaced the barrier imple-
mentation with one from java.util.concurrent and the
deadlock was eliminated.

5.2 Flight Simulator
We analyzed the implementation of a flight simulator’s

cockpit display. The autopilot tutor is a web-based appli-
cation that has a GUI for simulating the Autopilot Mode
Control Panel and a Primary Flight Display of an MD-11
aircraft autopilot. A user may click on buttons to dial de-
sired altitude and vertical speed, and advance the aircraft
towards its goal altitude. Autopilot is implemented as an ap-
plet. It uses GUI toolkits such as java.awt and java.swing

to paint the interface on a screen.
We checked the autopilot simulator implementation for

mode confusions. Mode confusions in systems with human-
machine interaction are scenarios when the operator thinks
that the machine is in one mode and the machine is in a dif-
ferent mode. Human-machine interaction systems are com-
plicated by presence of multiple agents in the system: the
user (pilot), the task (“take the aircraft to a certain alti-
tude”), the machine (the autopilot), and the interface be-
tween the operator and the machine (knobs, wheels, and
displays in a cockpit).
In order to find mode confusions related to altitude devia-

tion errors we hand-coded a simple model of a user’s beliefs,
generated environment methods for all the GUI components,
applied integer abstraction to selected system objects, and
generated drivers according to specific pilot task expressed
as regular expressions. We restrict our attention here to the
generation of the environment methods, for a more complete
description see [16].
The main class of the applet is Autopilot which extends

java.applet.Applet which in turn extends several AWT classes.
This applet makes a large number of calls to AWT methods
in order to create and update the simulated cockpit dis-
plays. The Autopilot class is over 3,500 lines of dense code,
mainly GUI related. The properties we wished to reason
about were independent of the state of the GUI and we
were free to choose the Autopilot class itself as the system
under analysis.
Scope based analysis was essential in enabling the more

expensive side-effects analyses to run. The number of classes
was reduced from 1474 to 41. The side-effects analysis de-
termined that there were several side-effects on explicitly
defined fields of Autopilot and on fields inherited from AWT

classes. The resulting environment consisted of 15 classes
that were generated.
Submitting the user-model, autopilot implementation, the

pilot actions program and generated environment to JPF
resulted in finding a mode confusion scenario in a matter
of minutes. No manual work was required to deal with the
massive GUI libraries in this example.

5.3 Container Examples
We studied a group of programs that use library com-

ponents such as List, Vector and a binary search tree (
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public class BSTree {
BSTNode rootNode ;
int elementCount;
public void put( SearchKey keyObj , Leaf value ) {
SearchKey s = keyForObject(keyObj );
BSTNode n = search(s);
if (n == null) {
n = new BSTNode (s, value);
insert(n);

}
}
private void insert(BSTNode n) {
BSTNode y = null;
BSTNode x = rootNode ;
while (x != null) {
y = x;
if (n.key.compareKey(x.key) < 0)
x = y.left;

else x = y.right;
n.parent = y;
if (y == null) rootNode = n;
else if (n.key. compareKey(y.key) < 0)
y.left = n;

else y.right = n;
}
elementCount++;

}

// Unit code referencing BSTree
SearchKey k = new SearchKey();
Leaf l = new Leaf();
BSTree bst;
...
bst.put(k,l);

// Side -effects summary
public Leaf put(SearchKey p0 , Leaf p1){
must: this.elementCount = TOP_INT ;
may: reachable("Leaf", this) = p1;
may: reachable("SearchKey", this) = p0;

}

// Contains -preserving environment
public class BSTree {
Object [] contains ;
public Leaf put(SearchKey p0 , Leaf p1){
if ( choose ()) contains [choose (0,contains .length )] = p1;
if ( choose ()) contains [ chooseInt(0, contains .length )] = p0;
this.elementCount = Abstraction.TOP_INT ;

}
public Leaf query(SearchKey p0){
if ( choose ()) return reachable("Leaf",this);
else return null;

}

Figure 6: Search Tree, Client and Environments (excerpts)

BSTree). We analyzed these components to identify con-
tainment properties that can drive the generation of more
precise environment models.
Consider Figure 6 which shows the put() method of a

binary search tree implementation on the left hand side.
This implementation uses keyObj as a key to store value

into the tree. The insert() method navigates down to a
leaf of the tree and links the newly created BSTNode instance
that holds the key and value into an existing leaf node.
We configured the side-effects analysis to treat fields of

BSTree and BSTNode as part of the unit. This allowed the
analysis to track access paths through the search tree nodes
and the results indicated that after executing the put()

method, key and value will be reachable from the binary
search tree root. The side-effects analysis results for meth-
ods remove(SearchKey keyObj) and query(SearchKey keyObj)

of the binary search tree yield similar results.
Rather than generate code as described in Section 4.3, we

instead generate an abstract model for the analyzed classes
that are directly called from the unit, in the case of our
example this is BSTree. This means that all instances of
BSTNode will be eliminated from the system. This appears
problematic because access paths that traverse those nodes
make the Leaf nodes reachable from the root (i.e., this).
We can generate an environment model for BSTree that pre-
serves an abstract containment relation, even with the elim-
ination of BSTNodes, by associating an array with instances
of the search tree. Assignment to a reachable(type,this)

expression is converted into a slot in the array and since the
array is a field of the environment class its elements can be
accessed (non-deterministically) by reachable(type,this)

expressions. The resulting environments can yield state
space reductions since all of the interior nodes of a tree are
eliminated and replaced with an array of references to the
leaves of the tree.
These same techniques were applied to the containers in

the ReplicatedWorkers example although they were not nec-
essary to reveal the deadlock in that program.

6. RELATED WORK
The problem of detecting inter-procedural side-effects in

the presence of pointers has been widely studied. Tradi-
tionally such analyses have been used to enable program
optimizations (e.g., [1, 10]) more recently researchers have
considered targeting software engineering client applications
with sophisticated side-effects analyses [14].
The most common technique for calculating method side-

effects is to calculate points-to information first and then
perform side-effects analysis. There are several approaches
to detecting aliases in the literature, but as discussed previ-
ously, our work builds off of access path approaches [10]. An
important distinguishing feature of our work is that when
our approximation reaches its bound we can distinguish lo-
cations that are reachable from a k-limited path from the
set of all locations. In addition, we exploit type information
to distinguish sets of reachable locations.
Our analyses draw various aspects from other approaches.

Our analysis is modular, like [19, 1], flow-sensitive, like [1,
10], and gains a measure of context-sensitivity by calculating
parameterized pointer information, like [11]. Unlike existing
analyses, ours distinguishes between unit and environment
locations. Side-effects to environment locations are ignored,
whereas side-effects to unit locations are kept tracked. In
addition our analysis keeps track of not only what locations
may be modified but what values they may hold at the end
of a method’s execution. Finally, based on our client appli-
cation we combine may, must and return-sensitive informa-
tion to produce a more precise characterization of a methods
side-effects.
Verisoft incorporates a tool that calculates the influence

of externally defined data on the system under analysis [3].
Unlike in our approach, they use a simple notion of data de-
pendence to drive their analysis and do not have the ability
to control the precision of the generated environments.
We note that there has been recent work on environment

generation that takes a different approach. The basic idea
is to infer a suitable environment assumption given unit and
the property under consideration [2, 7]. To date these meth-
ods have not considered data interactions between the unit
and environment. It would be worthwhile exploring the de-
gree to which our techniques could be used to extend those
methods.
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7. CONCLUSIONS
The research presented in this paper is part of a larger

project related to modular program model checking. The
Bandera Environment Generator is a system that incorpo-
rates both environment extraction and environment synthe-
sis. In this paper, we described how data effects are treated
in environment extraction. Control effects can also be ex-
tracted from applications via control flow analysis. The tools
are currently configured to assume the lack of divergence,
indefinite-blocking, and lock acquisition in the environment.
Ongoing work is directed at developing static analyses to
check those assumptions.
In this paper we have described the combination and adap-

tation of several approaches to points-to and side-effects
analyses. Our approach was targeted at a specific software
engineering client application and as such several of the clas-
sic assumptions of existing analyses were not appropriate.
We have defined a flexible analysis framework that can be
tuned by the user to control the degree of precision it admits
and developed code generation strategies that exploit analy-
sis results to produce models that support efficient program
model checking. Our experience to date suggests that our
staged analysis approach can scale to large systems and can
enable checking of properties of Java applications that were
not previously possible.
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C. S. Păsăreanu, Robby, W. Visser, and H. Zheng.
Tool-supported program abstraction for finite-state

verification. In Proceedings of the 23rd International
Conference on Software Engineering, May 2001.

[6] M. B. Dwyer and C. S. Păsăreanu. Filter-based model
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