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ABSTRACT
Although buffer overflow detection has been studied for more
than 20 years, it is still the most common source of security
vulnerabilities in systems code. Different approaches using
symbolic analysis have been proposed to detect this vul-
nerability. However, existing symbolic analysis techniques
are either too complex to scale to millions of lines of code
(MLOC), or too simple to effectively handle loops and com-
plex program structures.

In this paper, we present a novel symbolic analysis algo-
rithm for buffer overflow detection that applies simple rules
to solve relevant control and data dependencies. Our ap-
proach is path-sensitive and effectively handles loops and
complex program structures. Scalability is achieved by us-
ing a simple symbolic value representation, filtering out ir-
relevant dependencies in symbolic value computation and
computing symbolic values on demand.

Evaluation of our approach shows that it is both practi-
cal and effective: the analysis runs over 8.6 MLOC of the
OpenSolarisTM Operating system/Networking (ON) code-
base in 11 minutes and finds hundreds of buffer overflows
with a false positive rate of less than 10%.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging–
Symbolic execution

General Terms
Reliability, Security

1. INTRODUCTION
Although buffer overflow detection has been studied for

more than 20 years, it is still the most common source of
security vulnerabilities in systems code. In a study of bugs
that lead to publicly reported vulnerabilities, MITRE re-
ports that 19% of all security vulnerabilities over the period
2001-2006 were due to buffer overflows [6]. Different ap-
proaches have been proposed to detect this vulnerability,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE-18, November 7–11, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-60558-791-2/10/11 ...$10.00.

including both dynamic [26, 25, 20] and static [12, 32, 10,
17] techniques.

Symbolic analysis [16] is a static analysis technique that
represents the values of program variables and computations
with symbolic values. Recently, different symbolic analysis
approaches [29, 4, 32, 14, 10, 15, 31, 1, 2, 17, 22, 5] have been
proposed to detect buffer overflows and promising results
were reported. However, these approaches are still either
too complex to scale to millions of lines of code (MLOC), or
too simple to effectively handle loops and complex program
structures.

Complex approaches that do not scale well to MLOC in-
clude [4, 1, 22, 5]. These approaches exhaustively traverse
all possible execution paths and use an external constraint
solver or a theorem prover to try to solve all data and con-
trol dependencies on each path. Although they can be very
precise, these approaches are hard to scale to large applica-
tions due to the unbounded number of execution paths and
the complexity of solving all dependencies on each path. As
a result, they are mostly used in unit testing [22, 5, 23].

Simpler approaches that trade precision for scalability in-
clude: not being path-sensitive and only providing very lim-
ited support for control dependencies [29, 14], only support-
ing very limited computation between symbolic values [12,
32], i.e., limited support for data dependencies, or using sim-
ple heuristics to handle loops and complex control structures
[32, 2]. These tradeoffs not only miss many bugs, they may
also introduce numerous false alarms.

In this paper, we propose a new symbolic analysis tech-
nique for buffer overflow detection. Here buffer overflow
refers to buffer bounds violation via both read and write
accesses. Compared to previous approaches, we apply sim-
ple rules to solve relevant data and control dependencies
iteratively. The analysis is path-sensitive and handles loops
and complex program structures effectively. Scalability is
achieved by using a simple symbolic value representation,
filtering out irrelevant dependencies in symbolic value com-
putation, and computing symbolic values on demand.

Our demand-driven algorithm has been implemented in
Parfait [8], a scalable bug-checker built on top of LLVM [18].
As shown in Section 6, our experimental results against large
systems code show that it is both practical and effective.

In summary, this paper makes the following contributions:

• We propose a new symbolic analysis technique for buffer
overflow detection. The technique is simple yet effec-
tive. It can be easily implemented and integrated with
other analysis techniques.
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• We develop a new demand-driven symbolic analysis
algorithm to compute the symbolic value of a variable
efficiently.

• We evaluate our implementation using several large
applications, including the OpenSolarisTM Operating
system/Networking (ON) consolidation. Experimental
results show that this technique is practical and effec-
tive. It analyzes 8.6 MLOC of the OpenSolaris ON
codebase in 11 minutes on an Intel E8600 3.33GHz
processor and identifies hundreds of buffer overflows
with a false positive rate of less than 10%.

The rest of the paper is organized as follows. Section 2
reviews related work. In Section 3, we show an example
to motivate our approach. The symbolic analysis technique
is described in Section 4 and the algorithm is presented in
Section 5. We evaluate the scalability and effectiveness of
our approach in Section 6 and Section 7 concludes the paper.

2. RELATED WORK
Symbolic analysis was introduced in the ’70s [16] and has

recently been applied in many approaches to detect buffer
overflows [29, 14, 24, 10, 32, 15, 17, 2, 22, 5]. In symbolic
analysis, the program is executed with symbolic values as
input. During symbolic execution, values of program vari-
ables are computed as symbolic expressions by manipulating
program expressions involving symbolic values, i.e., solving
data dependencies symbolically. Control statements such as
branch instructions are executed by (conceptually) follow-
ing both branches, and maintaining the control predicate
information, i.e., control dependencies, on each branch.

Existing symbolic analysis techniques differ from each other
in their different representations of symbolic values and how
the symbolic values are computed. In [29, 14], the symbolic
values are simplified as integer ranges and the authors map
the range analysis problem into an integer linear program-
ming (ILP) problem, which is exponential. Rugina and Ri-
nard [24] reduce the ILP problem to a linear programming
problem by using a different symbolic representation: the
symbolic value of a variable is abstracted as a linear function
of the set of input variables, then a linear constraint solver
is used to solve the linear representation for each variable.
However, for large applications with millions of LOC, it will
be very time-consuming for the linear constraint solver to
solve the representations of all program variables together.
These approaches are not path-sensitive in that control de-
pendencies are either not used at all or are discarded at in-
structions where different execution paths merge, leading to
imprecision in the buffer overflows reported (i.e., high false
positive rate).

Xie et al. [32] use linear derivations of a single symbol to
represent symbolic values, which are then computed by in-
terpreting the program. In their approach, computations be-
tween symbolic values are not supported and loops with non-
constant iterations are handled by simply unrolling them
once and terminating them with an assumption that the
loop test has failed. This simplification in handling loops,
although adopted in various approaches [13, 31, 2], can miss
many bugs and may cause some false positives as well. In [10],
the authors formalized symbolic analysis as a special case of
abstract interpretation [9]. They defined a set of abstract
domains to represent symbolic values at different levels of
precision and the users can select which abstract domain to

use. The more precise the abstract domain is, the more ex-
pensive the analysis will be. Their approach can scale to
tens of thousand LOC as described in the paper. The
technique described in this work can be integrated as a dif-
ferent abstract domain in their frameworks.

Compared to the above approaches, symbolic analysis as
applied in unit testing [1, 22, 5] is often more precise by
exhaustively traversing all possible execution paths and us-
ing an external constraint solver or theorem prover to solve
all data and control dependencies on each path, where con-
trol dependencies are often represented as extra constraints
on each path. Given that the number of possible execution
paths is unbounded in the presence of loops, and that the
execution path can be very long, restrictions are often in-
troduced to limit the number of iterations to traverse a loop
and the number of constraints on each execution path.

The authors in [17] improve the scalability of the above
approaches by being demand-driven: instead of symbolically
executing the program, they exhaustively traverse all pos-
sible execution paths backwards from each buffer access in-
struction. During the backward traversal, extra data depen-
dencies and control dependencies are analyzed incrementally
by an external constraint solver, allowing for the analysis of
hundreds of thousand LOC. As in [1, 22, 5], loop bounds
and path restrictions are applied.

In this paper, we use a different tradeoff for precision and
scalability by iteratively solving relevant data dependencies
and control dependencies when computing the symbolic val-
ues of a program variable. Instead of exhaustively traversing
all execution paths, we only consider linearly-related control
dependencies which can be efficiently solved. Since the val-
ues of array index variables often only depend on data and
linearly-related control dependencies, it is very effective in
finding buffer overflows. As a result, our approach is both
scalable and effective as shown in our experimental results,
scaling well to millions LOC.

3. A MOTIVATING EXAMPLE
We present the C-code fragment in Figure 1(a) to illus-

trate our approach. The function tosunds str produces a new
string by adding a letter CAPCHAR in front of every capital
letter in the input string. It firstly creates a new buffer buf
with size n (lines 5 and 6). Then, in the for loop (lines 8
- 13), every letter in the input string str is processed and
copied to buf, where a letter CAPCHAR will be inserted in
front of the processed letter if it is in uppercase. After the
for loop, the null string terminator will be appended at the
end of buf as shown in lines 14 - 16.

In the above example, a buffer overflow may occur at line
11 as highlighted in the shadow box. The for loop exits in
line 12 if the index variable j is larger than or equal to the
buffer size n. However, the loop will keep executing if j is
equal to n-1. In that case, in the next iteration of the loop,
the assignment to buf in line 11 may overflow.

3.1 The Intermediate Representation
Figure 1(b) shows the control flow graph (CFG) and the

single static assignment (SSA) representation [11] for the
program in Figure 1(a), where each instruction is given a
unique label and only relevant basic blocks are shown. In
SSA form, all variables have a single definition and at join
points, where different paths in the CFG merge, a phi in-
struction is introduced as the new definition of a variable
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/* Puts CAPCHAR in front of uppercase characters
* For example (assuming CAPCHAR = ’%’):
* if str = ABc, it returns %A%Bc */

1 char * tosunds str(char * str) {
2 int i, j, n;
3 char * buf;
4 . . . ;
5 n = . . . ; //n is defined by external function
6 buf = malloc(n * sizeof(char));
7 j = 0;
8 for (i = 0; i < strlen(str); i++) {
9 if (isupper(str[i]))
10 buf[j++] = CAPCHAR;

11 buf[j++] = str[i];

12 if (j >= n) break;
13 }
14 if (j+1 >= n )
15 j = n-1;
16 buf[j] = ’\0’;
17 return buf;
18 }

P2 i0 = phi(0,i1);
P3 j0 = phi(0, j3);
P4 pred0 = (i0<strlen(str));
P5 if (¬pred0) goto bb5;

P6  pred1 = isupper(str[i0]);
P7 if (¬pred1) goto bb3;

P8 buf[j0] = CAPCHAR;
P9 j1 = j0+1;

P10 j2 = phi(j1, j0);

P12 j3 = j2+1;
P13 pred2 = (j3 >=n);
P14 if (pred2) goto bb5;

P15 i1 = i0+1;
P16  goto bb0;

P17  j4= phi(j3, j0)
P18  pred3 = (j4+1 <n);
P19  if (pred3) goto bb7;

P20  j5 = n-1;

P23  return buf;

bb5

bb7

bb6

bb4

bb3

bb2
bb1

bb0

P0 n = …;
P1 buf = malloc(n*sizeof(char));

P21  j6 = phi(j4,j5);
P22  buf[j6] = `\0`;

P11  buf[j2] = str[i0];

(a) The code snippet (b) The intermediate representation (IR) for the example code in (a)

Figure 1: A motivating example abstracted from usr/src/cmd/fs.d/autofs/ns ldap.c in OpenSolaris ON.

if it has been defined along distinct paths. For example, in
bb3 in Figure 1(b), where the buffer overflow is located (line
11 in Figure 1(a)), a phi instruction j2 is introduced at P10
to represent the new definition of index variable j.

As is common practice in modern compilers such as GCC
and LLVM, only scalar variables whose addresses are never
taken are represented in SSA form. Variables which may be
referenced by pointers are accessed via load and store in-
structions. Program values include constants and variables
defined by SSA or load instructions.

For illustration purposes, we explicitly label each control
predicate as a separate instruction at P4, P6, P13 and P18
in Figure 1(b). Control predicates are those conditional ex-
pressions used in instructions that alter the flow of control,
i.e., the conditional branch instructions at P5, P7, P14 and
P19. All control predicates are normalized as relational ex-
pressions in the form pred=(Op1∼Op2), where pred is the
label of the control predicate, Op1 and Op2 are the left and
right hand operands and ∼ is a relational operator.

3.2 Data and Control Dependencies
In our intermediate representation, each variable is de-

fined by a unique instruction. For a variable V , let DV be
the unique instruction where V is defined. At different in-
structions, the possible values of V can be different (due to
control dependencies of the instruction), and we use SV,P

to represent the symbolic value of V at instruction P . For
buffer overflow detection, at each instruction P where V is
used as an index variable into a buffer, we will try to com-
pute SV,P to detect buffer overflows.

Both data and control dependencies need to be considered
to compute SV,P . Data dependencies refer to the incoming
operands of the instruction by which V is defined. Control
dependencies refer to those control predicates that need to
be satisfied for P to be executed.

Consider our motivating example. To detect the buffer
overflow in line 11 in Figure 1(a), we need to compute the
value of index variable j2, i.e., Sj2,P11. The data dependencies
between variables j3, j0, j1, and j2, and the control depen-

dency pred2 at P13 need to be considered. Note that these
dependencies form a cycle and need to be solved iteratively.
The control predicate pred2=(j3>=n) must be false to allow
the use of j3 at P3 in bb0 to be executed. As a result, we
have Sj3,P3 and Sj0,P3 must be less than n. Then the values
of j1, j2, and j3 can be iteratively computed and the buffer
overflow at P11 (line 11 in Figure 1 (a)) via index variable
j2 can be identified.

The example shows that both data and control dependen-
cies need to be considered in computing the symbolic value
of a variable at an instruction. Those dependencies often
form a cycle and we need to iteratively compute the values
of program variables to address cyclic dependencies. How-
ever, not all dependencies are useful in the computation.
For example, pred0 at P4 in bb0, pred1 at P6 in bb1 are not
useful in computing Sj2,P11. The key therefore is to deter-
mine which dependencies need to be considered and how the
value of a program variable can be computed based on those
dependencies.

4. SYMBOLIC ANALYSIS
Based on the observations in Section 3, we have developed

a new technique to compute values of program variables
symbolically. We use symbolic ranges to represent values
of program variables at each instruction. The bounds of the
symbolic ranges are defined in a simple symbolic expression
domain as explained in Section 4.1.

The simple symbolic expression domain enables us to com-
pute the symbolic ranges of program variables at each in-
struction very efficiently. In Section 4.2, simple rules are
introduced for computing the symbolic ranges of program
variables according to various control and data dependen-
cies. The symbolic ranges of program variables can then be
compared with buffer sizes to detect buffer overflows.

4.1 Symbolic Value Representation
Symbolic ranges are introduced to represent the values of

program variables at each instruction. The symbolic range
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for variable V at instruction P , SV,P , is defined by its lower
and upper bound, denoted as SV,Pmin and SV,Pmax, respec-
tively. Both SV,Pmin and SV,Pmax are symbolic values de-
fined in a simple symbolic expression domain as explained
below.

4.1.1 A Simple Symbolic Expression Domain
The set of symbolic expressions E includes a set of atomic

symbols and their affine functions as derivations. The sym-
bolic expression set E has the following property:

Property 1. Every symbolic expression E in E is an
affine function of an atomic symbol in E.

Constant value 0 is regarded as an atomic symbol from
which all constant values are derived. Property 1 is en-
forced by how symbolic expressions are introduced into E .
Initially the set is ∅. During the analysis, new atomic or
derived symbolic expressions may be introduced into E to
represent computations between symbolic expressions. A
new atomic symbol will be introduced if the computation
results cannot be represented as an affine function of exist-
ing atomic symbols in E . For example, if we try to add two
symbolic expressions E1=X + 1 and E2=2Y + 3, where X
and Y are atomic symbols, a new atomic symbol Z=X +2Y
will be introduced into E if no existing atomic symbol is affine
to Z.

This simple strategy in performing computation between
symbolic expressions is very efficient and easy to implement.
However, it is also very effective in finding buffer overflows
as demonstrated in our experimental results in Section 6.

The symbolic expression set E is partially ordered by ≺,
where for any two symbolic values E1 and E2 in E , E1≺E2 iff
their subtraction E1−E2 is no larger than 0. By convention,
� and ⊥ are introduced in E . ∀E ∈ E , we have ⊥≺E and
E≺�. The two operations meet 	 and join 
 are defined as
follows:

E1 	 E2 =

8><
>:

E1 if E1≺E2

E2 if E2≺E1

⊥ otherwise

E1 
 E2 =

8><
>:

E2 if E1≺E2

E1 if E2≺E1

� otherwise

(1)

4.1.2 Symbolic Ranges
The symbolic range of variable V at instruction P , SV,P =

[SV,Pmin, SV,Pmax], is defined by its lower bound SV,Pmin

and upper bound SV,Pmax. Both SV,Pmin and SV,Pmax are
symbolic expressions defined in E and it implicitly implies
that at instruction P , we have SV,Pmin≺SV,Pmax. The sym-
bolic range SV,P represents the set of all symbolic expres-
sions E in E such that SV,Pmin≺E and E≺SV,Pmax may
be true. The set is ∅ if no symbolic expression in E satis-
fies such condition and we use [�,⊥] to represent an empty
range. The union and intersect of two symbolic ranges can
be computed as follows:

S1 ∪ S2 = [S1min 	 S2min , S1max 
 S2max ]

S1 ∩ S2 = [S1min 
 S2min , S1max 	 S2max ]
(2)

Let B be the size of the buffer and let V be the index vari-
able, a buffer overflow will be reported if SB,Pmax≺SV,Pmax

or SV,Pmin≺ -11. A buffer access cannot overflow if

1We assume that the accessed buffer is indexed from 0, as
for C.

Symbolic Range Algebra S1 • S2

S1 + S2 = [S1min + S2min, S1max + S2max]
S1 − S2 = [S1min − S2max, S1max − S2min]
S × E = [Smin × E, Smax × E] ∪ [Smax × E, Smin × E]
S1 × S2 = S1 × S2min ∪ S1 × S2max

S ÷ E = [Smin ÷ E, Smax ÷ E] ∪ [Smax ÷ E, Smin ÷ E]

S1 ÷ S2 =

(
[⊥,�] 0 ∈ S2

S1 ÷ S2min ∪ S1 ÷ S2max otherwise

S % E =

8><
>:

[1 + E � 1 − E, 0] Smax≺0

[0, E − 1 � −1 − E] 0≺Smin

[1 + E � 1 − E, E − 1 � −1 − E] otherwise

S1 % S2 =

(
[⊥,�] 0 ∈ S2

S1 % S2min ∪ S1 % S2max otherwise

Figure 2: Simple integer arithmetic operations between

symbolic ranges. E represents a symbolic expression in

E and • represents an integer arithmetic operation.

SV,Pmax≺SB,Pmin−1 and 0≺SV,Pmin. Note that such buffer
accesses are guaranteed to be within buffer bounds since the
symbolic ranges are computed conservatively as described in
Section 4.2. Otherwise, we consider the buffer access to be
a potential buffer overflow, that is our analysis cannot de-
termine with certainty whether or not a vulnerability exists.
Potential buffer overflows are not reported as bugs.

4.2 Computing Symbolic Ranges
We support common integer arithmetic computations, in-

cluding +,−,×,÷ and %, between two symbolic ranges.
The resulting range represents the set of symbolic expres-
sions obtained by computing the operation over any two
symbolic expressions selected from each input range:

∀E1 ∈ S1, ∀E2 ∈ S2 → E1 • E2 ∈ S1 • S2

where • represents an arithmetic operation.
Figure 2 shows the simple algebraic equations. The equa-

tions for + and − are self-explanatory. For the operation
×, let us first look at the simple case of applying the mul-
tiplication operator to a symbolic range S and a symbolic
expression E, S × E. The product could be in the range
[Smin ×E, Smax ×E] or [Smax ×E, Smin ×E], depending on
whether E is positive or negative. Then the range of S1×S2

can be computed as shown in Figure 2. Similar equations
are derived for the ÷ operator. Note that we conservatively
assume that any range divided by 0 will result in the sym-
bolic range [⊥,�], which includes all symbolic expressions
in E . In the equation for S % E, where S is a symbolic
range and E is a symbolic expression, the remainder will
carry the same sign as the dividend as specified in the C99
standard. The equation for applying the modulo operation
to two symbolic ranges is derived in the same way.

Given the simple symbolic range algebra, SV,P , the sym-
bolic range for variable V at instruction P , is then computed
according to data and control dependencies. Two steps are
involved in computing SV,P . Firstly we compute the sym-
bolic range of V , SV , according to data dependencies. Then
SV,P is computed by refining SV with relevant control de-
pendencies. We call SV the define range of V , and SV,P the
use range of V at P . Note that variable V will have differ-
ent use ranges SV,P1 and SV,P2 at instructions P1 and P2, if
different control dependencies are considered.

In this section, we explain how to select the relevant de-
pendencies and introduce the simple rules for computing
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symbolic ranges according to those dependencies. The com-
puted symbolic range is conservative in that for each vari-
able, its symbolic ranges are always a superset of its possi-
ble values. More precise symbolic ranges can be computed
if more accurate dependency information is provided, either
via compiler analysis or user annotation.

4.2.1 Data Dependencies

Data Dependencies Define Ranges SV

V =Op1 • Op2 SOp1,DV
• SOp2,DV

V =phi(Op1, Op2) SOp1,DV
∪ SOp2,DV

V =Load(A, I) [ A[SI,DV min
]. . .�. . .A[SI,DV max

],
(A is constant

aggregate) A[SI,DV min
]. . .�. . .A[SI,DV max

] ]

V =Input [V.Type.min, V.Type.max]
V =Unsolved [V,V]

Figure 3: The rules for computing the define range of V ,

SV , according to data dependencies. DV is the instruc-

tion where V is defined, • represent an arithmetic in-

struction. V.Type.min and V.Type.max represent the min-

imal and maximal value that could be represented by the

type of V , i.e., V.Type. The instruction V =Unsolved rep-

resents the set of instructions that will not be handled

by our analysis.

Figure 3 outlines the rules to compute the define range of
variable V , SV , according to data dependencies. For vari-
ables defined by arithmetic instructions +,−,×,÷ and %,
their define ranges are computed according to the symbolic
range algebra in Figure 2. Similar rules with small exten-
sions can be applied to variables defined by arithmetic shift
instructions. The define range of a phi instruction is the
union of the use ranges of all its operands from their cor-
responding incoming blocks, assuming that it can hold any
value from its incoming operands.

Memory dependencies are solved only if the variable is
loaded from a constant buffer. Its define range will be com-
puted by checking the range of the index variable and all pos-
sible values in the buffer. This may sound restrictive. How-
ever, it is effective in detecting vulnerabilities such as buffer
overflows, where index variables are often either scalars or
loaded from constant arrays (as indirect array accesses). Fi-
nally, the define range of a variable defined by user input
includes any value that can be represented by its type.

Note that we do not try to solve the data dependencies
for all variables. Instead, for a variable whose define range
cannot be solved (V =Unsolved), such as library call returns
or bit-mask operations, we introduce a unique atomic symbol
into the symbolic expression set E and the define range of
the variable is defined by the introduced symbol as both its
lower and upper bound.

For illustration, Figure 3 only shows the rules for comput-
ing data dependencies intra-procedurally. However, these
rules can be easily extended to inter-procedural analysis by
propagating the values of function actual arguments to callee
functions and function return values to caller functions.

4.2.2 Control Dependencies
At instruction P , the use range SV,P is computed by re-

fining the define range of V according to relevant control
dependencies such that P may be executed given any value
of V in SV,P . A control dependency will be considered in

computing SV,P if it controls both the execution of instruc-
tion P and the value of V . We conservatively define that a
predicate pred controls the execution of instruction P if 1)
pred strictly dominates P , i.e., every path from the entry
of the CFG to P includes pred, and 2) P is only reachable
from one successor of the conditional branch instruction that
uses pred. Then the outcome of pred must be true or false
depending on which successor can reach P .

Control
Dependencies Use Ranges SV,P

pred=

Op1 = Op2 SV ∩ C1 × SOp2,pred + C2

Op1 ≤ Op2 SV ∩ [⊥, C1 × SOp2,predmax
+ C2]

Op1 ≥ Op2 SV ∩ [C1 × SOp2,predmin
+ C2,�]

Op1 �= Op2

8><
>:

SV \ {SVmin} V =SVmin → Op1=Op2

SV \ {SVmax} V =SVmax → Op1=Op2

SV otherwise

Figure 4: The rules for computing SV,P according to

direct control dependencies. Control predicates are in

the form of pred=(Op1 ∼ Op2), where Op1 and Op2 are

the left and right hand operands and ∼ is a relational

operator. The predicates are normalized in such a way

that V = C1 × Op1 + C2 and C1 > 0.

Control predicates are in the form of pred=(Op1∼Op2),
where ∼ is a relational operator. A control predicate may
control the value of V directly or indirectly, depending on
how its operands relate to V . Op1 is directly related to V if it
is defined as an affine function of V , i.e., Op1 = C1×V +C2

where both C1 and C2 are constants, or if V is defined as an
affine function of Op1. Op1 is indirectly related to V if Op1 is
loaded from a buffer with the index variable directly related
to V , or if V is loaded from a buffer with the index variable
directly related to Op1. Accordingly, those dependencies
are called direct or indirect control dependencies. Similarly
to memory data dependencies, indirect control dependen-
cies can be transformed to direct control dependencies by
examining the content of the buffer.

Figure 4 shows how to compute SV,P according to direct
control dependencies. All control predicates are normalized
in such a way that Op1 is directly related to V . The define
range SV is intersected with a range defined by the affine
function between Op1 and V , the relational operator ∼ and
the use range SOp2,pred. If multiple control predicates need
to be considered in computing SV,P , then SV will be refined
multiple times according to the rules described in Figure 4.

4.3 Enhancements
Our analysis can be improved if more detailed dependency

information is provided, either via compiler analysis or user
annotation. Here we introduce two important compiler anal-
ysis enhancements.

4.3.1 Loop Induction Variable Analysis
Loop induction variables refer to those variables whose

values take on a simple progression in successive iterations
of a loop. Loop induction variable analysis [3] tries to repre-
sent such variables as functions to the loop iteration number,
thus dependencies between induction variables and loop it-
eration numbers can be considered when computing their
symbolic ranges. This analysis is important for buffer over-
flow detections since induction variables commonly appear
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as loop indices and in subscript computations. In our anal-
ysis, we only consider induction variables which are affine
functions of the loop iteration number.

4.3.2 Path Sensitive Analysis
The analysis so far is predicate-aware but it is not fully

path sensitive. We have considered the control dependen-
cies of a variable’s uses, but have not considered the control
dependencies of its definitions. At a phi instruction, where
values defined along different paths merge, path-sensitive
analysis will check from which paths a definition will reach
the phi instruction. Then the define and use ranges of a phi
instruction can be more precisely computed by also consider-
ing the control dependencies along the paths of its incoming
definitions.

We compute gated single assignment (GSA) [21] form for
path-sensitive analysis as needed. In GSA form, the phi in-
struction V =phi(V 1, V 2) is extended to a binary decision
tree called a γ tree. The incoming definitions V 1 and V 2
are leaf nodes in the γ tree with predicate nodes as internal
nodes in the tree to guide which definition to choose. When
computing the symbolic range for a phi instruction, we re-
cursively traverse the γ tree and compute the use ranges of
its incoming operands according to the control dependencies
of the phi instruction as well as those control predicates in
the γ tree. By only computing the GSA form on demand
for relevant phi instructions, the runtime overhead is mini-
mized.

5. THE DEMAND-DRIVEN ALGORITHM

Algorithm 1 Compute the use range SV,P

1: procedure ComputeUseRange(V, P )
2: ComputeDefRange(V )
3: SV,P :=RefineDefRange(V, P )
4: end procedure

As explained in Section 4, the use range SV,P is deter-
mined by firstly computing the define range SV according
to data dependencies, then refining it with relevant control
dependencies. Algorithm 1 outlines the procedure, where we
first call ComputeDefRange to compute SV then refine it
in RefineDefRange.

ComputeUseRange works in a demand-driven fashion.
SV,P is computed only when ComputeUseRange is invoked
with variable V and instruction P as the two input argu-
ments. We use a data structure to cache all define ranges
that have been computed. At instruction P , the use range
SV,P can then be efficiently computed on the fly by refining
the cached define range of V with relevant control depen-
dencies.

When computing the define range SV , for all operands
that define V , we need to compute their use ranges at DV

as shown in Figure 3. Similarly, when refining SV according
to the predicate pred=(Op1 ∼ Op2), we need to compute the
use range of Op2 at pred, SOp2,pred, as shown in Figure 4. If
those dependencies form a cycle, our algorithm will recognize
those cyclic dependencies and will iteratively solve them.

5.1 Iteratively Solving Data Dependencies
The data structure SymTab is introduced to cache the

computed define range SV for each variable V . Initially it
is set to ∅. When SV is to be computed, SV and all define

Algorithm 2 Compute the define range SV

SymTab := ∅
NewV alSet := ∅

1: procedure ComputeDefRange(V )
2: if V has an entry in SymTab then return
3: end if
4: NewV alSet := NewV alSet ∪ {V }
5: SymTab[V ] := [⊥,�]
6: for each operand Opi used to compute V do
7: ComputeUseRange(Opi, DV )
8: end for
9: Compute SV according to Figure 3
10: SymTab[V ] := SV

11: UpdateDefRange(V )
12: NewV alSet := NewV alSet \ {V }
13: end procedure
14: procedure UpdateDefRange(V )
15: for W ∈ NewV alSet do
16: if SW is dependent on SV then
17: for each operand Opi to compute SW do
18: ComputeUseRange(Opi, DW )
19: end for
20: Compute SW according to Figure 3
21: SymTab[W ] := SymTab[W ] ∩ SW

22: if SymTab[W ] has been updated then
23: UpdateDefRange(W )
24: end if
25: end if
26: end for
27: end procedure

ranges required to compute SV (if not computed yet), de-
noted as SW , will be computed on demand and inserted into
SymTab. Note that SW may be used directly in comput-
ing SV as data dependencies, or it could be used as control
dependencies to refine a define range that will be used in
computing SV . There are cyclic dependencies if SV is re-
quired to compute SW .

Let NewV alSet be the set of variables whose define ranges
are inserted into SymTab when computing the define range
SV for variable V . We have the following property:

Property 2. Cyclic dependencies can only exist between
V and variables in NewV alSet.

If a define range is already cached in SymTab, then SV

is not required to compute it. Similarly, if a variable has
no entry in SymTab after SV has been computed, then its
define range is not required to compute SV . In either case,
there is no cyclic dependency in between.

In algorithm 2, the procedure ComputeDefRange re-
turns if SV has already been computed (lines 2 and 3). Oth-
erwise, ComputeUseRange will be recursively invoked to
compute the required use ranges as data dependencies (lines
6 - 8). The define range SV can then be computed and
cached in SymTab (lines 9 and 10). In line 11, we invoke
UpdateDefRange to iteratively solve cyclic dependencies
(if there are any) until a fixed point is reached.

In UpdateDefRange, we recompute SW if it is depen-
dent on SV (lines 16 - 21). Recall that SV may be used
directly in computing SW as data dependencies, or it could
be used as control dependencies to refine a range that is used
directly in computing SW . If SW has been updated, then
UpdateDefRange is recursively invoked to update those
symbolic ranges dependent on SW (lines 22 - 24). The al-
gorithm terminates when no more updates can be made to
SymTab. At this point, we have reached a fixed point for
SV and all define ranges required to compute SV . These
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ranges will be cached in SymTab and they do not need to
be recomputed thereafter. Since we only update SymTab if
a smaller symbolic range can be computed, the algorithm is
guaranteed to terminate.

5.2 Computing Control Dependencies

Algorithm 3 Refine the define range SV at program point
P
1: procedure RefineDefRange(V, P )
2: SV,P := SymTab[V ]
3: Let PredSet be the set of predicates that controls

both the execution of P and value of V
4: for every pred=(Op1∼Op2) in PredSet do
5: ComputeUseRange(Op2, pred)
6: Refine SV,P according to Figure 4
7: end for
8: return SV,P

9: end procedure

The function RefineDefRange (Algorithm 3) computes
the use range SV,P by refining the define range SV according
to control dependencies. As stated in Section 4, a control
predicate will be considered only if it controls both the ex-
ecution of instruction P and the value of V (line 3).

The use range SV,P will be computed by refining the define
range SV with all predicates in PredSet (lines 4 - 7). In our
implementation, when refining a define range with the range
defined by a control dependency, a simple rule is applied if
the bounds of the two symbolic ranges are not compara-
ble. The constant bound is selected first. Otherwise, if the
define range is unsolvable, the bound of the range defined
by the control dependency will be used. When refining the
range according to a predicate pred=(Op1∼Op2), Compu-
teUseRange will be recursively invoked to compute the use
range SOp2,pred (line 5). The define range SOp2 , if not cached
yet, will be computed on demand and inserted into SymTab.
If SV is used in computing SOp2 , those cyclic dependencies
are iteratively solved as shown in UpdateDefRange.

The control predicate pred always strictly dominates in-
struction P by definition and only those control predicates
that strictly dominate pred will be used in computing
SOp2,pred. As a result, the algorithm is guaranteed to progress.

5.3 The Motivating Example
Figure 5 shows the relevant dependencies for our moti-

vating example in Figure 1 as well as how they are solved
in ComputeUseRange. In our algorithm, data dependen-
cies are cached in SymTab while control dependencies are
solved on the fly. As shown in Figure 5, data dependencies
are grouped into gray boxes. Each box is given a number,
representing the order of when they are computed.

The computation order is essentially a topological order in
the reduced dependency graph (including only relevant de-
pendencies) with all cyclic dependencies being reduced into
a single node. The define range of n will be solved first since
it is not dependent on any other values. The define range of
j0, j1, j2 and j3 form a cycle which is control dependent on
n. They will be iteratively solved together. Then the define
range of j4 and j5 are computed one by one. Note that this
order is implicitly enforced in our algorithm by recursively
calling ComputeUseRange to compute all dependencies on
demand.

P3 j0 = phi(0, j3)

P9  j1 = j0+1

P0 n = …;

P10 j2 = phi(j1, j0)

P12 j3 = j2+1

P13 pred2' = (j3 < n)

P17  j4= phi(j3, j0)

P13 pred2 = (j3 >=n)
P20  j5 = n-1

P21  j6 = phi(j4,j5)

P18  pred3 = (j4+1 <n)

1

2

3

4

5

Figure 5: Reduced dependency graph (including only

relevant dependencies) for the motivating example in

Figure 1. All data dependencies are highlighted in oval

boxes and control dependencies are placed in white rect-

angular boxes on the path from the definition of a vari-

able to the instruction where it is used. Dashed lines

denote that the dependency is used in computing con-

trol dependencies. Solid lines denote data dependencies.

6. EXPERIMENTAL RESULTS
We implemented our algorithm for buffer overflow detec-

tion in Parfait [8], a scalable bug checker built on top of
LLVM. Parfait processes an application in two steps:

1. Source C/C++ files are parsed by the LLVM front-
end, which generates LLVM bitcode files. The LLVM
linker is used to link bitcode files, as any normal linker
would do.

2. Bitcode files are loaded into memory, a few simple opti-
mizations are applied on the code (e.g., constant prop-
agation), and our analysis is applied to the bitcode
representation to find buffer overflows.

The results reported in this paper use LLVM bitcode files as
the starting point. The runtime includes the time in loading
bitcode files to memory, performing simple optimizations, as
well as the time in performing our analysis.

Benchmark NC-LOC (lines of code) Bitcode
C C++ Total files

Asterisk 1.6.0.3 292K 6K 298K 25MB
OpenJDKTM 7 b51 406K 492K 898K 2.39GB
OpenBSD 4.4 1.72M 0 1.72M 129MB
OpenSolaris ON b105 8.5M 87K 8.6M 1.44GB

Table 1: Summary of the benchmark data.

Several large open source system applications are used
in our experiment as shown in Table 1. OpenSolaris ON
and OpenBSD (kernel only) are general-purpose operating
systems, OpenJDK is an implementation of the JavaTM vir-
tual machine and Asterisk [28] is the implementation of a
telephone private branch exchange (PBX). For each bench-
mark, we list its version or build number, the number of non
commented lines of C/C++ code as reported by the SLOC-
Count [30] tool, and the size of the bitcode files generated
by the LLVM front-end.
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We evaluate our implementation of the symbolic analysis
algorithm in the following ways: Section 6.1 evaluates the
precision of our algorithm, Section 6.2 reports the perfor-
mance of the algorithm, Section 6.3 reports on our attempts
to compare the precision of the analysis against other bug
checking tools, and Section 6.4 studies the limitations of our
analysis by reporting the percentage of buffer accesses that
cannot be solved by our analysis.

6.1 Precision
We manually verified all bugs reported by our tool, com-

puting the true positive (i.e., bugs that are correctly re-
ported) and the false positive (i.e., bugs that are incorrectly
reported) rates. All the true positives were reported to the
maintainers of each application, who further verified our re-
ports and in turn filed bugs into their bug tracking system.
Some bugs have already been fixed while others are in the
process of being fixed.

Benchmarks #Reports #TP FP (%)

Asterisk 1.6.0.3 35 30 14.3%
OpenJDK 7 b51 9 8 11.1%
OpenBSD 4.4 38 23 39.5%
OpenSolaris ON b105 378 351 7.14%

Total 460 412 10.4%

Table 2: Precision results of our tool. #Reports is the

number of total reports, #TP is the number of correctly

reported bugs and FP (%) is the false positive rate.

Table 2 summarizes the precision of the symbolic analysis
implementation. Overall, our tool is able to find 412 true
bugs with a false positive rate of 10.4%. The false positive
rate is less than or close to 10% for all applications except
OpenBSD, where we have observed a false positive rate of
close to 40%. The false positives reported in OpenBSD, as
well as in other benchmarks, are due to the limitation of
our implementation in handling pointer types and memory
dependencies, which are explained next. These limitations
are currently being addressed in our implementation.

False Positives

struct sockaddr un { struct sockaddr {
sa family t sun family; sa family t sa family;
char sun path[108]; char sa data[14];

}; };
300 static int

301 convert sockaddr( struct sockaddr * addr, socklen t *len,

302 struct sockaddr *inaddr, socklen t inlen)
303 {

. . .
355 if (inlen > sizeof (struct sockaddr un))
356 return;

. . .
386 orig len = inlen - sizeof(addr->sa family) -1;
387 for (i = 1; i < orig len + 1; i++){

. . .

390
addr->sa data[i]

= ’ ’;
391 }

. . .

Figure 6: False positive example from OpenSolaris ON,

file usr/src/lib/brand/lx/lx brand/common/socket.c

In Figure 6, the buffer access addr->sa data[i] in line 390 is
reported as buffer overflow as highlighted in the shadow box.
The upper bound of the loop index i and orig len can be com-
puted as 107, while the buffer size for addr->sa data is only
14. However, the type sockaddr is effectively a polymorphic

type. In this case, the object that addr points to is actually
of type sockaddr un and the buffer access to addr->sa data
cannot overflow. To recognize such false positives, we need
very precise points-to information. Such information is not
provided in the LLVM infrastructure. Alternatively, we can
rely on user annotations as in [12, 15, 31]. For this exam-
ple, a simple cast to struct sockaddr un would be the obvious
annotation, and would improve the code readability. Many
of the false positives in OpenBSD were reported due to this
reason2.

struct ieee80211 rateset {
unsigned char rs nrates;
unsigned char rs rates[15];

};
2424 void
2425 pgt obj bss2scanres(struct pgt softc *sc,
2426 struct wi scan res *scanres, uint32 t noise){
2428 struct ieee80211 rateset *rs;
2429 struct wi scan res ap;

. . .
2432 rs = &sc->sc ic.ic sup rates[IEEE80211 MODE AUTO];
2442 n = 0;
2443 for (i = 0; i < 16; i++) {

. . .

2445 if ( i > rs->rs nrates ) break;

2447 ap.wi srates[n++] = ap.wi rate =

rs->rs rates[i]

;
. . .

2450 }
. . .

Figure 7: False positive example from OpenBSD, file

usr/src/sys/arch/dev/ic/pgt.c

In Figure 7, the buffer access rs->rs rates[i] in line 2447
is falsely reported as a bug. The range of index variable i
is computed as [0,15] and the buffer size of rs->rs rates is
15. When computing symbolic range of i, the control de-
pendency (i>rs->rs nrates) is not considered since the value
rs->rs nrates cannot be computed. In this case, rs->rs nrates
is at most 8 and the reported buffer overflow will not be ex-
posed. Similar to the example in Figure 6, precise points-to
information is required to be able to compute these memory
dependencies. Note that although it is classified as a false
positive, it can be argued that the loop exit condition should
be i<15 instead of i<16.

From our experience in verifying results against the vari-
ous system applications, the majority of false positives were
reported due to the above two cases. Usually, these false
positives require very precise points-to information to elim-
inate them.

6.2 Performance

Benchmark Time #Max #Max
(min:sec) Variables Predicates

Asterisk 1.6.0.3 0:28 18 4
OpenJDK 7 b51 9:10 26 3
OpenBSD 4.4 1:18 34 10
OpenSolaris ON b105 10:37 80 77

Table 3: Performance results of our tool. #Max Vari-

ables is the number of variables in the largest cycle that is

iteratively solved. #Max Predicates is the largest num-

ber of predicates used when computing the use range of

a variable on the fly.

Table 3 summarizes the analysis times for different bench-
marks on an Intel E8600 3.33GHz processor with 8GB of

2If we consider these type violations as true bugs, the false
positive rate for OpenBSD would be 21%.
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RAM. For each benchmark, we report its analysis time (Col-
umn 2), the number of variables in the largest cycle that
is iteratively solved (Column 3) and the largest number of
control predicates used when computing the use range of a
variable on the fly (Column 4). The analysis time includes
the time to load the bitcode files, build the representation
in memory, perform the symbolic analysis, and report the
results. For each benchmark, we ran our analysis 10 times
and the user time of the slowest run is reported.

The symbolic analysis time is less than 11 minutes for
OpenSolaris ON with 8.6 MLOC. OpenJDK is the second
most time-consuming application, despite the fact that it is
much smaller than OpenBSD (see Table 1). This is due to its
extensive use of C++ templates, which are expanded in the
LLVM bitcode files. As a result, the total size of all LLVM
bitcode files in OpenJDK is actually much larger than that
in OpenBSD (see Table 1).

Overall, the performance of the algorithm is largely due to
the fact that we compute only relevant dependencies on de-
mand, and use simple symbolic expression representations.
As shown in Column 3 and Column 4 in Table 3, the largest
cycle that is iteratively solved in ComputeDefRange in-
cludes at most 80 variables and the largest number of con-
trol dependencies that is computed on the fly in RefineDe-
fRange is 77.

6.3 Comparison with Other Tools
Since we do not have access to existing commercial tools,

only open source tools were considered for comparison. Of
the tools available, four of them (LLVM/Clang Static Ana-
lyzer [19], Saturn [31], Uno [27] and Splint [12]) are under
active development and therefore used in our testing. The
LLVM/Clang Static Analyzer mainly reports bugs that deal
with Objective C errors, as such, it does not report any
buffer overflow bugs in C code. Saturn is a system for static
analysis for C programs. Its existing analysis assumes in-
bound array accesses, as such, Saturn does not report buffer
overflow bugs at present.

We tried to run Splint and Uno over the applications in
Table 1. In our experience, Splint produces a large number
of error reports and Uno produces very few reports. For
Asterisk alone, Splint generates around 800 out-of-bounds
errors and Uno reports 8 which look to be false positives.
We estimate that to verify all the reports against the given
applications in Table 1 would require many months of ded-
icated effort, even at a rate of 100 per day.

#Reports #TP #Misses FP (%) FN (%)

Splint 1113 592 647 46.8% 52.2%
Uno 462 454 785 1.7% 63.4%
Parfait 914 914 325 0% 26.2%

Table 4: Precision results of different tools on the Beg-

Bunch suite. #Reports is the number of total reports,

#TP is the number of correctly reported bugs, #Misses

is the number of bugs present in the code but not re-

ported. FP (%) is the false positive rate and FN (%) is

the false negative rate.

Therefore, we evaluated our buffer overflow detection im-
plementation against other bug checking tools for C/C++
using the BegBunch benchmarking suite [7]. The BegBunch
suite includes a set of bug kernels extracted from existing
open source applications and existing bug checking bench-

marks. Each bug kernel has been manually inspected by the
authors of [7] and the bug location is marked. It allows us to
evaluate both precision and performance of our tool, as well
as checking how many bugs are missed (i.e., false negatives).

Table 4 summarizes the results of different tools on the
BegBunch suite. For the total 1239 buffer overflow bug ker-
nels in the BegBunch suite, our tool reported 914 bugs, all
of which were correctly reported with an overall 26.2% false
negative rate. For this dataset, our tool is significantly bet-
ter than Splint and Uno. It is able to find all true bugs that
are reported by the other two tools, with a much better
false positive and false negative rates. The bugs that were
missed by our tool are mostly due to our limitation in han-
dling memory dependencies, which require precise points-to
analysis or user annotations. It is worthwhile noting that
Splint’s false positive and false negative rates can also be
improved by adding annotations to the code to be analyzed.

6.4 Limitations
Recall that in our analysis, we only report a bug if

SB,Pmax≺SV,Pmax or SV,Pmin≺ -1, where V is the index
variable and B is the size of the accessed buffer. In addi-
tion, a buffer access is guaranteed to be within buffer bounds
only if SV,Pmax≺SB,Pmin − 1 and 0≺SV,Pmin. Otherwise
the buffer access is a potential buffer overflow that cannot
be solved by our analysis. In this section, we report on the
percentage of potential buffer overflows, which suggests the
limitations of our approach and gives us a hint about how
many buffer overflows may be missed.

Benchmark Potential buffer overflows (%)

Asterisk 1.6.0.3 25.1%
OpenJDK 7 b51 42.9%
OpenBSD 4.4 27.0%
OpenSolaris ON b105 31.1%

Table 5: The percentage of potential buffer overflows

that cannot be solved by our analysis.

Table 5 summarizes the percentage of potential buffer
overflows for all applications. For Asterisk, OpenBSD and
OpenSolaris ON, close or below 30% of all buffer accesses
were potential buffer overflows that could not be solved by
our analysis. The percentage increased to just over 40%
for OpenJDK. We manually looked into some of the po-
tential buffer overflows and found that most of them were
not solved due to the same limitation of our implementa-
tion in handling pointer types and memory dependencies.
This also suggests the worst behavior in OpenJDK, where
precise points-to information is harder to get because of its
extensive usage of C++ templates.

7. CONCLUSION
In this paper, we presented a new symbolic analysis tech-

nique for buffer overflow detection and evaluated it using
large systems applications. We demonstrated that the sim-
ple symbolic value representation is effective for buffer over-
flow detection and symbolic values could be precisely com-
puted by iteratively solving data dependencies and linearly-
related control dependencies together. We also showed that
by being demand-driven and using simple algebraic rules,
the symbolic values could be computed very efficiently.

Our experimental results against large systems applica-
tions suggested that this technique is simple yet effective –
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it was easy to implement and found hundreds of buffer over-
flows in large, well-tested codebases with a false positive rate
of around 10%. This makes the technique feasible for imple-
mentation in existing compilers, to identify vulnerabilities
at the earliest stage of software development.

In addition to buffer overflows, our analysis can be ap-
plied to detect other important vulnerabilities such as inte-
ger overflows. It can also be applied to analyze the bounds
of shared memory regions to detect potential data races.
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