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ABSTRACT
We present PoMMaDe, a Pushdown Model-checking based
Malware Detector. In PoMMaDe, a binary program is
modeled as a pushdown system (PDS) which allows to track
the stack of the program, and malicious behaviors are spec-
ified in SCTPL or SLTPL, where SCTPL (resp. SLTPL) is
an extension of CTL (resp. LTL) with variables, quantifiers,
and predicates over the stack (needed for malware specifica-
tion). The malware detection problem is reduced to SCT-
PL/SLTPL model-checking for PDSs. PoMMaDe allows
us to detect 600 real malwares, 200 new malwares generated
by two malware generators NGVCK and VCL32, and prove
benign programs are benign. In particular, PoMMaDe was
able to detect several malwares that could not be detected
by well-known anti-viruses such as Avira, Avast, Kaspersky,
McAfee, AVG, BitDefender, Eset Nod32, F-Secure, Norton,
Panda, Trend Micro and Qihoo 360.

Categories and Subject Descriptors
F.3.1 [Theory of Computation]: Specifying and Verifying
and Reasoning about Programs—Malware Detection

General Terms
Security, verification

Keywords
Model-Checking, Malware Detection, Pushdown Systems

1. INTRODUCTION
Malwares are one of the most prevalent security threats on

the Internet. These programs are used to attack organiza-
tions and countries, e.g., the notorious malware Flame has
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been used for targeted cyber espionage in Middle Eastern
countries and was not detected by any anti-virus for more
than five years. Thus, malware detection is a critical top-
ic in computer security. Classic antivirus techniques: code
emulation (dynamic analysis) and signature (pattern)-based
techniques become insufficient. Indeed, code emulation tech-
niques monitoring only few traces of programs in a limited
time span may miss some malicious behaviors. Signature-
based techniques using patterns of programs’ codes to char-
acterize malwares can detect only known malwares and are
easy to get around.

Addressing these limitations, many works proposed to ap-
ply model-checking to detect malware [5, 9, 10, 14, 13, 18,
8, 3, 4], as model-checking checks the behavior (not the syn-
tax) of the program in a static way. However, all these works
are not able to model the stack of the programs. Being able
to track the stack is important for malware detection, since
many obfuscation techniques rely on operations over the s-
tack to evade anti-viruses [16].

To solve this problem, in our previous works [21, 19, 22],
we proposed to model a binary program as a pushdown sys-
tem (PDS). This allows to track the stack of the program.
We introduced two new logics SCTPL [21, 19] and SLTPL
[22] which are extensions of CTL and LTL with variables,
quantifiers, and predicates over the stack. We reduced mal-
ware detection to SCTPL/SLTPL model-checking for PDSs.
SCTPL/SLTPL allow us to express malicious behaviors in
a more succinct manner and specify properties on the stack
content which is important for malware detection. In [21,
19, 22], we showed that SCTPL/SLTPL model-checking for
PDSs allow to have efficient and robust malware detection
techniques.

In this paper, we present PoMMaDe, a malware detector
based on SCTPL/SLTPL model-checking for PDSs. PoM-
MaDe takes as inputs a binary program and a set of SCT-
PL/SLTPL formulas specifying malicious behaviors. PoM-
MaDe outputs Yes if the binary program satisfies one of
the formulas. It means that the program may be a mal-
ware. Otherwise, PoMMaDe outputs No, meaning that
the program is benign.

PoMMaDe first uses a preprocessor to automatically un-
pack the program if it is packed. The (resulting) program is
disassembled based on Jakstab [15] and IDA Pro [12]. Jak-
stab performs static analysis of the binary program, provides
an assembly program and the values of the registers and
memory addresses. We use IDA Pro to obtain API func-
tions’ informations which cannot be obtained by Jakstab.
Then, the assembly program is translated into a PDS. Nex-
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t, PoMMaDe applies the SCTPL/SLTPL model-checking
algorithms of [21, 19, 22] to check whether or not the PDS
satisfies one of the formulas. If this is the case, PoMMaDe
outputs Yes, meaning that the program may be a malware.
Otherwise, PoMMaDe outputs No, meaning that the pro-
gram is benign. Moreover, in PoMMaDe, we implement
three optimization strategies which improve the performance
when checking benign programs.

Our tool PoMMaDe allows to detect 600 real malwares,
all of 200 new malwares generated by the best two mal-
ware generators NGVCK and VCL32. Several of these new
malwares could not be detected by several well-known anti-
viruses such as: Avira, Avast, Kaspersky, McAfee, AVG,
BitDefender, Eset Nod32, F-Secure, Norton, Panda, Trend
Micro and Qihoo 360. NGVCK and VCL32 are the best
malware generators as shown in [24]. Moreover, PoMMaDe
can prove that benign programs are benign and detect the
notorious malware Flame which was not detected for more
than 5 years. The results show the efficiency and the appli-
cability of our tool. PoMMaDe is downloadable at http:

//www.liafa.univ-paris-diderot.fr/~song/pommade.

Related Work. BitScope [7] is applied to detect trigger-
based behaviors in malware. Panorama [11] is a tool for spy-
ware detection. However, [7, 11] are dynamic analysis based
tools. Thus, they can miss malware behaviors if they appear
after the fixed time interval of the dynamic analysis. PyEA
[8] is a malware detector that uses control flow graph match-
ing. PyEA cannot track the stack behaviors which is impor-
tant for malware detection. Other software model-checkers,
such as SLAM [2], Blast [6] and PuMoC [20], dedicated to
source code verification, cannot detect malware, since mal-
wares are usually given in binary codes. Binary code ana-
lyzers such as CodeSurfer/x86 [1] and McVeto [23] check
reachability and cannot detect malware. Indeed, many mali-
cious behaviors are more complex than reachability. Jakstab
[15] only considers disassembly and static analysis of binary
codes rather than malware detection. In PoMMaDe, we
implemented the model-checking algorithms of [21, 19, 22].
In these previous works, we had a preliminary implemen-
tation that was able to detect 270 malwares. We had to
manually check whether a binary program is packed or not.
If this is the case, we have to manually unpack the binary
program. This task is completely automatic in PoMMaDe.
Moreover, PoMMaDe is able to detect more than 600 real
malwares.

2. BACKGROUND

2.1 Pushdown Systems
A pushdown system (PDS) P is a tuple (P,Γ,∆), where

P is a finite set of control locations, Γ is the stack alphabet,
∆ ⊆ (P × Γ)× (P × Γ∗) is a finite set of transition rules. A
configuration of P is a pair 〈p, ω〉 where p ∈ P and ω ∈ Γ∗.
The successor relation ;P ⊆ (P ×Γ∗)× (P ×Γ∗) is defined
as follows: if (p, γ, q, ω) ∈ ∆, then 〈p, γω′〉 ;P 〈q, ωω′〉
for every ω′ ∈ Γ∗. An execution (path) of P from c0 is a
sequence of configurations π = c0c1... s.t. for every i ≥ 0,
ci ;P ci+1.

We use the approach of [19] to translate a binary program
into a PDS. Intuitively, a binary program is first disassem-
bled into an assembly program by Jakstab and IDA Pro.
Then, the assembly program is translated into a PDS in

push m
push f
call ReadFile
...
push m
push c
call send

Figure 2: A fragment of a Data-stealing malware.

which the control locations correspond to the control points
of the program, the stack alphabet consists of the return
addresses and the values of the operands of all the push s-
tatements. Each transition rule encodes a statement of the
program. Thus, a path of the PDS mimics an execution
trace of the program.

2.2 SCTPL and SLTPL
In PoMMaDe, malicious behaviors are specified in SLT-

PL or SCTPL. SLTPL (resp. SCTPL) can be seen as an
extension of LTL (resp. CTL) with variables, quantifiers
and predicates over the stack content. Variables are pa-
rameters of atomic predicates and can be quantified by the
existential and universal quantifiers. We use regular ex-
pressions over the stack alphabet and variables to repre-
sent predicates over the stack content. The formal defini-
tions can be found in [21, 19, 22]. For example, the SCT-
PL formula Ψsp = ∃mEF

(
call(GetModuleF ileNameA) ∧

0mΓ∗∧EF(call(CopyF ileA)∧mΓ∗)
)

is a malicious behavior
of worms, where 0mΓ∗ (resp. mΓ∗) is a regular expression
specifying that the top of the stack is 0m (resp. m). Ψsp

states that there exists an address m and a path in which
GetModuleFileNameA is called when 0m is on the top of
the stack (i.e., this function is called with 0 and m as pa-
rameters, since parameters are passed through the stack in
assembly). Later, CopyFileA is called when m is on the top
of the stack (i.e., CopyFileA is called with m as parame-
ter). Worms commonly copy themselves to other locations.
To do this, a worm first calls GetModuleFileNameA with 0
and an address m as parameters. By calling this function,
its own file name is stored in the address m. Later, it calls
CopyFileA with m as parameter (i.e., its file name) to copy
itself to other locations. The above formula describes this
malicious behavior.

2.3 The Model-Checking Algorithms
PoMMaDe is based on the model-checking algorithms of

[21, 22], where SCTPL/SLTPL model checking for PDSs is
reduced to the emptiness problem for Symbolic (Alternat-
ing) Büchi Pushdown Systems. We refer the reader to [21,
22] for more details.

2.4 Example: Data-stealing Malware
We show how to use SLTPL to express the malicious be-

havior of a data-stealing malware. More malicious behaviors
are described in Appendix B. Note that there exist malicious
behaviors that can be expressed in SLTPL but not in SCT-
PL, and vice versa.

The main purpose of a data-stealing malware is to steal
the user’s personal confidential data such as username, pass-
word, credit card number, etc and send it to another com-
puter (usually the malware writer). The typical behavior
of data-stealing malware can be summarized as follows: the
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Figure 1: Architecture of PoMMaDe.

malware will first call the API function ReadFile in order
to load some file of the victim into memory. To do this,
it needs to call this function with a file pointer f (i.e., the
return value of the calling function OpenFile) as the first
parameter and a buffer m as the second parameter (m cor-
responds to the address of a memory location), i.e., with
f m on the top of the stack since in assembly, function
parameters are passed through the stack. Then, the mal-
ware will send its file (whose data is pointed by m) to an-
other computer using the function send. It needs to call
send with a connection c (i.e., the return value of the call-
ing function socket) as first parameter and the buffer m as
the second parameter, i.e., with c m on the top of the s-
tack. Figure 2 shows a disassembled fragment of a malware
corresponding to this typical behavior. Before calling the
function ReadFile, it pushes the two parameters m and f
onto the stack. Later it calls the function send after pushing
the two parameters m and c onto the stack. This behavior
can be expressed by the following SLTPL formula Φds =

∃m F
(
call(ReadFile)∧Γ m Γ∗∧F

(
call(send)∧Γ m Γ∗

))
,

where the expression Γ m Γ∗ states that the second value
of the stack is m (corresponding to the second parameter
of the function ReadFile and send). Φds states that there
exists an address m which is the second parameter when
calling ReadFile, and such that later, eventually, send will
be called with m as its second parameter.

3. ARCHITECTURE AND IMPLEMENTA-
TION

Given a binary program, and a set of malicious behav-
iors expressed by SCTPL or SLTPL formulas, PoMMaDe
outputs Yes if the program satisfies one of the formulas. It
means that the binary program may be a malware. Oth-
erwise, PoMMaDe outputs No, meaning that the binary
program is benign. As shown in Figure 1, PoMMaDe con-
sists of five components: Preprocessor, Oracle, Filter,
Model Builder and Model-Checking Engines.

Preprocessor uses PEfile [17] to check whether the bi-
nary program is packed or not. If this is the case, it us-
es the corresponding unpacker (if it exists) to unpack the
binary code and feed the resulting binary program to Ora-
cle. Otherwise, it directly passes the binary code to Oracle.
So far, PoMMaDe supports dozens of popular packers for
Windows, and hundreds of packers for Linux. Moreover,
users can easily add a new unpacking tool by modifying the
database file. Oracle takes as input a (unpacked) binary
program and outputs the assembly program, and the infor-
mations of API functions and the states (values of the regis-

ters and memory addresses at each control point). Oracle
relies on Jakstab [15] and IDA Pro [12]. Jakstab performs
static analysis of the binary program, provides an assembly
program and the states. However, it does not allow to ex-
tract the informations of API functions and some indirect
calls to the API functions. PoMMaDe uses IDA Pro to get
these informations. The outputs of Oracle are used by Fil-
ter to filter out benign programs according to the given op-
timization strategy by “syntactically” checking the assembly
program. Indeed, suppose we would like to check whether a
program P satisfies the formula Φds described above. Then
if P does not contain any call to the functions ReadFile or
send, we can deduce that P does not contain this malicious
behavior Φds only by performing a syntactical check over
it. We don’t need to apply model-checking to reach this
conclusion. PoMMaDe provides three strategies: (1) key-
words strategy, (2) sequence strategy and (3) direct strategy.
When “keywords strategy” is chosen, the user has to provide
a set of instructions to PoMMaDe (in our example, the
user can provide {call(ReadFile), call(send)}). Filter will
syntactically check whether or not the assembly program
contains these instructions. If this is not the case, PoM-
MaDe outputs No (we know that P does not contain this
malicious behavior, no need to apply model-checking). Oth-
erwise, Model Builder is called (we need to apply model-
checking to decide whether P is a malware or not). When
“sequence strategy” is chosen, the user has to provide a se-
quence of instructions to PoMMaDe (in our example, the
user can provide the sequence call(ReadFile); call(send)).
Filter will “syntactically” check in the control flow graph
of the assembly program whether or not these instruction-
s occur in the same order as in the sequence. If this is
not the case, PoMMaDe outputs No (no need to apply
model-checking, P is benign). Otherwise, Model Builder
is called. If “direct strategy” is chosen, Model Builder
is directly called. Model Builder outputs a PDS mod-
eling the assembly program. Model-Checking Engines
takes as input the PDS from Model Builder and performs
model-checking of the PDS against all the formulas given by
the user. PoMMaDe outputs Yes if there is one formula
satisfied by the PDS, No otherwise.

4. EXPERIMENTS
All the experiments were run on a Linux platform (Fedora

13) with a 2.4GHz CPU, 2GB of memory. The time limit is
fixed to 20 minutes.

Detecting Real Malwares: PoMMaDe is applied to check
more than 600 real malwares and 400 benign programs tak-
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Table 1: Detection rates of new malwares generated by NGVCK and VCL32.
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NGVCK 100 100% 0% 23% 18% 68% 100% 11% 97% 81% 0% 46% 0% 0%
VCL32 100 100% 0% 2% 100% 99% 0% 100% 100% 76% 0% 30% 0% 0%

en from Microsoft Windows System. PoMMaDe can detect
all the real malwares and prove benign program are benign
with only three false positives. PoMMaDe was able to de-
tect several families of malwares using only one formula.
In particular, our tool can detect the malware Flame, the
most complex attack toolkit which can record audio conver-
sations, intercept the keyboard, etc. Flame has been active
for more that 5 years and was not detected by any antivirus.

The average time (resp. memory) of checking one mal-
ware against the satisfiable formula is 93.57 seconds (resp.
225.15 MB). The average time (resp. memory) of checking
one benign program against all the malicious behaviors we
considered is 24.73 seconds (resp. 21.86 MB) (Thanks to
Filter, PoMMaDe does not need to apply model-checking
for many benign programs).

PoMMaDe vs Existing Antiviruses: To compare our
tool with the well-known existing anti-viruses, and show its
robustness, we automatically created 200 new malwares us-
ing the generators NGVCK and VCL32. [24] showed that
these systems are the best malware generators. These pro-
grams use very sophisticated features such as anti-disassembly,
anti-debugging, anti-emulation, and anti-behavior blocking
and come equipped with code morphing ability which al-
lows them to produce different-looking viruses. Our results
are reported in Table 1. PoMMaDe was able to detect all
these 200 malwares, whereas several well-known and widely
used anti-viruses such as Avira, Avast, Kaspersky, McAfee,
AVG, BitDefender, Eset Nod32, F-Secure, Norton, Panda,
Trend Micro and Qihoo 360 were not able to detect several
of them.
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