
Preventing Database Deadlocks in Applications

Mark Grechanik, B. M. Mainul Hossain,
Ugo Buy

University of Illinois at Chicago
Chicago, IL 60607, USA

{drmark,bhossa2,buy}@uic.edu

Haisheng Wang∗
University of Illinois at Chicago and Oracle Corp.

Redwood City, CA 94065, USA
haisheng.wang@oracle.com

ABSTRACT

Many organizations deploy applications that use databases by send-
ing Structured Query Language (SQL) statements to them and ob-
taining data that result from the execution of these statements. Since
applications often share the same databases concurrently, database
deadlocks routinely occur in these databases resulting in major per-
formance degradation in these applications. Database engines do
not prevent database deadlocks for the same reason that the sched-
ulers of operating system kernels do not preempt processes in a way
to avoid race conditions and deadlocks – it is not feasible to find an
optimal context switching schedule quickly for multiple processes
(and SQL statements), and the overhead of doing it is prohibitive.

We created a novel approach that combines run-time monitor-
ing, which automatically prevents database deadlocks, with static
analysis, which detects hold-and-wait cycles that specify how re-
sources (e.g., database tables) are held in contention during execu-
tions of SQL statements. We rigorously evaluated our approach.
For a realistic case of over 1,200 SQL statements, our algorithm
detects all hold-and-wait cycles in less than two seconds. We built
a toolset and experimented with three applications. Our tool pre-
vented all existing database deadlocks in these applications and in-
creased their throughputs by up to three orders of magnitude.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—Error

handling and recovery; H.2.4 [Database Management]: Systems—
Concurrency

General Terms

Algorithms, Performance, Experimentation

Keywords

database deadlock, Petri net, hold-and-wait cycle

∗Dr.Wang completed the work on this project when he was a post-
doc in Dr.Grechanik’s research group at the Department of Com-
puter Science, University of Illinois at Chicago.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE ’13, August 18-26, 2013, Saint Petersburg, Russia
Copyright 2013 ACM 978-1-4503-2237-9/13/08 ...$10.00.

1. INTRODUCTION
Many organizations and companies deploy Database-centric ap-

plications (DCAs), which use databases by sending transactions to
them—atomic units of work that contain Structured Query Lan-

guage (SQL) statements [12]—and obtaining data that result from
the execution of these SQL statements. When DCAs use the same
database at the same time, concurrency errors are observed fre-
quently that are known as database deadlocks, which is one of the
main reasons for major performance degradation in these applica-
tions [23, 15]. The responsibility of relational database engines is
to provide layers of abstractions to guarantee Atomicity, Consis-

tency, Isolation, and Durability (ACID) properties [12]; however,
these guarantees do not include freedom from database deadlocks.

In general, deadlocks occur when two or more threads of exe-
cution lock some resources and wait on other resources in a circu-
lar chain, i.e., in a hold-and-wait cycle [8]. Even though database
deadlocks occur within database engines and not within DCAs that
use these databases, these deadlocks affect the performance of the
combined software system, i.e., the DCAs that interact with their
databases. A condition for observing database deadlock is that a
database should simultaneously service two or more transactions
that come from one or more DCAs, and these transactions contain
SQL statements that share the same resources (e.g., tables or rows).
In enterprise systems, database deadlocks may appear when a new
transaction is issued by a DCA to a database that is already used
by some other legacy DCA, thus making the process of software
evolution error-prone, expensive and difficult.

There are two main reasons why preventing database deadlocks
is a hard and open problem. First, databases are general tools that
process arriving transactions on demand, making it infeasible to
find all hold-and-wait cycles statically. Second, database engines
are designed to execute transactions efficiently, and imposing run-
time analysis for finding all hold-and-wait cycles adds significant
overhead. In short, database engines do not prevent database dead-
locks for the same reason that the schedulers of operating system
kernels do not preempt processes in a way to avoid race conditions
and deadlocks—it is not feasible to find an optimal context switch-
ing schedule quickly for multiple processes (and transactions), and
the overhead would be prohibitive.

Currently, database deadlocks are typically detected within da-
tabase engines at runtime using special algorithms that analyze
whether transactions hold resources in cyclic dependencies, and
these database engines resolve database deadlocks by forcibly break-
ing the hold-and-wait cycle [2, 22, 28, 16, 15, 12]. That is, once a
deadlock occurs, the database rolls back one of the transactions that
is involved in the circular wait. Doing so effectively resolves the
database deadlock; this is why the database research community
has considered this problem solved for a long time. However, this

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ESEC/FSE’13, August 18–26, 2013, Saint Petersburg, Russia
Copyright 2013 ACM 978-1-4503-2237-9/13/08...$15.00
http://dx.doi.org/10.1145/2491411.2491412

356

resolution degrades the performance from the software engineering
position, since DCAs should repeat the rolled back transactions to
ensure functional correctness.

Unfortunately, this solution is only partially effective even though
it is widely used as part of the defensive programming practice,
whereby programmers write special database deadlock exception-
handling code that typicahandwgraphly repeats aborted transac-
tions. Searching for “database deadlock exception” on the Web
yields close to 2,500 web pages, many of which instruct program-
mers how to handle database deadlock exceptions for different data-
bases. By the time that a database deadlock is resolved, the damage
to the performance of the DCA is done, since rolling back transac-
tions, issuing exceptions inside the DCA, and executing defensive
code within exception handlers to retry aborted transactions incur
a significant performance penalty. Our experiments show in Sec-
tion 5 that database deadlocks result in up to three orders of magni-
tude of worsening performance of client/server DCAs when scaling
the load up to only 1,000 clients!

To make things worse, when transactions are discarded, the re-
sults of valuable and long-running computations are lost, as it is
especially evident in case of multi-level and long-lived transactions
[12, pages 206-212]. Our interviews with different Fortune 100
companies confirmed that database deadlocks occur on average ev-
ery two to three weeks for large-scale enterprise DCAs, some of
which have been around for over 20 years, with an estimated an-
nual cost of DCA support close to $500K per company. For in-
stance, database deadlocks still occur every ten days on average
in a commercial large-scale DCA that handles over 70% of cargo
flight reservations in the USA.

Major database vendors acknowledge this problem, and they
publish different advice to software engineers on how to avoid da-
tabase deadlocks and how to handle exceptions that are thrown as
result of aborted transactions. These vendors also release tools that
help these engineers debug and understand the causes of database
deadlocks. Different database deadlock avoidance programming
patterns help database designers and programmers structure their
code, transactions and data, so that they can avoid database dead-
locks [14, 11, 20][27, pages 249–252]. For example, Microsoft
1[19], Oracle2 and DB2 [5, pages 341-352] published guidelines
for minimizing database deadlocks in SQL Server, Oracle, and
DB2 databases respectively showing that this problem has not been
solved in major databases. These guidelines include, among oth-
ers, accessing database objects in some order that prevents form-
ing cyclic dependencies (with a drawback of losing parallelism),
and keeping transactions short and in one batch. Since these solu-
tions are manual and error-prone, it is important to prevent database
deadlocks automatically.

Interestingly, even if the cause of a database deadlock is under-
stood, it is often not possible to fix it, since it would involve dras-
tic redesign by changing the logic of the DCA to avoid certain in-
terleavings of SQL statements among different transactions [17].
In addition, fixing database deadlocks may introduce new concur-
rency problems, and frequently these fixes reduce the occurrences
of database deadlocks instead of eliminating them [21]. Develop-
ers need approaches for preventing database deadlocks in order to
achieve better performance of software, but unfortunately, there are
no tools that prevent database deadlocks.

We created a novel approach that detects all hold-and-wait cycles
among resources in SQL statements and prevents database dead-

1http://msdn.microsoft.com/en-us/library/
ms191242(v=sql.105).aspx
2http://docs.oracle.com/javadb/10.8.2.2/
devguide/cdevconcepts53677.html

Table 1: Example of a database deadlock that may occur when

two transactions T1 and T2 are issued by DCA(s).

Step Transaction T1 Transaction T2

1 UPDATE authors
SET citations=100
WHERE paperid=1

2 UPDATE titles
SET copyright=1
WHERE titleid=2

3 SELECT title, doi
FROM titles

WHERE titleid=2

4 SELECT authorname
FROM authors

WHERE paperid=1

locks automatically using the information about these cycles. This
paper makes the following contributions.

• We introduce our abstraction and a performance model that
hide the complexity of database engines, instead concentrat-
ing on abstract operations (i.e., read and write) on resources
(e.g., database tables) and on how these operations lock and
release these resources. Using our abstraction, we developed
a Petri net model for representing transactions and we de-
signed an algorithm to detect all hold-and-wait cycles in this
model. The algorithm returns exact execution scenarios that
lead to database deadlocks, thus enabling programmers to
understand and analyze these scenarios.

• We implemented our algorithm and evaluated it with a ran-
dom SQL generator [30, 24, 1], and we showed that for an
extreme case of 100 transactions, each containing 50 SQL
statements (i.e., a total of 5,000 SQL statements), it takes a
little over 6.5 hours for our algorithm to detect all hold-and-
wait cycles. For a realistic case of a large-scale DCA that
contains 50 transactions, each of which includes a dozen of
SQL statements, all cycles are found in less than two sec-
onds.

• Using this information about hold-and-wait cycles, we de-
signed and built a supervisory control program that prevents
database deadlocks by intercepting transactions sent by DCAs
to databases, detecting a potential deadlock, and delaying a
conflicting transaction thereby breaking a deadlock cycle.

• We implemented our approach in a tool and experimented
using three client/server DCAs. Our tool prevented all ex-
isting database deadlocks in these DCAs and increased their
throughputs by approximately up to three orders of magni-
tude for 1,000 clients. Our tool is publically available at
http://www.cs.uic.edu/~drmark/REDACT.htm.

2. THE PROBLEM
In this section we show how DCAs use databases, give an illus-

trative example of a database deadlock, and formulate the problem
statement.

2.1 An Illustrative Example
Consider the example of database deadlock shown in Table 1.

Transactions T1 and T2 are independently sent by DCAs to the
same database at the same time. When the first DCA executes

357

!
"#

$%&'()*#

+&,-*#
!
.#

Figure 1: A lock graph for the transactions shown in Table 1.

The lock graph shows the hold-and-wait cycle T1→authors→
T2→titles→ T1.

the UPDATE statement in Step 1, the database locks rows of ta-
ble authors in which the value of attribute paperid is 1. Next,
the second DCA executes the UPDATE statement in Step 2 and the
database locks rows of table titles in which attribute titleid
is 2. When the SELECT statement in Step 3 is executed as part
of transaction T1, the database attempts to obtain a read lock on the
rows of table titles, which are exclusively locked by transaction
T2 of the second DCA.

Since these locks cannot be imposed simultaneously on the same
resource (i.e., these locks are not compatible), T1 is put on hold. Fi-
nally, the SELECT statement in Step 4 is executed as part of trans-
action T2; the database attempts to obtain a read lock on the rows of
table authors, which are exclusively locked by transaction T1 of
the first DCA. At this point both T1 and T2 are put on hold resulting
in a database deadlock. Once an algorithm within the database en-
gine detects this hold-and-wait cycle, the database engine resolves
this database deadlock by aborting either the transaction T1 or the
transaction T2.

Figure 1 shows the lock graph for the transactions appearing
in Table 1. Transactions are depicted as rectangles and resources
(i.e., tables) are shown as ovals. Arrows directed towards resources
designate locks held by transactions on those resources; arrows in
the opposite direction designate transactions that are waiting to ob-
tain resource locks. The lock graph shows the hold-and-wait cycle
T1 →authors→ T2 →titles→ T1. The same reasoning ap-
plies if the granularity of locks is coarser, for example, at the table
level, – when interleaving steps occur as shown in Table 1, a data-
base deadlock is highly likely.

2.2 How DCAs Use Databases
Many enterprise-level DCAs are written in general-purpose pro-

gramming languages (e.g., Java); they communicate with relational
databases by using standardized application programming inter-

faces (APIs), such as Java DataBase Connectivity (JDBC). Us-
ing JDBC, programs pass SQL statements as string parameters in
API calls that send these SQL statements to databases for execu-
tion. For example, the API call executeQuery of the class
Statement takes a string containing an SQL statement that is
sent to a database for execution. Once executed, values of database
attributes that are specified in SQL statements are returned to DCAs
using JDBC’s ResultSet interface. These SQL statements are
executed as part of a transaction that is delimited by statements
“begin transaction” (by setting the connection’s autocom-
mit mode to false) and “end transaction” with the sub-
sequent API call commit. In case a transaction is not explicitly
delimited in the source code, each SQL statement is taken to be a
separate transaction, which may be committed automatically.

2.3 The Performance Model
A performance model for analyzing the impact of database dead-

locks is shown in Figure 2. This model uses a standard template for
discrete time analysis in the performance evaluations of different
systems [9]. Using this model we pursue two goals: to understand
in which situation database deadlocks present a big performance

Transactions
Arrivals

Results
Departures

Queue Database
!
"# !

$#

Transactions

Exception
Handler

Figure 2: Performance model for database deadlocks.

problem rather than small inconvenience and to determine when
our proposed solution will be most beneficial.

Transactions arrive from DCAs at the arrival rate λa; arrivals can
be modeled as a normal distribution with some mean arrival time
rate. These transactions are put into the Queue that models a mech-
anism for analyzing arriving transactions for cycles in SQL state-
ments. Once this analysis is performed, a batch of transactions is
sent to the Database that executes these transactions and outputs re-
sults at some departure rate λd . If database deadlocks occur, some
transactions are aborted and an exception handling mechanism de-
livers exceptions back to the DCA which retries these aborted trans-
actions. This process is represented using the feedback loop that
delivers some transactions back into the Queue at a rate that is pro-
portional to the arrival rate λa. That is, we assume that the fre-
quency of database deadlocks is proportional to the transaction ar-
rival rate, which we observed in different projects. We exploited
this observation in our recent work where we developed an effec-
tive method to reproduce database deadlocks [13].

A relation between two independent variables, λa and λd is im-
portant to determine the impact of database deadlocks. Consider

two cases when λd

λa
>> 1 and λd

λa
≥ 1. The underlying physical

event for the departure rate λd is the time it takes by the database
to process transactions and to produce results. Thus, the first case
λd

λa
>> 1, where the average time per transaction is measured in

milliseconds or seconds rather then minutes or hours, means that
transactions are processed by the database much faster than they
arrive – this is typical for smaller applications where transactions
manipulate small amounts of data without applying complex op-
erations like joins and aggregations. However, existing database
deadlock detection algorithms take time, often many seconds to
detect cyclic dependencies among executing transactions, leading
to a significant overhead. We summarily add this overhead to the
Exception Handler processing element in the feedback loop. Our
simulation with the performance model showed nonlinear decrease
in the throughput (measured as the number of successfully pro-
cessed transaction in some time interval) for short-running transac-
tions with the high-rate of arrival, meaning that the system loses its
scalability when deadlock detection time is equal to or greater than
the mean transaction completion time. When a database deadlock
occurs, recovering from it is easy and little overhead is involved.
Clearly, this is a case for non-mission-critical applications where
the impact of database deadlocks is small.

The other case, λd

λa
≥ 1, where the average time per transaction

is measured in hours or days, involves long-running and complex
transactions for mission-critical and scientific applications. Exam-
ples include batch financial and retail applications, various biolog-
ical sequence analyses, complex process simulations, and online
transaction processing tasks that involve data mining big data sets
whose sizes are measured in terabytes. In this case, transactions
arrive at about the same rate with which they are processed. Any
database deadlock resulting in aborting a long-running transaction
that is put back into the queue will have a devastating effect on the
performance of the system. Our simulation with the performance

358

model showed a nonlinear decrease in the throughput time, mean-
ing that the system loses its scalability under realistic conditions.

2.4 The Problem Statement
Our main goal is to prevent database deadlocks. Our solution is

conservative, i.e., it should statically detect all hold-and-wait cycles
that can occur in SQL statements that belong to different transac-
tions. These hold-and-wait cycles may potentially result in data-
base deadlocks. However, depending on interleavings in different
execution scenarios, not all of these cycles will lead to database
deadlocks, meaning that false positives (FPs) are possible. For ex-
ample, when tables contain little or no data, locks may be released
by the database engine almost instantaneously or not imposed at all.
Alternatively, a deadlock will not occur if conflicting transactions
attempt to lock disjoint sets of rows in at least one of the tables in-
volved. Evidently, the rows being locked depend on the outcome
of WHERE clauses appearing in queries. Thus, database deadlocks
may or may not happen depending on the data stored in database
tables, even if hold-and-wait cycles are present, leading to FPs.

On the one hand, a problem with FP hold-and-wait cycles is that
they are not known to be FPs until transactions are executed by the
database engine. Using our mechanism to prevent a database dead-
lock by delaying a conflicting transaction imposes an overhead in
addition to some reduction in the level of parallelism. On the other
hand, given a high cost of database deadlocks, it is an experimental
question to determine how FPs affect our solution, and we address
this question with our experiments in Section 5.

In addition, our approach should not depend on a specific da-
tabase engine or require modifications of the kernels of database
engines. Similar to operating systems, database engines are very
complex, fragile, and closed software systems; a solution that re-
quires their modifications is unlikely to be practical. Moreover, our
approach should not depend on specific architectures of DCAs.

Finally, it is important to give exact scenarios that lead to da-
tabase deadlocks. Lock graphs, an example of which is shown in
Figure 1 demonstrate the resulting hold-and-wait cycle, but not ex-
ecution paths that lead to it. To help programmers understand how
database deadlocks occur, we provide exact scenarios that show
specific orders of execution of SQL statements and sequences of
lock acquisitions that lead to database deadlocks.

3. OUR APPROACH
In this section we describe our key ideas and the abstraction on

which they are based, and give an overview of our approach for
pReventing databasE Deadlocks from AppliCation-based Transac-

tions (REDACT).

3.1 Our Abstraction
REDACT is based on our abstraction that represents relational

databases as sets of resources (e.g., database tables) and transac-
tions that DCAs issue to databases as sets of abstract operations,
i.e., reading from and writing into resources, and these abstract op-
erations also issue synchronization requests. Using this abstraction
unifies DCAs that use the same databases in a novel way: their
independently issued transactions become abstract operations with
resource sharing requests. With this abstraction, we hide the com-
plex machinery of database engines and concentrate on abstract op-
erations performed by SQL statements and the engines’ locking
properties that we associate with these abstract operations.

3.2 Key Ideas
REDACT rests on two key ideas: 1) to detect statically all hold-

and-wait cycles among abstract operations that belong to differ-

!"#$% !"#&!"#$#%#&'!

'()&*)+,-&*%%%%%%%%%%.//%%%%%%%%%%'()&*)+,-&*%

012%

3)34$4&3%

012%

3)34$4&3%

!)3)5)*4%

046&7*%8-94:4(%
;43(<%=43%

8-94:%

;)(*4(%

>-:9?)&9?

@)<3%+A+:4%

9434+,-&%

):7-(<3B$%

(!

)!

*!+!

,!

-!

.!

0CD4(E<*-(A%

"-&3(-:%F0"G%

(/!

(!

((! ((!

(0!

1! 1!

H&3% H&3%

/! /!

!434+349%

B-:9?)&9?

@)<3%+A+:4*%

0"%

046&7*%

Figure 3: The workflow of REDACT.

ent transactions with specific execution scenarios that lead to these
hold-and-wait cycles, and 2) to use the information about all de-
tected hold-and-wait cycles at runtime to prevent database dead-
locks by holding back one operation (i.e., SQL statement) that par-
ticipates in the hold-and-wait cycle hence breaking it. An impor-
tant element of these ideas is that we separate detection of hold-
and-wait cycles and prevention of database deadlocks: the former
is done statically and the latter is done dynamically during execu-
tions of DCAs that use shared databases. This separation enables us
to avoid expensive computations at runtime making database dead-
lock prevention very fast and efficient, since a simple lookup func-
tion is involved.

In REDACT, we make conservative approximations about how
database engines process transactions. In general, processing trans-
actions includes compiling SQL statements, building and optimiz-
ing execution plans, and detecting shared accesses by analyzing
execution plans with respect to the data that is stored in the da-
tabase. Different database engines implement this process differ-
ently. Our idea is to utilize information that all database engine
vendors release on how these database engines impose and release
locks on different resources for different types of SQL statements –
it is called a database locking strategy [31, page 184]. Using a lock-
ing strategy, we can approximate the complex sequences of steps of
transaction processing by modeling conservatively SQL statements
using our abstract operations that issue synchronization requests
according to a given locking strategy.

3.3 Overview of REDACT
The workflow of REDACT is shown in Figure 3, and this work-

flow shows two DCAs (i.e., DCAm and DCAn) that use the shared
Database as shown with dashed arrows labeled with (1). In this set-
ting, database deadlocks occur at some rate. Here we use the terms
transaction and SQL statement interchangeably.

The first step in the workflow involves extracting transactions
that contain SQL statements from these DCAs as shown with dashed
arrows labeled with (2). This is a one-time manual effort that may
be required (as it was done for three subject DCAs in this paper).
Once transactions are extracted, the static analysis phase starts.
First, (3) SQL statements that are contained in these transactions
are parsed, (4) and the resulting parse trees are inputted into the
Modeler that automatically transforms SQL statements into the ab-

359

stract operations and synchronization requests. Specific details of
modeling are described in Section 4.2. In REDACT, we extracted
the SQL parser from Apache Derby database. The Modeler (5)
uses database settings that include a locking strategy (6) to produce
a Petri Net model, which we describe along with the hold-and-wait
cycle detection algorithm in Section 4. This model is created using
the Petri net XML modeling language (PNML) [4] and it (7) serves
as the input to the algorithm that (8) detects all hold-and-wait cy-
cles, that are in turn (9) used as inputs to the Supervisory Control
(SC). This step concludes the static phase of REDACT.

At this point, we describe the dynamic phase during which DCAs
are run and database deadlocks are prevented automatically. Our
goal is to divert SQL statements from DCAs to the SC at runtime,
so that the SC determines whether executing these SQL statements
may result in hold-and-wait cycles and consequently, a database
deadlock. Diverting SQL statements is accomplished in REDACT
by using the interceptor pattern that is implemented using a frame-
work with call-backs associated with particular events [29].

The first step is to add interceptors to DCAs. We show these
interceptors as partial rectangles with the label Int that are super-
imposed on the rectangles that designate DCAs in Figure 3. The
goal is to intercept JDBC API calls that take SQL statements as
string parameters. Instead of (1) sending these statements to the
database, (11) the interceptors divert the statements to the supervi-
sory controller, whose goal is to quickly look up if hold-and-wait
cycles are present in the SQL statements that are currently in the
execution queue. In doing so, the SC utilizes the information that
is obtained from the static analysis phase as well as (10) its settings
that enable stakeholders to fine-tune the SC for specific environ-
ments. For example, it is possible to specify a delay time for a con-
flicting transaction, which we use in our experiments in Section 5.
Smaller delay time increases the probability of database deadlocks,
while larger delay time enables REDACT to prevent database dead-
locks at the cost of introducing higher overhead in case of FPs. It
is an experimental question to determine this trade-off.

To make the SC efficient, each SQL statement is given a unique
hash key, and the information about hold-and-wait cycles in SQL
statements is coded using hash keys to avoid significant overhead
when looking up SQL statement in the execution queue. If no hold-
and-wait cycles are present, (12) the SC forwards these SQL state-
ments to the database for execution, otherwise, it holds back one
SQL statement (or a transaction to which this SQL statement be-
longs) while allowing others to proceed, and once these SQL state-
ments are executed and results are sent to the DCAs, the held back
SQL statement is sent to the Database, thus effectively preventing
the database deadlock. This concludes the description of the work-
flow for REDACT.

4. THE MODEL AND THE ALGORITHM
In this section we give the background on Petri nets, specify our

modeling approach, and discuss the algorithm for detecting hold-
and-wait cycles and we argue for its correctness.

4.1 Background on Petri Nets
Ordinary Petri nets are directed graphs with two kinds of nodes

called places and transitions [34]. Figure 4 shows an example of
a Petri net modeling the transactions appearing in Table 1. Net
transitions are represented as bars; places are represented as cir-
cles. Places may contain tokens represented as solid dots—each
place may be assigned zero or more tokens. For example, place
p1_init in Figure 4 is assigned one token. Arcs connect tran-
sitions to places and vice versa. A directed arc from a place to
a transition represents preconditions that are required for an event

!"#$%$&'

&"#()*+,'

!-'

&-#.($&)'

!/'

&/#()*+'

!0'

&0#()12)'

!3'

!4'

!5'

!6#$%$&'

&6#()*+,'

&3#.($&)'

&4#()*+'

&5#()12)'

7"#*8&9:(2' 7-#;&1)2'

<8=%)&'

>:('?"'

<8=%)&'

>:('?-'

Figure 4: Petri net model for the illustrative example that is

shown in Table 1.

associated with that transition to occur. Conversely, arcs from tran-
sitions to places represent the outcome of the event associated with
the transition. A transition is enabled if all its input places contain
at least one token each. An enabled transition may fire – a token
is consumed from each of the transition’s input places and a token
is added to all of the transition’s output places. For example, when
transition t1_ready fires, the token in place p1_init is removed
and a token is added to place p2, enabling transition t2_write,
since both its input places p2 and R1_authors now hold tokens.

DEFINITION 1. An ordinary Petri net N = (P,T,A,M0) is a di-

rected, bipartite graph with node sets P = {p1, . . . , pn} (the places)

and T = {t1, . . . , tm} (the transitions). A⊆ (P×T)∪ (T ×P) is the

arc set, and for each p ∈ P, M0(p) defines the initial assignment of

tokens to place p. The set of input transitions of a place p is de-

noted by •p = {t|(t, p) ∈ A}. Similarly, the set of output transitions

of place p is denoted as p• = {t|(p, t) ∈ A}. The sets of input and

output places for a transition t are similarly defined as •t and t•.

4.2 Modeling Transactions
We model database transactions using a subclass of Petri nets

called S4R nets [32], which consist of a set of disjoint process sub-

nets, each modeling a sequential process in a concurrent system.
Subnets are connected to each other by a place subset, called the
resource places, which model resources shared by the process sub-
nets. Typically, operations in different process subnets may require
one or more resources shared with other process subnets. In addi-
tion, each process subnet consists of one main loop, which starts
at an initial place for that subnet; however, no additional cycles are
contained in each subnet. We use process subnets to model da-
tabase transactions and resource places to model database locks,
such as locks on database tables or rows. The special structure of
S4R nets has allowed us to build an efficient algorithm for detecting
potential deadlocks in DCAs.

The S4R net is shown in Figure 4 whose two subnets model the
transactions that appear in Table 1. Resource places R1_authors

and R2_titlesmodel the locks on the two tables appearing in the
example. Our models contain four types of transitions: ready,
read, write, and release. These transitions are associated

360

with operations that we introduced as part of our abstraction in Sec-
tion 3.1. SQL statements INSERT and UPDATE are modeled using
the operation write; SELECT statements are modeled using the
operation read. The operation release designated in Figure 4
as relse specifies that all acquired locks are ready to be released.
States and resources are modeled as places. Resource places al-
ways have tokens at the initial state to indicate their availability for
transactions.

If a transition models an SQL statement that accesses and ma-
nipulates some resources, then arcs connect places that designate
these resources with that transition. Doing so addresses two issues
at the same time: executing the abstract operation that a transi-
tion specifies and obtaining a lock on a resource by moving the
token from the resource into the transition’s output places. For ex-
ample, when the transition t1_ready fires in the model that is
shown in Figure 4, a token is placed into place p2. Since the token
is still in the resource place R1_authors, transition t2_write

is enabled, which corresponds to the execution of the SQL state-
ment UPDATE for T1 in Table 1. Since the token is taken from
place R1_authors, transition t7_read is no longer enabled.
The hold-and-wait cycle can be reached by the following transi-
tion firing sequence: t1_ready→ t5_ready→ t6_write→
t2_write. Unlike lock graphs, these sequences enable stakehold-
ers to understand, analyze, and debug database deadlocks, which is
one of the goals of this paper.

4.3 The REDACT Algorithm
A brute-force approach for finding hold-and-wait cycles does not

work – for N transactions, each combination should be explored,
i.e., the powerset of these transactions, 2N −N−1. Assuming that
it takes less than 0.1 sec to explore each combination, it will take
one year to explore all combinations for 30 transactions. Of course,
they can be explored in parallel – running analysis in 1,000 virtual
machines reduces the analysis time to less than 30 hours. However,
better results are possible.

Our insight is to use a depth-first search (DFS)-based cycle search
algorithm, which we extend for S4R nets. The algorithm iterates
through transactions (i.e., subnets) and analyzes if any transition
within a subnet is connected to a resource. If no resource is shared,
then the analysis complexity is effectively the order of O(S× T),
where S is the number of subnets and T is the number of transi-
tions, i.e., no cycles are possible. In the worst case, all subsets of
subnets have cycles, and the complexity is exponential. However,
our main insight is that this situation rarely occurs, if ever – there
are very few cycles, and this is what makes detection and preven-
tion of database deadlocks difficult. In fact, the main problem is
to detect these very few cycles that materialize as database dead-
locks. In case there are few and far cycles between transactions,
and the analysis time will be quite small even for a large number of
resources, as we show in our experiments in Section 5.

The algorithm Redact is shown in Algorithm 1. This algorithm
takes as its input the S4R net N whose process subnets model SQL
statements in different transactions. Hold-and-wait cycles are com-
puted and returned in Line 21 of the algorithm. The algorithm
recursively calls the procedure ComputeAllCycles (see Line
22) that performs a depth-first search on the subnets of N .

Lines 2 and 3 in Algorithm 1 initialize three variables: (1) a
stack of transitions to be searched, (2) a variable, cycles, holding
all detected hold-and-wait cycles, and (3) a variable, cycle, holding
transition sequences potentially leading to a cycle. Line 4 extracts
the process subnets from input net N . Lines 5–18 iterate the fol-
lowing actions on each subnet. First, all transitions in the subnet are
pushed on the stack (Line 6). Next, a transition t is popped from the

Algorithm 1 The REDACT algorithm.

1: Redact(Petri net N)
2: cycles← /0{Initialize global variable.}
3: stack← /0, cycle←{ /0}{Initialize local variables.}
4: GetSubnets(N) 7→ {S} {A subnet of a Petri net models some transaction.}
5: for all s ∈ {S} do

6: stack.push(GetTransitions(s))
7: while stack 6= /0 do

8: stack.pop() 7→ t ∈ {T}
9: if ∀p ∈ {P}, Resource(p)=true, ∃a ∈ {A}|a = (p, t) then

10: cycle 7→ {t}
11: for all w ∈ {T}|∃(p,w) ∈ {A} do

12: ComputeAllCycles(w,cycle,GetSubnet(w))
13: end for

14: end if

15: end while

16: N = N − s

17: end for

18: return cycles
19: ComputeAllCycles(Transition t, Cycle c, Subnet s)
20: localstack← /0, V ←{ /0}{Init local stack and list of visited transitions.}
21: if ∃p ∈ {P}, Resource(p)=true,|(p, t) ∈ {A} then

22: cycle 7→ cycle ∪t

23: if •t ∩GetInitialPlaces(s) = /0 then

24: localstack.push(TransitionsPreceding(t) in s)
25: end if

26: while localstack 6= /0 do

27: localstack.pop() 7→ u ∈ {T}
28: if u ∈ GetTransitions(s) then

29: GetFirstTransition(c)7→ v

30: if v = u∨ v ∈ TransitionsPreceding(u) in s then

31: cycles 7→ cycles ∪ { cycle }
32: end if

33: else if u /∈ V then

34: V 7→ V ∪ u

35: cycle 7→ cycle ∪ u

36: if ∀q ∈ •u HoldsToken(q)=true then

37: for all (∃q ∈ •u|Resource(q))∧ (∃(q,e) ∈ {A}|e 6= u do

38: ComputeAllCycles(e,cycle,s)
39: end for

40: end if

41: if •u /∈GetInitialPlaces({s}) then

42: localstack.push(TransitionsPreceding(u) in s)
43: end if

44: end if

45: end while

46: end if

stack and checked for a structural conflict with transitions in other
subnets. A structural conflict between net transitions occurs when
the transitions share an input place with each other. In this case,
t could be in conflict with another transition w, if t and w share a
resource place as an input. This means that t and w model compu-
tations requiring the same database lock. If there is an arc between
t and some resource, t is added to the potential cycle being ex-
plored, and procedure ComputeAllCycles is called to further
explore the cycle. Finally, the process subnet that is considered in
each while loop iteration is removed from further consideration
in Line 16.

Lines 19–46 in Algorithm 1 specify the body of the procedure
ComputeAllCycles. The procedure takes as input (1) a transi-
tion, t, (2) the cycle, c, under exploration, and (3) the process sub-
net, s, to which t belongs. Line 20 initializes a local stack of tran-
sitions and a list of transitions, V , that have been visited. Line 21
checks whether t requires any locks. If this is not the case, the
procedure just returns; otherwise, the procedure explores t. In this
case, t is added to the cycle under construction and t’s predecessor
transitions in the process subnet of t are pushed on the local stack
for further exploration (Lines 22–25).

Lines 26–32 iteratively pop a transition u from the local stack
and check whether the first transition in the cycle under exploration
is either u or a predecessor of u in u’s subnet. In this case, a cycle

361

Table 2: Subject DCAs and their databases. The columns show

lines of code (LOC) in DCAs, the size of DB in megabytes, the

number of transactions, T in the DCA and how many SQL

statements, S at most are contained in each transaction, the

number of tables in the database, TDB, the number of tables

used in transactions, Ttrans, and the total number of rows.

App LOC DB Size T S TDB Ttrans Rows

HIM 3,421 248MB 4 2 10 6 1,330,107

UCOM 2,127 29MB 2 2 8 2 250,532

DAN 6,034 371MB 2 2 13 2 1,270,897

is detected and the cycle under consideration is added to the list
of discovered hold-and-wait cycles. Otherwise, in Lines 34–35 u

is added to the list, V , of visited transitions, and to the cycle cur-
rently being explored. If u is enabled (Line 36), a new search is
started from u by invoking ComputeAllCycles recursively on
all transitions that may share resources with u (Lines 37–39). If u

is not enabled, Lines 41–43 push u predecessor transitions in u’s
process subnet on the local stack and the loop beginning at Line 26
is repeated. The list of cycles is returned in Line 18.

5. EXPERIMENTAL EVALUATION
In this section we describe the results of experimental evaluation

of REDACT on three small Java DCAs. We seek to answer the
following research questions.

RQ1: How efficiently does the REDACT algorithm detect hold-
and-wait cycles in large-scale transactions?

RQ2: How effectively does the REDACT approach prevent data-
base deadlocks?

The rationale for RQ1 is to determine if our REDACT algorithm
is practical for detecting hold-and-wait cycles in transactions. We
observe that many enterprise large-scale DCAs contain less than
20 transactions, each of which includes a dozen SQL statements.
However, we want to experiment in the extreme to show if our
REDACT algorithm can handle very large inputs. The rationale
for RQ2 is determine how much performance can be gained by
preventing database deadlocks when compared with the standard
defensive programming practice that we described in Section 1. To
address RQ2 is to experiment with DCAs to determine REDACT’s
overhead and compare it with other solutions.

5.1 Methodology
To evaluate RQ1, we should experiment with different number of

transactions that contain different numbers of SQL statements that
use different database resources (e.g., tables). This methodology
requires a large number of different complex SQL statements that
contain hold-and-wait cycles. One way to address the problem is to
select transactions from commercial DCAs as benchmarks; how-
ever, doing so negatively affects reproducibility of results, which
is a cornerstone of the scientific method, since commercial bench-
marks cannot be easily shared among companies for legal reasons
and trade-secret protection. Unfortunately, in many cases, exist-
ing TPC benchmarks fall short of evaluating complex database fea-
tures, and they do not lead to database deadlocks [36].

Relational database engines are routinely tested using complex
SQL statements that are generated using random SQL statement
generators [30, 24, 1]. Suppose that a claim is made that a rela-
tional database engine performs better at certain aspects of SQL

optimization than some other engine. The best way to evaluate this
claim is to create complex SQL statements as benchmarks for this
evaluation in a way that these statements stress properties that are
specific to these aspects of SQL optimization. Since the meaning
of SQL statements does not matter for our evaluation, this genera-
tor creates semantically meaningless but syntactically correct SQL
statements thereby enabling users to automatically create low-cost
benchmarks with reduced bias. We use this approach to generate
random transactions and seed them with hold-and-wait cycles, and
we use these generated transactions to evaluate our REDACT algo-
rithm to address RQ1.

To address RQ2, our goal is to determine how using REDACT
with supervisory control (SC) affects the performance of DCAs.
Recall that even if a hold-and-wait cycle is detected, it does not
necessarily always lead to a database deadlock. Unfortunately, it
is not feasible to know in advance if a hold-and-wait cycle would
materialize in a deadlock due to a large combinatorial space of pos-
sible interleavings. Thus, the SC will conservatively delay an SQL
statement (i.e., a transaction to which this SQL statement belongs)
to break a hold-and-wait cycle. To evaluate the impact of REDACT
and its SC, we should experiment under different conditions.

We aligned our methodology with the guidelines for statistical
tests to assess randomized approaches in software engineering [3].
Since database deadlocks are not easy to reproduce, different runs
of the DCA may reveal different number of deadlocks and different
impacts of REDACT. Our goal is to collect highly representative
samples of runs when applying different approaches, perform sta-
tistical tests on these samples, and draw conclusions from these
tests. Since our experiments involve the probability of encounter-
ing database deadlocks, it is important to conduct the experiments
multiple times to pick the average to avoid skewed results.

5.2 Subject DCAs
We evaluate REDACT with three Java DCAs whose characteris-

tics are shown in Table 2. HIM is a program for maintaining health
information records. DAN is a demographic analysis program. Fi-
nally, UCOM is a program for obtaining statistics on how users in-
teract with Unix systems using their commands. These DCAs are
based on simplified specifications from real-world applications that
came from different projects at Accenture. Subjects DCAs as well
as their databases are available from Sourceforge3. Each DCA con-
sists of the server component that spawns multiple threads that use
its backend database, and a client component that submits client
requests and obtains data from the server.

5.3 Experiments With Subject DCAs
In our experiments, we used JMeter http://jmeter.apache.

org to run subject DCAs with different numbers of clients. In the
baseline experiment (type B), database deadlock exception han-
dling is disabled in the subject DCAs, that is, once a database rolls
back a transaction, its data is lost. It is the fastest but also incorrect
execution that gives us a baseline for performance – the maximum
throughput of the DCAs that is measured in the number of executed
transactions in a predefined time interval. In the experiment where
database deadlock exceptions are handled gracefully (type G) using
the defensive programming practice as we described in Section 1,
rolled back transactions are retried until successfully executed. Fi-
nally, type R experiment uses the REDACT approach that incurs
the SC overhead, but it decreases the cost of deadlock resolution.

For each DCA, we carried out experiments with one, 10, 100,
and 1,000 clients for 15 mins per experiment and we measured the

3http://sourceforge.net/projects/redactapps

362

Table 3: Results of experiments on Cycle Detection Algorithm for various number of transactions(X) and SQL statements per

transactions. Column %XinCycles represents the percentage of transactions that are randomly chosen to be involved in cycles.The

constructed Petri net model is reported as the columns Places, Transitions, Arcs and Resources. Total number of cycles deteted

is reported in Cyclesdet column.The execution time of the algorithm is reported in the Time column. All times are in seconds and

rounded to two decimal points.

Transactions, X SQLStmts perX %X inCycles Places Transitions Arcs Resources Cyclesdet Time(inSeconds)

20

50
10 1960 1000 4244 960 184 1.15
15 1958 1000 4260 958 846 1.2
20 1952 1000 4282 952 6477 1.81

100
10 3997 2020 8690 1977 445 3.36
15 3974 2020 8730 1954 17760 4.19
20 3955 2020 8756 1935 650667 12.34

200
10 7915 4000 17296 3915 5035 12.18
15 7922 4000 17380 3922 131099 15.07
20 7922 4000 17394 3922 5022808 89.09

50

10
4 1001 550 2154 451 3 0.59
7 1005 551 2141 454 3 0.69
9 1000 550 2176 450 18 0.59

25
4 2495 1300 5394 1195 87 1.58
7 2497 1300 5386 1197 106 1.61
9 2493 1300 5410 1193 764 1.67

50
4 4890 2500 10600 2390 317 4.63
7 4883 2500 10588 2383 5873 4.95
9 4886 2500 10624 2386 17002 5.48

100

10
4 1999 1100 4308 899 10 1.21
7 2003 1103 4336 900 99 1.27
9 2001 1101 4348 900 192 1.59

25
4 4995 2600 10856 2395 660 4.96
7 4993 2600 10872 2393 57636 7.63
9 4998 2600 10866 2388 669185 22.91

50
4 9789 5000 21260 4789 13996 19.12
7 9775 5000 21328 4775 8449320 184.93
9 9763 5000 21414 4763 947718814 23793.94

throughput as the total number of executed transactions. Since ex-
hibiting database deadlocks requires specific interleavings of trans-
actions, we repeated each experiment 10 times. Thus, the total
number of experiments is equal to three DCAs× three types (B,G,R)
× four client settings x 10 times = 360 experiments. We report sta-
tistical results (average, median, min, max, variance) for 10 runs
for the number of observed deadlocks and the throughputs.

5.4 Threats to Validity
A threat to the validity of this experimental evaluation is that

our subject programs are relatively small; it is difficult to find
large open-source DCAs that use nontrivial databases. Large DCAs
may have millions of lines of code and use databases whose sizes
are measured in thousands of tables and attributes. Those DCAs
and databases may have different characteristics compared to our
smaller subject programs. On the one hand, increasing the size of
applications to millions of lines of code is unlikely to affect the
time and space demands of our analyses because REDACT only
considers transactions. Thus, the source code of DCAs is ignored
in the cycle analysis, which is focused on the transactions that these
DCAs issue to their databases.

On the other hand, increasing the size and the number of trans-
actions may have a significant impact on the cost of cycle analysis.
The algorithm that we propose in this paper has the exponential
complexity, and even though it is unlikely to encounter DCAs that
have hundreds of distinct transactions that contain hundreds of SQL
statements each, most of which share resources in cyclic dependen-
cies (it is really a pathological case, since one should question the

design of such a system!). However, it is a limitation of REDACT
and a potential threat to validity when dealing with ultra large-scale
transactions. In addition, it may be more challenging to use the SC
for executions of large and complex applications to prevent data-
base deadlocks when there are too many FP hold-and-wait cycles.
Evaluating this impact is a subject of future work.

Additional threats to validity of this study is that we used grad-
uate students as programmers who created DCAs, and this task
should be tackled by professional programmers. However, most of
these students have at least one year of professional programming
experience, thereby reducing this threat to validity.

Finally, there are over two dozen of different kinds of database
deadlocks. In this paper, we experimented only with circular da-
tabase deadlocks (most frequently occurring based on our obser-
vations) that are realized from hold-and-wait cyclic locks on re-
sources by transactions. It is unclear how well REDACT will per-
form on other kinds of database deadlocks, so this is a threat to
external validity of our results.

5.5 Results
The results of experiments with the REDACT algorithm are shown

in Table 3. For the number of transactions and SQL statements per
transaction smaller than 50, the hold-and-wait cycle detection time
is negligent and measured in seconds. For an extreme case of 100
transactions, each of which containing 50 SQL statements (i.e., a
total of 5,000 SQL statements), it takes a little over 6.5 hours for
our algorithm to detect all hold-and-wait cycles. For a realistic
case of a large-scale DCAs contains 20 transactions, each of which

363

Table 4: Each subject DCA (i.e., HIM, UCOM, and DAN) is evaluated using (B)aseline, (G)raceful exception handling, and

(R)EDACT methodologies. Each DCA was run with one, 10, 100, and 1,000 clients for 15 mins per experiment and we measured the

throughput as the number of all executed transactions for 15mins of the experiment. For the columns Deadlock and Throughput we

report statistical results (average, median, min, max, variance) for 10 runs for each DCA/client setting.

DCA Deadlocks Throughput, all transactions for 15mins

Name Type Clients Avg Med Min Max Var Avg Med Min Max Var

HIM

B

1 0 0 0 0 0 58.4 58.5 55 61 3.82
10 29.9 30.5 22 36 24.1 68.1 69 57 84 73.43
100 80.6 79.5 64 96 131.16 25.9 26 22 30 8.1
1000 92.3 97 19 147 2020.23 9.2 9 5 14 6.62

G

1 0 0 0 0 0 55.2 56 50 58 8.4
10 66.6 66.5 47 87 177.16 42.9 44.5 32 52 47.66
100 97.4 80.5 48 251 3530.04 22.9 22.5 17 29 15.66
1000 93.6 79 32 170 2618.71 9 9 5 14 7.11

R

1 0 0 0 0 0 34.1 34.5 29 37 6.32
10 0 0 0 0 0 72.7 74 65 77 14.68
100 0 0 0 0 0 61.5 62.5 46 74 46.5
1000 0 0 0 0 0 45.3 47 34 51 24.46

UCOM

B

1 0 0 0 0 0 435.3 440.5 398 476 715.34
10 162.4 168 142 174 124.49 41.6 39.5 29 53 62.93
100 1280.3 1268 1225 1413 3334.68 15.4 15 13 18 2.71
1000 6899.5 6780.5 5188 9596 1290461 9.8 10 8 11 1.07

G

1 0 0 0 0 0 455.8 456 419 489 540.84
10 151.8 150 134 184 201.51 28.5 28.5 17 42 54.94
100 1259.7 1244.5 1158 1400 6496.01 14.7 15 13 16 0.9
1000 6873.1 6950 5607 7913 401380.8 11.4 11.5 8 15 4.27

R

1 0 0 0 0 0 44 44 44 44 0
10 0 0 0 0 0 161.6 160 155 174 35.82
100 0 0 0 0 0 634.4 636 614 657 173.82
1000 0 0 0 0 0 4181.2 4175.5 3463 4840 113323.3

DAN

B

1 0 0 0 0 0 115753.8 115614 113019 120336 3376321
10 147.1 148.5 132 159 68.1 19.3 19.5 16 23 6.23
100 1190.6 1195 1136 1251 1440.04 19.5 19 16 27 8.5
1000 10994.3 10873 9246 13080 1573663 13.2 13 9 17 6.84

G

1 0 0 0 0 0 115638 115660 114098 117210 656311.1
10 160 162 141 185 153.33 21 21 17 25 6.22
100 1189.7 1194.5 1134 1235 902.68 18 18 17 19 0.67
1000 9468.1 9205.5 8597 11776 980265.2 13.4 12.5 10 21 13.16

R

1 0 0 0 0 0 44 44 44 44 0
10 0 0 0 0 0 292.1 292 283 299 27.66
100 0 0 0 0 0 2923.8 2942.5 2825 2959 1779.07
1000 0 0 0 0 0 27685.4 27740 26668 28924 438356.7

includes 50 SQL statements and in which 20% of statements are
chosen to be involved in cycles, our algorithm finds all cycles in
less than two seconds. These results provide an answer to RQ1 that
our REDACT algorithm efficiently detects hold-and-wait cycles

in large-scale transactions.

The results of experiments with the subject DCAs are shown in
Table 5.2 and Table 5. When one client is used, database deadlocks
do not occur, and the overhead of supervisory control is rather sig-
nificant – it reduces the throughput by approx 72% for HIM. How-
ever, as the number of clients increases, so does the frequency of
deadlocks. We can see that the average number of database dead-
locks increases by two orders of magnitude for the DCA DAN
when the number of clients increases from 10 to 1,000. At the
same time, the thoughput drops by four orders of magnitude, since
the overhead of database deadlock resolution algorithm within the
database engine takes its toll even if discarded transactions are not
retried. Recall that the database engine takes some time (it is a con-
figurable parameter usually set between 15-30 seconds, by default

is set to 60 seconds4) to locate cycles and resolve database dead-
locks. In general, the timeout is set by database administrators who
base their decision on the average time it takes to execute a trans-
action. This resolution time significantly worsens the performance
of DCAs severely impacting their scalability!

We experimented with different conflicting transaction delay times
for the SC that we show in Table 5. We decreased the time from 20
seconds, the value that we used in experiments that we show in Ta-
ble 5.2 to 2 seconds and 0.2 seconds. Reducing the delay time force
SC to perform unnecessary computation while scheduling process
for newly arrived transactions needs to be put on hold. Exceptions
are for 100 and 1000 clients of UCOM when decreasing the de-
lay time decreased the throughput. The reason is in non-scalability
of the design of the DCA, since lots of transactions were aborted
for connection exceptions due to so many clients. However, as we
observe from the experimental results in Table 5, throughput in-

4http://tinyurl.com/dbdeadlocktimeout

364

Table 5: Results of experiments with REDACT for three sub-

ject applications (i.e., HIM, UCOM and DAN), four different

client loads, and three different waiting times in the SC. We re-

port the average numbers of throughput values (i.e., executed

transactions) of 10 runs for each distinct combination of the ex-

perimental settings. Each experiment lasted for 15 minutes, no

database deadlocks were observed.
Application Clients Time(seconds) T hroughput (Avg)

HIM

1
0.2 57.4
2 54
20 34.1

10
0.2 93.7
2 90.6
20 72.7

100
0.2 80.6
2 71.2
20 61.5

1000
0.2 70.7
2 52.4
20 45.3

UCOM

1
0.2 445.8
2 261.2
20 44

10
0.2 280.2
2 264.8
20 161.6

100
0.2 834.4
2 885.1
20 634.4

1000
0.2 1284.5
2 4804
20 4181.2

DAN

1
0.2 4333.3
2 443.9
20 44

10
0.2 55040.1
2 2952.1
20 292.1

100
0.2 101209.9
2 29554.5
20 2923.8

1000
0.2 106245
2 101194.5
20 27685.4

creases by more than two orders of magnitude in some cases with
no database deadlocks observed.

And this is when REDACT is effective – it prevents database
deadlocks thereby removing the need for this costly deadlock reso-
lution within the database engine. For 1,000 clients for HIM, the
average throughput is 9 transactions for the type G experiment,
while REDACT’s throughput is 45.3 transactions. For UCOM,
the numbers are 11.4 versus 4,181.2 for REDACT, and for DAN
the numbers are 13.4 versus 27,685.4 for REDACT on average.
And for DAN, the throughput is improved by approximately three
orders of magnitude. These results allow us to answer RQ2 that
the REDACT approach is very effective in preventing database

deadlocks.

6. RELATED WORK
Some approaches use static program analysis to obtain infor-

mation about deadlocks. RacerX is a static tool that uses flow-

sensitive, interprocedural analysis to detect both race conditions
and deadlocks [10]. Williams et al. [35] defined a deadlock detec-
tion algorithm for Java libraries. In contrast with our method, these
approaches derive lock graphs directly from Java and C++ source
code, and they suffer from false negatives. These approaches are
not currently applicable to detect database deadlocks, since analyz-
ing source code of DCA will not detect cycles in transactions.

Dynamic approaches use runtime data to infer where deadlocks
may occur or determine how to predict and resolve them in fu-
ture program runs. An approach called Dimmunix “immunizes”
programs against deadlocks by collecting deadlock patterns, which
are subsets of control flow traces that lead to deadlocks [17]. Like
REDACT, it uses detected hold-and-wait cycles to prevent database
deadlocks.A fundamental difference between REDACT and Dim-
munix is that the hold-and-wait cycles designate necessary condi-
tions for deadlocks to occur, while deadlock patterns in Dimmunix
are loose approximations that result in many FPs, especially since
control-flow of DCA is not applicable to detect database deadlocks.

Rx is a dynamic approach that rolls back an application once a
deadlock occurs to a checkpoint and retries it again with the hope
that the deadlock will be avoided in subsequent executions [26].
This solution cannot be used in the context of REDACT, since
rolling back a DCA significantly worsens its performance – retry-
ing these transactions incurs a significant performance penalty.

Recent work on MagicFuzzer described a dynamic deadlock de-
tection technique for C++ programs, where MagicFuzzer uses run-
time information to prune the number of choices that may lead to
deadlocks [7]. A dynamic approach Sammati provides automatic
deadlock detection and recovery for POSIX threaded applications
[25]. Unlike MagicFuzzer and Sanmati, REDACT performs its
analysis at compile time to prevent deadlocks at runtime.

Like REDACT, snapshot isolation partially addresses the prob-
lem of database deadlocks by avoiding conflicting concurrent up-
dates that may lead to inconsistent snapshots [6]. In contrast to
REDACT, exceptions are thrown when snapshot isolation is vi-
olated, leading to the same performance problem that REDACT
address with database deadlocks. H-Store addresses the database
deadlock problem by running transactions single-threaded and avoid-
ing conflicts by preventing multiple transactions from competing
with one another [18]. It is a new concept and our goal of future
work is to experiment to compare REDACT and H-Store.

Approaches for preventing deadlocks using transactional mem-
ory are gaining increasing popularity [33], but unfortunately, data-
base deadlocks often occur in the distributed setting.

7. CONCLUSION
Since applications often share the same databases concurrently,

database deadlocks routinely occur resulting in major performance
degradation in these applications. To address this problem, we cre-
ated a novel approach for preventing database deadlocks automat-
ically, and we rigorously evaluated it. For a realistic case of over
1,200 SQL statements, our algorithm detects all hold-and-wait cy-
cles in less than two seconds. We build a tool that implements our
approach and we experimented with three DCAs. Our tool pre-
vented all database deadlocks in these DCAs and increased their
throughputs by approximately up to three orders of magnitude.

8. ACKNOWLEDGMENTS
This work is supported by NSF CCF-1217928, CCF-1017633,

and NSF CCF-0916139. We warmly thank our ESEC/FSE review-
ers whose comments helped us improve the quality of this paper.

365

9. REFERENCES
[1] S. Abdul Khalek and S. Khurshid. Automated SQL query

generation for systematic testing of database engines. In
Proc. IEEE/ACM ASE, pages 329–332. ACM, Sept. 2010.

[2] R. Agrawal, M. J. Carey, and M. Livny. Concurrency control
performance modeling: alternatives and implications. ACM

Trans. Database Syst., 12(4):609–654, Nov. 1987.

[3] A. Arcuri and L. C. Briand. A practical guide for using
statistical tests to assess randomized algorithms in software
engineering. In Proc. 33rd International Conference on

Software Engineering (ICSE 2011), pages 1–10, Honolulu,
Hawaii, May 2011.

[4] J. Billington, S. Christensen, K. Van Hee, E. Kindler,
O. Kummer, L. Petrucci, R. Post, C. Stehno, and M. Weber.
The Petri net markup language: concepts, technology, and
tools. ICATPN’03, pages 483–505, Berlin, Heidelberg, 2003.
Springer-Verlag.

[5] P. Bruni, P. Becker, J. Henderyckx, J. Link, and
B. Steegmans. DB2 UDB for z/OS: Design Guidelines for

High Performance and Availability. IBM Redbooks, New
York, NY, USA, Jan. 2006.

[6] M. J. Cahill, U. Röhm, and A. D. Fekete. Serializable
isolation for snapshot databases. ACM Trans. Database Syst.,
34(4):20:1–20:42, Dec. 2009.

[7] Y. Cai and W. K. Chan. Magicfuzzer: scalable deadlock
detection for large-scale applications. ICSE 2012, pages
606–616, Piscataway, NJ, USA, 2012. IEEE Press.

[8] E. G. Coffman, M. Elphick, and A. Shoshani. System
deadlocks. ACM Comput. Surv., 3(2):67–78, 1971.

[9] M. A. Dimmler and A. K. Schmig. Using discrete-time
analysis in the performance evaluation of manufacturing
systems. In IN SMOMS’99, 1999.

[10] D. Engler and K. Ashcraft. Racerx: effective, static detection
of race conditions and deadlocks. SOSP ’03, pages 237–252,
New York, NY, USA, 2003. ACM.

[11] H. Garcia-Molina. A concurrency control mechanism for
distributed databases which use centralized locking
controllers. In Proceedings of the Fourth Berkeley Workshop

on Distributed Databases and Computer Networks, pages
113–122, Berkeley, CA, USA, Aug. 1979.

[12] J. Gray and A. Reuter. Transaction Processing: Concepts

and Techniques. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1st edition, 1992.

[13] M. Grechanik, B. M. Hossain, and U. Buy. Testing
database-centric applications for causes of database
deadlocks. In ICST, pages 1–10, Mar. 2013.

[14] J. Griggs. Database deadlock avoidance patterns.
http://c2.com/cgi/wiki?DatabaseDeadlockAvoidancePatterns,
Sept. 2003.

[15] J. M. Hellerstein, M. Stonebraker, and J. Hamilton.
Architecture of a database system. Found. Trends databases,
1(2):141–259, Feb. 2007.

[16] M. Hofri. On timeout for global deadlock detection in
decentralized database systems. Inf. Process. Lett.,
51:295–302, September 1994.

[17] H. Jula, D. Tralamazza, C. Zamfir, and G. Candea. Deadlock
immunity: enabling systems to defend against deadlocks.
OSDI’08, pages 295–308, Berkeley, CA, USA, 2008.
USENIX Association.

[18] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin,
S. Zdonik, E. P. C. Jones, S. Madden, M. Stonebraker,
Y. Zhang, J. Hugg, and D. J. Abadi. H-store: a
high-performance, distributed main memory transaction
processing system. Proc. VLDB Endow., 1(2):1496–1499,
Aug. 2008.

[19] J. Kehayias and T. Krueger. Troubleshooting SQL Server: A

Guide for the Accidental DBA. Red gate books, Cambridge,
CB4 0WZ, UK, Sept. 2011.

[20] D. B. Lomet. Subsystems of processes with deadlock
avoidance. IEEE Trans. Software Eng., 6(3):297–304, 1980.

[21] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes:
a comprehensive study on real world concurrency bug
characteristics. ASPLOS XIII, pages 329–339, New York,
NY, USA, 2008. ACM.

[22] C. Mohan, B. Lindsay, and R. Obermarck. Transaction
management in the r* distributed database management
system. ACM Trans. Database Syst., 11(4):378–396, Dec.
1986.

[23] M. Nonemacher. Deadlocks in j2ee. Java Dev. Journal, Apr.
2006.

[24] M. Poess and J. M. Stephens, Jr. Generating thousand
benchmark queries in seconds. In Proc. 13th VLDB, pages
1045–1053. Morgan Kaufmann, Aug. 2004.

[25] H. K. Pyla and S. Varadarajan. Avoiding deadlock avoidance.
PACT ’10, pages 75–86, New York, NY, USA, 2010. ACM.

[26] F. Qin, J. Tucek, Y. Zhou, and J. Sundaresan. Rx: Treating
bugs as allergiesï£¡a safe method to survive software
failures. ACM Trans. Comput. Syst., 25(3), Aug. 2007.

[27] S. K. Rahimi and F. S. Haug. Distributed Database

Management Systems: A Practical Approach. Wiley-IEEE
Computer Society Pr, New York, NY, USA, 1st edition, Aug.
2010.

[28] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, II. System
level concurrency control for distributed database systems.
ACM Trans. Database Syst., 3(2):178–198, June 1978.

[29] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.
Pattern-Oriented Software Architecture: Patterns for

Concurrent and Networked Objects. John Wiley & Sons,
Inc., New York, NY, USA, 2nd edition, 2000.

[30] D. R. Slutz. Massive stochastic testing of SQL. In Proc. 24rd

VLDB, pages 618–622. Morgan Kaufmann, Aug. 1998.

[31] D. S. Team. Java Server Programming J2Ee 1.4 Ed. Black

Book. Wiley Publications, 2007.

[32] F. Tricas, J. Colom, and J. Ezpeleta. A solution to the
problem of deadlocks in concurrent systems using Petri nets
and integer linear programming. In Proc. of the 11th

European Simulation Symposium.

[33] H. Volos, A. J. Tack, M. M. Swift, and S. Lu. Applying
transactional memory to concurrency bugs. ASPLOS ’12,
pages 211–222, New York, NY, USA, 2012. ACM.

[34] Y. Wang, S. Lafortune, T. Kelly, M. Kudlur, and S. A.
Mahlke. The theory of deadlock avoidance via discrete
control. In POPL, pages 252–263, 2009.

[35] A. Williams, W. Thies, and M. D. Ernst. Static deadlock
detection for Java libraries. In ECOOP 2005, pages 602–629,
Glasgow, Scotland, July 27–29, 2005.

[36] N. Yuhanna, M. Gilpin, and D. D’Silva. Tpc benchmarks
don’t matter anymore. Forrester Research, 2009.

366

