
Sketch-Based Gradual Model-Driven Development

Peiyuan Li Naoyasu Ubayashi Di Ai Yu Ning Li
Shintaro Hosoai Yasutaka Kamei

Kyushu University
Fukuoka, Japan

{lipeiyuan@posl.ait, ubayashi@ait, aidi@posl.ait, liyuning@posl.ait, hosoai@qito,
kamei@ait}.kyushu-u.ac.jp

ABSTRACT
This paper proposes an abstraction-aware reverse engineer-
ing method in which a developer just makes a mark on an
important code region as if he or she draws a quick sketch
on the program list. A support tool called iArch slices a
program from marked program points and generates an ab-
stract design model faithful to the intention of the developer.
The developer can modify the design model and re-generate
the code again while preserving the abstraction level and the
traceability. Archface, an interface mechanism between de-
sign and code, plays an important role in abstraction-aware
traceability check. If the developer wants to obtain a more
concrete design model from the code, he or she only has to
make additional marks on the program list. We can gradu-
ally transition to model-driven development style.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
Information hiding

General Terms
Design; Languages

Keywords
MDD; Interface; Abstraction; Traceability

1. INTRODUCTION
MDD (Model-Driven Development) is one of the promis-

ing approaches to software abstraction. An application can
be developed at a high abstraction level by using a DSL
(Domain-Specific Language), a DSML (Domain-Specific Mod-
eling Language), or an ADL (Architectural Description Lan-
guage). We do not need program code, because it can be
fully generated from its design model.

However, it is not easy to migrate from a traditional de-
velopment style to MDD, because a large quantity of legacy

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
InnoSWDev’14 , November 16, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3226-2/14/11 ...$15.00.

Figure 1: Gradual MDD

programs already exists in industry. Moreover, design doc-
uments and programs are not necessarily consistent. Major
MDD tools adopt a code generation approach in which we
have to create a design model and then translate it to the
corresponding code. However, it is unrealistic to abandon
existing code and migrate to MDD by restructuring design
models from scratch. Although reverse engineering tools
can reproduce a design model from the existing program
code, the model tends to be meaningless because its ab-
straction level is the same to that of the original code. A
design model should represent an software architecture and
be more abstract than the code. Of course, the role of design
is not limited to abstraction. For example, a developer has
to take into account non-functional requirements. However,
abstraction is critical in software development [9].

To deal with this problem, we propose an abstraction-
aware reverse engineering method in which a developer just
makes a mark on an important code region as if he or she
draws a quick sketch on the program list as illustrated in
Figure 1. A support tool called iArch [1] slices a program
from marked program points and generates an abstract de-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

InnoSWDev’14, November 16, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3226-2/14/11...$15.00
http://dx.doi.org/10.1145/2666581.2666595

100

sign model faithful to the intention of the developer. This
mark is not directly embedded in the code but just an input
to the iArch. Special annotations that invade separation on
concerns are not needed in the code. The abstraction level
of a generated model is determined by specified marks. An
interface mechanism termed Archface [14, 15] is used to pre-
serve the traceability between a generated design model and
the original code. We can modify the model and re-generate
the code again while preserving the abstraction level and the
traceability. If a developer wants to obtain a more concrete
design model from the code, he or she only has to make
additional marks on the program list. These marks indi-
cate extra design concerns that are reflected to the design
model. For example, the developer only has to make a new
mark on a method definition if the developer is aware that
the method is important and should be contained in the de-
sign model after reading the code in more detail. We can
gradually transition to the MDD style.

Our methods are summarized as follows: 1) an abstract
design model can be automatically generated by sketch-like
program reading; 2) traceability between design and code
is always maintained using Archface; and 3) a design model
can be gradually refined whenever we obtain new knowledge
from the legacy code. In industry, many people believe that
the migration from traditional software development style
based on legacy code maintenance to MDD style is unreal-
istic. Petre studied how UML (Unified Modeling Language)
is used in industry by interviewing with 50 professional soft-
ware engineers in 50 companies [11]. The results are as fol-
lows: The majority of those interviewed simply do not use
UML, and those who do use it tend to do so selectively and
often informally. Fowler points out that people use UML
as sketch, blueprint, or programming language [5]. UML as
sketch or blueprint is widely accepted in industry. However,
UML as programming language is not necessarily adopted.
Our approach bridges UML as sketch with UML as blueprint
or programming language.

This paper is structured as follows. Archface-Centric MDD,
a MDD style based on Archface, is introduced in Section 2.
A method for gradually migrating to Archface-Centric MDD
is shown in Section 3. Discussion and future work are pro-
vided in Section 4.

2. ARCHFACE-CENTRIC MDD
In this section, we introduce Archface-Centric MDD [14,

15] in which a design model is treated as a first-class software
module termed design module.

2.1 Basic Concept
Figure 2 shows the relation among design modules, pro-

gram modules, and Archface, an interface for bridging them.
The same Archface is modeled by a design model and is im-
plemented by program code. If each type check is correct, a
design model is traceable to the code. Archface plays a role
of design interface for a design model. At the same time,
Archface plays a role of program interface for code. Arch-
face exposes architectural points shared between design and
code. These points termed archpoints have to be modeled
as design points in a UML model and have to be imple-
mented as program points in its code. Class declarations,
methods, and events such as message send are called design
points. An abstraction level—How much should be a de-
sign model more abstract than its code?—is determined by

Figure 2: Archface-Centric MDD [15]

selecting archpoints that should be shared between design
and code.

Table 1 shows design points, program points, and arch-
points. These points can be mapped each other. The idea
of archpoints and their selection originates in AOP (Aspect-
Oriented Programming) [7]. Archpoints correspond to join
points in AspectJ [8]. We focus on archpoints embedded
in class and sequence diagrams, because structural and be-
havioral aspects of software architecture can be basically
represented using these diagrams. Archface conceptually in-
cludes the notion of traditional program interface, because
a method definition can be interpreted as a provision of an
archpoint selected by an execution pointcut in AspectJ.

2.2 Archface, Design and Code
We illustrate design and program modules using the Ob-

server pattern, the same example introduced in [15].

2.2.1 Archface
Archface, which supports component-and-connector archi-

tecture, consists of two kinds of interface, component and
connector. The former exposes archpoints and the latter de-
fines how to coordinate archpoints. Hierarchical definitions
are possible, because both interfaces support inheritance. A
collaborative architecture can be encapsulated into a group
of component and connector interfaces. Pointcut & advice
in AspectJ is used as a mechanism for exposing archpoints
(pointcut) and coordinating them (advice).

List 1 is a component interface for a subject. Archface
exposes archpoints from ports. Four port declarations (line

101

Table 1: Design/Program Points and Archpoints
Diagram Design point (UML2 metamodel) Program point (Java) Archpoint (Pointcut)
Class diagram Class class a class (class)
(UML) Operation method a method (method)

Property field a field (field)
Sequence diagram Message/MessageEnd (sendEvent) method call a mcall (call)*
(UML) Message/MessageEnd (receiveEvent) method exec a mexec (execution)*

Interaction (control flow) (cflow)*
Data flow (Property def) field set a def (set)*

(Property use) field get a use (get)*
*: AspectJ pointcut

02-07) correspond to the traditional interface in which each
method declaration can be regarded as exposure of method
execution. The notifyObservers port (line 11-12) exposes
an update call archpoint that has to be called under the
control flow of setState. The operator && is used to sym-
bolize Logical AND. This archpoint is combined with an
update execution archpoint specified in a component in-
terface for observers (List 2, line 02).

[List 1]

01: interface component cSubject {
02: port addObserver():
03: execution(void addObserver(Observer));

04: port removeObserver():
05: execution(void removeObserver(Observer));

06: port getState(): execution(String getState());
07: port setState(): execution(void setState(String));

08: }
09:
10: interface component cSubjectBehavior extends cSubject {

11: port notifyObservers():
12: cflow(setState()) && call(update());

13: }

[List 2]
01: interface component cObserver {
02: port update(): execution(void update());

03: }
04:

05: interface component cObserverBehavior extends cObserver {
06: port updateState():

07: cflow(update()) && call(String getState());
08: }

List 3 is a connector interface specifying the coordination
among archpoints exposed from component’s ports. The ex-
ecution of archpoints exposed from component interfaces is
coordinated by connects (multiple indicates the connection
is repeatable). In notifyChange, an update call archpoint
in cSubject is bound to an update execution archpoint in
cObserver.

[List 3]
01: inteface connector cObserverPattern(cSubject, cObserver);
02: inteface connector cObserverPatternBehavior

03: extends cObserverPattern {
04: connects multiple notifyChange

05: (cSubject.notifyObservers, cObserver.update);
06: connects obtainNewState

07: (cObserver.updateState, cSubject.getState);
08: }
09: }

2.2.2 Design and Program Modules
Both design and program modules are the same as tra-

ditional UML diagrams and code. However, there is a cru-
cial difference. An interface, Archface, resides between them
and it makes them software modules. ObserverPatternCD,

a class diagram, and ObserverPatternSD, a sequence dia-
gram shown in Figure 2 are design modules faithful to the
Archface declared in List 1, 2, and 3. A program module is
also the same as a traditional module such as a Java class.
List 4 and 5 are Java classes implementing the Archface.

[List 4]
01: public class Subject {
02: private Vector observers = new Vector();

03: private String state = "";
04: public void addObserver(Observer o) {

05: observers.add(o);
06: }

07: public void removeObserver(Observer o) {
08: observers.remove(o);
09: }

10: public String getState() {return state;}
11: public void setState(String s) {

12: state = s;
13: for (int i=0; i<observers.size(); i++)
14: ((Observer)observers.get(i)).update();

15: }
16: }

[List 5]

01: public class Observer {
02: private subject = new Subject();
03: private String state = "";

04: public void update() {
05: state = subject.getState();

06: System.out.println("Update received from Subject,
07: state changed to : " + state);

08: }
09: }

To integrate design and program modules, each design
module models its Archface and each program module im-
plements the same Archface. The conformance to Archface
can be checked by a type system that takes into account not
only program but also design interfaces. The type checking
is performed by verifying whether or not a design point (pro-
gram point) corresponding to an archpoint exists in a de-
sign module (program module) while satisfying constraints
among design points (program points) (e.g., the order of
message sequences specified by cflow). Although traditional
types are structural—sets of method signatures, Archface is
based on archpoints including behavior—specified by the or-
der of archpoints because a design model imposes structural
or behavioral architectural constraints on a program. The
type checking can be implemented using an SMT (Satisfi-
ability Modulo Theories) [3] solver. Yices [18] is used as
an SMT solver in our compiler implementation, because the
order of archpoints can be easily encoded using an array [16].

3. GRADUAL MDD
In this section, we show the notion of gradual MDD using

the example in Section 2.

102

Figure 3: Diagram Generation Process

3.1 Diagram Generation Process
Assume that a developer makes a mark to the update call

(List 4, line 14) as follows.

[From List 4]
14: ((Observer)observers.get(i)).update(); // Mark!

The Archface definition below is generated from the mark
above. The line number corresponds to that of List 1 and
2. We do not have to make marks to all associated program
points, because iArch, an IDE (Integrated Development En-
vironment) for supporting Archface-Centric MDD, provides
the archpoints related to the update call by slicing the pro-
gram (List 4, 5). In this case, a_mcall/a_mexec archpoints
of setState, update, and getState are provided as the can-
didates of the archpoints that should be converted to the
corresponding Archface definition.

// Connector interfaces are omitted due to the space limitation.

[Part of List 1]
01: interface component cSubject {

06: port getState(): execution(String getState());
07: port setState(): execution(void setState(String));

11: port cflow_setState():
12: cflow(setState()) && call(update());
13: }

[Part of List 2]
01: interface component cObserver {

02: port update(): execution(void update());
06: port clow_update():

07: cflow(update()) && call(String getState());
08: }

Figure 3 is a sequential diagram instantiated from this
Archface definition. Archface and a diagram correspond to
a type and its instance, respectively. Multiple diagrams can
exist corresponding to one type, because a diagram can con-
tain extra design points that are not specified in Archface.
That is, a diagram can include model elements that are not
the target of traceability check. For example, we can de-
scribe uncertain design decisions that need not be traceable
to the code. The iArch IDE generates the most simple dia-
gram whose information is equivalent to the obtained Arch-
face definition. This diagram generation can be automated
by directly mapping an archpoint in Archface to its corre-
sponding design point. The most simple diagram can be a

start point of gradual model evolution shown in 3.3, because
additional design concerns can be added to this diagram by
a developer or newly reversed design concerns can be incre-
mentally reflected to this diagram by the iArch IDE.

3.2 Slicing Rules
Table 2 shows the slicing rules for extracting archpoints.

Each rule is applied succeedingly without falling in the loop.
For example, Rule2 except Rule2-2 can be used after Rule1-
2 is applied. However, too many archpoints can be extracted
by applying these rules. To deal with this problem, we pro-
vide optional rules for eliminating extracted archpoints as
follows: OPT1) partial suppress of applying rules in Table
2; OPT2) suppress of succeeding rule application; OPT3)
API call/execution elimination; OPT4) constructor elimi-
nation; and OPT5) extraction of the longest sequential or
data flow. In OPT5, for example, only the message sequence
m1 → m2 → m3 is extracted when there are candidates m1,
m1 → m2, and m1 → m2 → m3. By applying these optional
rules, we can obtain a simple Archface definition that is rea-
sonable for the most developers. In the example shown in
3.1, Rule4 and succeeding rules are applied to extract a mes-
sage sequence flow. Java class library calls such as println

are eliminated by applying optional rule OPT3. Moreover,
methods such as addObserver and removeObserver are not
contained in Figure 3, because OPT1 is used—Rule1-2 is not
applied after applying Rule4-2.

3.3 Gradual Model Evolution
We can put MDD into practice using a generated design

model. We can modify the model, reflect it to the Archface,
and re-generate the code while preserving the other part of
the existing code. The iArch compiler embeds the code snip-
pets corresponding to the updated Archface into the existing
code. If a developer adds a new message sequence in a design
model, the iArch compiler generates a control flow of the as-
sociated method calls/executions and just appends them to
the existing code. Our approach does not need annotations
for this kind of round-trip-engineering. Archface plays an
important role in preserving the traceability without break-
ing an abstraction level. On the other hand, if a developer
considers that unmarked methods such as addObserver and

103

Table 2: Slicing Rules for Extracting Archpoints
No. Original Inferred Archpoints (Candidates)

Archpoint
1. a class 1-1) corresponding a_class

1-2) a_method contained in a_class

1-3) a_field contained in a_class

2. a method 2-1) corresponding a_method

2-2) a_class containing a_method

2-3) a_field accessed from a_method

2-4) a_mcall calling a_method

2-5) a_mexec executing a_method

3. a field 3-1) corresponding a_field

3-2) a_class containing a_field

3-3) a_method accessing a_field

3-4) a_def defining a_field

3-5) a_use using a_field

4. a mcall 4-1) corresponding a_mcall

4-2) a_class containing a_mcall

4-3) a_method containing a_mcall

4-4) a_mexec called by a_mcall

5. a mexec 5-1) corresponding a_mexec

5-2) a_class containing a_mexec

5-3) a_method containing a_mexec

5-4) a_mcall executed by a_mexec

6. a def 6-1) corresponding a_def

6-2) a_class containing a_def

6-3) a_method containing a_def

6-4) a_field defined by a_def

7. a use 7-1) corresponding a_use

7-2) a_class containing a_use

7-3) a_method containing a_use

7-4) a_field used by a_use

removeObserver should be reflected to a design model, he or
she only has to make the marks to these method definitions
(List 4, line 04, 07). A new design model generated from
additional marks is merged with the existing model. The
design model is gradually improved as the knowledge of the
existing code increases.

4. DISCUSSION AND FUTURE WORK
As one of the important research directions in the field of

software design and architecture, Taylor et al. pointed out
the need for adequate support for fluidly moving between
design and coding tasks [13]. Gradual MDD is a solution to
this issue. Our approach guarantees the traceability between
design and code by introducing the notion of Archface.

There are several studies on design traceability. Aldrich
et al. proposed ArchJava [2], an extension of Java. Arch-
Java unifies architecture and implementation, ensuring that
the implementation conforms to architectural constraints.
Umple [17] supports the notion of model-oriented program-
ming that adds modeling features derived from UML to
object-oriented languages such as Java. Using ArchJava or
Umple, we can merge modeling with programming. Cassou
et al. explored the design space between abstract and con-
crete component interaction specifications [4]. Zheng and
Taylor proposed 1.x-way architecture-implementation map-
ping [19] for deep separation of generated and non-generated
code. On the other hand, in our approach, a type-based
module integration mechanism plays a key role in bridg-

ing design and code while preserving an abstraction level.
JaMoPP, a set of plug-ins for parsing Java code into models
based on EMF (Eclipse Modeling Framework), bridges the
gap between modelling and programming [6]. MoDisco is
a framework to develop model-driven tools supporting soft-
ware modernization [10]. Both JaMoPP and MoDisco pro-
vide reverse engineering facilities. Our approach focuses on
reverse engineering taking abstraction into account.

We are developing the iArch IDE consisting of 1) model &
program editor, 2) Archface generator, 3) abstraction-aware
compiler, and 4) abstraction metrics calculation. Program
slicing for extracting archpoints is under construction. This
IDE implemented as an Eclipse plug-in using EMF supports
class and sequential diagrams whose metamodels are basi-
cally the same as UML2 ecore metamodels. The syntax of
Archface is based on AspectJ pointcuts and is slightly com-
plex. To relax this problem, the iArch IDE introduces syn-
tactical sugar consisting of a Java-like interface (structural
part) and an LTS (Labelled Transition Systems) notation
(behavioral part). We plan to implement iArch on a tablet
PC to realize a sketch-like user interface.

We take a hint from gradual typing [12] in which a type
may be determined either at compile-time (static typing) or
at run-time (dynamic typing). Archface is a type between
design and code. Forward and reverse engineering in MDD
can be considered model-time typing and review-time typ-
ing, respectively. A reasonable Archface can be obtained by
gradually performing both kinds of typing.

The empirical evaluation using large scale code-bases is a
crucial issue. We plan to apply our idea to generate an ab-
stract design model from open source software repositories.

5. ACKNOWLEDGMENTS
This research is being conducted as a part of the Grant-

in-aid for Scientific Research (A) 26240007 and Challenging
Exploratory Research 25540025 by the Ministry of Educa-
tion, Culture, Sports, Science and Technology, Japan.

6. REFERENCES
[1] Ai, D., Ubayashi, N., Li, P., Hosoai, S., Kamei, Y.:

iArch: An IDE for Supporting Abstraction-aware
Design Traceability, 2nd International Conference on
Model-Driven Engineering and Software Development
(MODELSWARD 2014), pp.442-447, 2014.

[2] Aldrich, J., Chambers, C., and Notkin, D.: ArchJava:
Connecting Software Architecture to Implementation,
24th International Conference on Software
Engineering (ICSE 2002), pp.187-197, 2002.

[3] Biere, A., Heule, M., Maaren, H. V., and Toby Walsh,
T.: Handbook of Satisfiability, Ios Pr Inc, 2009.

[4] Cassou, D., Balland, E., Consel, C., and Lawall, J.:
Leveraging Software Architectures to Guide and
Verify the Development of Sense/Compute/Control
Applications, 33rd International Conference on
Software Engineering (ICSE 2011), pp.431-440, 2011.

[5] Fowler, M.: UML Distilled, Addison-Wesley, 2003.

[6] JaMoPP, http://www.jamopp.org/.

[7] Kiczales, G., Lamping, J., Mendhekar A., Maeda, C.,
Lopes, C., Loingtier, J. and Irwin, J.: Aspect-Oriented
Programming, In Proceeding of European Conference
on Object-Oriented Programming (ECOOP’97),
pp.220-242, 1997.

104

[8] Kiczales, G., Hilsdale, E., Hugunin, J., et al.: An
Overview of AspectJ, In Proceedings of European
Conference on Object-Oriented Programming (ECOOP
2001), pp.327-353, 2001.

[9] Kramer, J.: Is Abstraction the Key to Computing?
Communications of the ACM, Vol. 50 Issue 4,
pp.36-42, 2007.

[10] MoDisco, http://www.eclipse.org/MoDisco/.

[11] Petre, M.: UML in Practice, 35th International
Conference on Software Engineering (ICSE 2013),
pp.722-731, 2013.

[12] Siek, J. G. and Taha, W.: Gradual Typing for Object,
21st European Conference on Object-Oriented
Programming (ECOOP 2007), pp.2-27, 2007.

[13] Taylor, R. N. and Hoek, A.: Software Design and
Architecture –The once and future focus of software
engineering, 2007 Future of Software Engineering
(FOSE 2007), pp.226-243, 2007.

[14] Ubayashi, N., Nomura, J., and Tamai, T.: Archface:
A Contract Place Where Architectural Design and

Code Meet Together, 32nd International Conference
on Software Engineering (ICSE 2010), pp.75-84, 2010.

[15] Ubayashi, N. and Kamei, Y.: Design Module: A
Modularity Vision Beyond Code, 5th International
Workshop on Modelling in Software Engineering
(MiSE 2013, Workshop at ICSE 2013), pp.44-50, 2013.

[16] Ubayashi, N., Ai, D., Li, P., Li, Y., Hosoai, S., and
Kamei, Y.: Abstraction-aware Verifying Compiler for
Yet Another MDD, In Proceedings of the 29th
International Conference on Automated Software
Engineering (ASE 2014), New Ideas Paper, to appear,
2014.

[17] Umple: http://cruise.eecs.uottawa.ca/umple/.

[18] Yices: http://yices.csl.sri.com/

[19] Zheng, Y. and Taylor, R. N.: Enhancing
Architecture-Implementation Conformance with
Change Management and Support for Behavioral
Mapping, 34th International Conference on Software
Engineering (ICSE 2012), pp.628-638, 2012.

105

