
Application of Search-Based Software Engineering
Methodologies for Test Suite Optimization and Evolution in

Mission Critical Mobile Application Development
Andreas Schuler∗

University of Applied Sciences Upper Austria
Softwarepark 13

Hagenberg, Austria 4232
andreas.schuler@fh-hagenberg.at

ABSTRACT
The demand for high qualitymobile applications is constantly rising,
especially in mission critical settings. Thus, new software engineer-
ing methodologies are needed in order to ensure the desired quality
of an application. The research presented proposes a quality assur-
ance methodology for mobile applications through test automation
by optimizing test suites. The desired goal is to find a minimal
test suite while maintaining efficiency and reducing execution cost.
Furthermore to avoid invalidating an optimized test suite as the
system under test evolves, the approach further proposes to extract
patterns from the applied changes to an application. The evaluation
plan comprises a combination of an empirical and an industrial case
study based on open source projects and an industrial project in
the healthcare domain. It is expected that the presented approach
supports the testing process on mobile application platforms.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; Software evolution; Search-based software engineering;

KEYWORDS
test automation, test suite optimization, mobile application devel-
opment, multi-objective optimization

ACM Reference format:
Andreas Schuler. 2017. Application of Search-Based Software Engineering
Methodologies for Test Suite Optimization and Evolution in Mission Critical
Mobile Application Development. In Proceedings of 2017 11th Joint Meeting
of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, Paderborn, Germany,
September 4–8, 2017 (ESEC/FSE’17), 4 pages.
https://doi.org/10.1145/3106237.3119876

∗Advisor: Univ.-Prof. Mag. Dr. Gabriele Anderst-Kotsis (gabriele.kotsis@jku.at)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00
https://doi.org/10.1145/3106237.3119876

1 INTRODUCTION
The development of applications for modern mobile platforms is a
challenging task due to the heterogeneous nature of said platforms.
Different device vendors, as well as different operating systems and
versions, contribute to this problem. Given these premises together
with the fact that mobile applications are nowadays considered to be
used in critical domains -like healthcare, government or in payment
systems- mobile application development and associated testing
becomes more complex, time consuming and costly to ensure the
quality of a released product [24]. Still there is a raising demand for
high quality mobile applications, especially when used in mission
critical settings [16, 18]. Thus, Muccini et al. [18] conclude, that new
software engineering approaches are required in order to provide
thorough testing of mission critical mobile applications.

According to Muccini et al. [18] the aforementioned challenges
arise from the fact that mobile computing differs from traditional
computing in the following areas: limited resources, security and vul-
nerability, performance and reliability as well as finite energy power.
It can be further concluded that test automation in mobile com-
puting is a promising field of research to identify new approaches
and methodologies applicable for a mobile computing environment
[16, 24]. Although as described by Zein et al. [24] and Muccini
et al. [18] there are a lot of different test automation methodologies
available, e.g. model-based testing and search-based testing, the
outlined differences in mobile computing require further research.

The proposed thesis aims to research improving the test suite
quality in mission critical mobile application development by lever-
aging multi-objective optimization techniques from the field of
Search-based Software Engineering (SBSE) in order to minimize test-
ing time while reaching an optimal coverage. Consequently, the
thesis aims to provide answers to following research questions:
RQ-1: How can search-based techniques be applied to the prob-

lem of test suite optimization in mobile application devel-
opment as part of the software development life cycle, in
order to maximize test coverage for a given test criteria (e.g.
memory-usage, energy-consumption, etc.) while minimizing
execution time and cost?

RQ-2: What effects result from changes, additions or modifications
to a system under test for an existing test suite and what
effects does it have on the optimization?

RQ-3: Is it possible to derive features/patterns specific to a given
test criteria for a software increment and can such an ap-
proach be used to predict validity of an optimised test suite
given the advancement of the system under test?

1034

https://doi.org/10.1145/3106237.3119876
https://doi.org/10.1145/3106237.3119876

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany A. Schuler

The remainder of this work outlines previous work on test suite
optimization in mobile computing in section 2. In sections 4 to 6
the proposed approach, the expected contribution together with
the results achieved so far is presented. Section 7 further describes
how the proposed work will be evaluated. Finally, section 8 will
conclude with some final remarks.

2 BACKGROUND
Test suite optimization is a field of software testing that deals with
optimising the test cases contained in a test suite, in order to achieve
some coverage criteria of a System Under Test (SUT). Given a test
suite that was either created manually or generated through a
model-based, search-based or by any other means of automatic
test generation approach (e.g. [2, 7, 13, 14, 17]), said test suite has
to evolve accordingly to the SUT. Although this is often not the
case, as mentioned by Farooq and Lam [6], test suites often con-
tain redundant test cases and they remain undetected until test
execution (see Fig. 1). This leads to the fact that a test suite with
redundant test cases takes longer to complete and consumes more
resources [1, 6, 8, 15]. Test suite optimization deals with this aspect,
by removing, changing or adding new test cases to a test suite in
order to cope with the evolution of a SUT. In their survey Yoo and
Harman [23] further describe that test suite optimization can be
categorised in different techniques that are applied to a given test
suite:

• Test Suite Minimisation: In test suite minimisation the
goal is to reduce the size of a given test suite by removing
obsolete or redundant test case, in order to find a minimal
hitting set, which is described as the minimal set of test cases
able to satisfy a desired test criteria.

• Test Case Selection: While test suite minimisation only
strives to reduce the size of a given test suite, test suite
selection is by some means aware of changes in the underly-
ing SUT. Thus it requires a static white-box analysis of the
program code [23].

• Test Case Prioritisation: The idea behind test case priori-
tisation is to find a optimal permutation of the sequence of
test cases in order to identify possible faults at an early stage
in the sequence of executed test cases.

In order to solve a test suite optimization problem for one of
the different techniques listed above, several approaches have been
proposed in literature consisting of linear programming [9], greedy
algorithms [9] as well as evolutionary computation based on meta-
heuristic optimization algorithms [4, 6, 21].

Independent of the applied algorithm in any case the first step in
test suite optimization is to find a proper problem representation.
For example Farooq and Lam [6] propose a metaheuristic approach
for test suite minimisation using a binary coding scheme, where an
individual is encoded by assigning each test case in a test suite either
a 1 or a 0 value. Hence the number of 1’s in a test suite represent
its size. The second step in test suite optimization consists of the
definition of a fitness function or in more general cases an objective
function, which allows to determine if a specific individual test suite
is superior to another one in terms of a desired criteria. Common
used criteria are code coverage, execution time, execution cost, fault
detection rate [23].

In what follows, a selection of current research approaches re-
garding test suite optimization is presented. The list is far from
complete, instead it is a brief overview of available work in this
field of research.

TS´´

t t´ t´´

SUT SUT ´ SUT´´

TS´TS
test suite evolution

software evolution

Figure 1: The evolution of a test suite TS alongside the evo-
lution of system under test SUT and the tests t being exe-
cuted. As the application matures, the test suite changes ac-
cordingly, however some of the test case become redundant,
denoted by the dark coloured test cases as part of a test suite.

3 RELATEDWORK
The approach described by Hemmati et al. [8] strives to reduce the
cost of model-based testing trough what is called test case diversity.
To achieve the described goal, they developed a similarity measure,
that aims to maximize diversity in test cases. Anwar and Ahsan [1]
present a regression test suite optimization technique using Fuzzy
Logic. Mayo and Spacey [15] propose a novel framework that aims
to predict regression test failure. The basic idea behind the approach
is to capture runtime behaviour based on a performance analysis
of each test case executed in a regression test suite. De Souza et al.
[4] formulate a test case selection problem as a constrained search-
based optimization task. The fitness function utilised, strives to
maximise requirements coverage in combination with the execution
time for a specific test case. Prasad et al. [21] discuss the process of
test suite minimization in regression testing using a combination
of evolutionary computation and greedy algorithms. Jeyaprakash
and Alagarsamy [10] apply a variant of a genetic algorithm called
Non-dominated Sorting Genetic Algorithm (NSGAII) to the problem
of test suite minimisation. Jabbarvand et al. [9] introduce an energy-
aware test suite minimisation technique specifically addressed to
Android applications applying both Integer Linear Programming
and Greedy Algorithms to solve the optimization problem at hand.

4 APPROACH
The first step in achieving the research objective comprises a sys-
tematic literature review following the guidelines from Kitchenham
and Charters [11]. The review serves as an initial step to conceive
the current state of the art of multi-objective test suite optimiza-
tion in mobile application development with special focus on its
application in mission critical applications. Furthermore relevant

1035

Application of Search-Based Software Engineering Methodologies ... ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

test criteria to be used as part of the multi-objective optimization
problem have to be identified, two of which already stated are
energy-consumption and memory-usage which are relevant for this
thesis.

Mobile Device

Static Code
Analyzation

Code
Instrumentation

Test
Criteria

Build &
Deployment

Testsuite
Execution

Exec.
Trace

TSOpt

TSPat

SUT

TS

SC

CG

CG’

T

1

2

Figure 2: (1) A call graphCG is build using static analysation
based on a test suite TS together with the associated source
code SC. (2) The SC is instrumented with respect to a defined
test criteria, deployed and executed. The resulting execution
trace is further used to enrich the call graphCG ′. (3) Finally
the CG ′ is used to optimize TSOpt the test suite and derive
features TSPat relevant to the test criteria.

Based on the problem definition and the initially stated research
questions in section 1, a first conceptual architecture is presented
in Fig. 2. As depicted the approach requires source code access as
well as access to a mobile device for test execution. The latter is
needed as specific test criteria, e.g. energy consumption, can only
be addresses on a physical device [9]. Thus the presented approach
is to be categorised as a form of white-box testing and corresponds
to the test case selection technique defined in section 2 [23]. Given
the proposed architecture the approach is further described in the
following sections.

4.1 Extraction and Instrumentation
Starting from a test suite together with the source code representa-
tion of a SUT, a call graph CG (see Fig. 2 step (1)) is to be created
using static code inspection. The call graph is further used to trace
method call stacks from each test case in the given test suite TS .
Yoo and Harman [23] describe this form of test case selection as a
control-flow analysis approach. To enrich the generated call graph
with information relevant to a specific test criteria, the available
source code is instrumented accordingly. This step involves differ-
ent instrumentation approaches, as they are closely connected to
the test criteria one is interested in. This means for example in case
of the test criteria energy consumption, the code instrumentation
is somewhat different than in case of memory usage, where for
the latter, the current memory levels before and after a specific
method execution is traced. Whereas for energy consumption the
approach involves sampling of test suites during program execution
and collecting respective energy levels. The collected energy traces

are correlated with the extracted call graph and thus result in the
enriched call graph CG ′ [12]. Challenges that have to be addressed
in course of the thesis involve the implications of garbage collec-
tion, thread context switching and hardware tail energy on measured
energy levels. Current research has already described possible ap-
proaches on how to deal with these aspects when mapping energy
levels to individual source code lines [12].

4.2 Test Suite Optimization
In order to provide answer to RQ-1, the enriched CG ′ is used as
input for a multi-objective optimization algorithm, striving to seek
a minimal selection of test cases, that allow for optimal coverage
of the enriched CG ′ with respect to the desired test criteria. For
example, in case of energy consumption, the optimization problem
to be solved by the algorithm, is to find a minimal selection of test
cases in a given test suite that cause the highest energy foot print.
Preliminary work on applying energy-aware optimization on test
suites are described by Jabbarvand et al. [9]. As for the algorithm,
the presented approach is to rely on population based algorithms,
e.g. Genetic Algorithms or Evolution Strategy [3].

4.3 Test Criteria Feature Extraction
Since the enriched call graph CG ′ is tied to the state of the source
code it was created from, manipulations in form of additions result
in an invalid call graph. This leads to the fact, that with every
software increment, the enriched call-graph CG ′ would have to be
recreated. This means that all test cases in the affected test suite
need to be executed on a physical device again.

Thus, the presented approach proposes an additional step in the
optimization process. A feature extraction process is to be applied
on the enriched call graph and the associated source code. The
feature extraction process is responsible to determine patterns and
features relevant to the selected test criteria. E.g. Vásquez et al. [22]
describe code patterns that are subject to high energy footprint on
android devices. As the patterns are closely tied to the test criteria,
part of answering RQ-3will consist of researching available patterns
with respect to the test criteria.

As a result, when the SUT is changed, either by adding or ma-
nipulating the code areas relevant to the given test criteria, these
features, based on the changes, are expected to be able to predict a
quality value for the respective test case and thus give insight to
RQ-3. Furthermore, this will allow to determine if code and or a
test case that have been added will yield better results compared to
a current available solution.

5 RESULTS ACHIEVED SO FAR
First experiments with multi-objective test suite optimization have
started recently by applying a genetic algorithm on an existing test
suite generated using the randoop framework in order to reduce the
size and execution time of a generated test suite while maintaining
coverage [20]. Furthermore, static analysis techniques were utilised
to retrieve call graphs from sample source code in Java.

A review protocol for an upcoming literature review is currently
prepared, identifying evidence in the area of multi-objective test
suite optimization in mobile application development. Additionally
3 open source projects have been selected from the F-Droid Android

1036

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany A. Schuler

OSS [5] repository It is planned to use the selected open source
projects for a case study in which the aforementioned approach is
utilised in order to empirically evaluate the approach.

6 EXPECTED CONTRIBUTIONS
Given the aforementioned research approach the expected contri-
butions of the thesis are:
CO-1: A case study illustrating the approach being able to reduce

test suite size given a defined test criteria, while preserving
coverage. A first set of relevant criteria for this thesis consist
of (A) memory-usage and (B) energy-consumption.

CO-2: A new multi-objective test suite optimisation methodology
for mobile applications.

CO-3: A library of features and patterns associated with the in-
vestigated test criteria (A) and (B) to support the test case
selection process as the SUT evolves.

CO-4: The foundation for a framework, able to cope with test
suite optimization problems in mobile computing, offering a
set of different algorithms and optimization techniques as a
basis for subsequent research.

7 EVALUATION PLAN
The evaluation plan of the thesis comprises both, an evaluation
based on open source projects as well as in industrial project. To
answer RQ-1 and RQ-2 open source applications from the F-Droid
[5] repository will be used. The first goal is to evaluate the effec-
tiveness of the approach by optimizing available test suites and
compare the results with the current state of testing for respective
projects. The expected result is, that the presented approach is able
to reduce time and cost for testing, as existing test suites are opti-
mised along a defined test criteria. Subsequently the test criteria
feature extraction will be evaluated by comparing specific software
increments from respective open source applications. This allows
to determine, if the proposed feature extraction technique is able
to outperform standalone test suite optimization, thus answering
RQ-3.

As an addition a comparative study state of the art test suite
optimization approaches based on an existing benchmark suite
is planned. However as described by Nagappan and Shihab [19]
currently most of the available test automation approaches geared
towards at mobile applications work on app binaries due to the fact
the researchers often don’t have access to source code.

In case of the industrial case study first discussions on how to
apply the presented approach have started. While the goal of the
industrial case study is to determine the effectiveness accompany-
ing the development progress and utilizing the optimization of a
mission critical addressed to healthcare.

8 CONCLUSION AND OUTLOOK
This paper proposes a thesis in the field of test suite optimization.
Backed by a selection of previous work in this field the problem
statement as well as the research questions are presented. Fur-
thermore an approach to apply multi-objective test optimization
algorithms in connection with test criteria driven feature extraction
mechanism is proposed, enabling to estimate quality levels of test

cases as a system under test evolves. Subsequently the planned
work is described on the way to fulfill the stipulated goals set for
the doctoral thesis. An overview of the expected outcome is pre-
sented together with a first evaluation plan, describing how the
research questions are to be answered.

REFERENCES
[1] Zeeshan Anwar and Ali Ahsan. 2013. Multi-objective regression test suite op-

timization with Fuzzy logic. In 2013 16th International Multi Topic Conference
(INMIC). IEEE, 95–100.

[2] P N Boghdady, N Badr, M Hashem, and M F Tolba. 2011. Test case generation
and test data extraction techniques. Inter J Electr Comput Sci (2011).

[3] M Cavazzuti. 2012. Optimization methods: from theory to design scientific and
technological aspects in mechanics. AIP.

[4] Luciano S De Souza, Ricardo B C PrudêNcio, Flavia De A Barros, and Eduardo H
Da S Aranha. 2013. Search based constrained test case selection using execution
effort. Expert Systems with Applications: An International Journal 40, 12 (Sept.
2013), 4887–4896.

[5] F-Droid Limited. 2017. F-Droid Android Open Source Repository. (2017). https:
//f-droid.org

[6] Usman Farooq and C P Lam. 2015. Evolving the Quality of a Model Based
Test Suite. In 2009 International Conference on Software Testing, Verification, and
Validation Workshops. IEEE, 141–149.

[7] Gordon Fraser, Gordon Fraser, and Andrea Arcuri. 2013. Whole Test Suite
Generation. IEEE Transactions on Software Engineering 39, 2 (2013), 276–291.

[8] Hadi Hemmati, Lionel Briand, Andrea Arcuri, and Shaukat Ali. 2010. An enhanced
test case selection approach for model-based testing: an industrial case study. ACM,
New York, New York, USA.

[9] Reyhaneh Jabbarvand, Alireza Sadeghi, Hamid Bagheri, and Sam Malek. 2016.
Energy-aware test-suite minimization for Android apps. ACM Press, 425–436.

[10] Srividhya Jeyaprakash and K Alagarsamy. 2015. A Distinctive Genetic Approach
for Test-Suite Optimization. Procedia Computer Science 62 (2015), 427–434.

[11] Barbara Kitchenham and Stuart Charters. 2007. Guidelines for performing system-
atic literature reviews in software engineering. Technical Report. Technical report,
EBSE Technical Report EBSE-2007-01.

[12] Ding Li, Shuai Hao, William G. J. Halfond, and Ramesh Govindan. 2013. Calculat-
ing Source Line Level Energy Information for Android Applications. In Proceed-
ings of the 2013 International Symposium on Software Testing and Analysis (ISSTA
2013). ACM, New York, NY, USA, 78–89. https://doi.org/10.1145/2483760.2483780

[13] RiyadhMahmood, NarimanMirzaei, and SamMalek. 2014. EvoDroid - segmented
evolutionary testing of Android apps. SIGSOFT FSE (2014), 599–609.

[14] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: multi-objective automated
testing for Android applications. ACM Press, 94–105.

[15] Michael Mayo and Simon Spacey. 2013. Predicting Regression Test Failures
Using Genetic Algorithm-Selected Dynamic Performance Analysis Metrics. In
Search Based Software Engineering. Springer Berlin Heidelberg, Berlin, Heidelberg,
158–171.

[16] A Méndez. 2015. Automated testing of mobile applications: a systematic map
and review. Proceedings of the 10th International Conference on Web Information
Systems and Technologies (2015).

[17] S M Mohi-Aldeen and S Deris. 2013. Comparative Evaluation of Automatic Test
Case Generation Methods. . . . of Technology (2013).

[18] Henry Muccini, Antonio Di Francesco, and Patrizio Esposito. 2012. Software
testing of mobile applications: Challenges and future research directions. In 2012
7th International Workshop on Automation of Software Test (AST). IEEE, 29–35.

[19] Meiyappan Nagappan and Emad Shihab. 2016. Future Trends in Software Engi-
neering Research for Mobile Apps. 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER) (2016).

[20] Carlos Pacheco and Michael D. Ernst. 2007. Randoop: Feedback-directed Random
Testing for Java. In OOPSLA 2007 Companion, Montreal, Canada. ACM.

[21] Dhanyamraju S U M Prasad, Simy Chacko, Satya Sai Prakash Kanakadandi, and
Gopi Krishna Durbhaka. 2014. Automated Regression Test Suite Optimization
Based on Heuristics. In ICAIET ’14: Proceedings of the 2014 4th International Con-
ference on Artificial Intelligence with Applications in Engineering and Technology.
IEEE Computer Society, 48–53.

[22] Mario Linares Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Rocco Oliveto,
Massimiliano Di Penta, and Denys Poshyvanyk. 2014. Mining energy-greedy
API usage patterns in Android apps - an empirical study. MSR (2014).

[23] Shin Yoo and Mark Harman. 2012. Regression testing minimization, selection
and prioritization - a survey. Softw. Test., Verif. Reliab. 22, 2 (2012), 67–120.

[24] S Zein, N Salleh, and J Grundy. 2016. A systematic mapping study of mobile
application testing techniques. Journal of Systems and Software 117 (2016), 334–
356.

1037

https://f-droid.org
https://f-droid.org
https://doi.org/10.1145/2483760.2483780

	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Approach
	4.1 Extraction and Instrumentation
	4.2 Test Suite Optimization
	4.3 Test Criteria Feature Extraction

	5 Results Achieved so Far
	6 Expected Contributions
	7 Evaluation Plan
	8 Conclusion and Outlook
	References

