
Model-Driven Test Case Design for
Model-to-Model Semantics Preservation

Christopher Gerking
Software Engineering Group

Heinz Nixdorf Institute
University of Paderborn

Zukunftsmeile 1
33102 Paderborn, Germany

christopher.gerking@upb.de

Jan Ladleif
Software Engineering Group

Heinz Nixdorf Institute
University of Paderborn

Zukunftsmeile 1
33102 Paderborn, Germany

jladleif@mail.upb.de

Wilhelm Schäfer
Software Engineering Group

Heinz Nixdorf Institute
University of Paderborn

Zukunftsmeile 1
33102 Paderborn, Germany

wilhelm@upb.de

ABSTRACT
Model transformations used in model-driven software devel-
opment need to be semantics-preserving, i.e., the meaning
of a model must not be distorted by the transformation.
Testing whether a transformation preserves the dynamic se-
mantics of a model requires oracles such as model checkers,
which explore the runtime statespace of models. The high
amount of repetitive code to integrate heterogeneous trans-
formation engines and test oracles makes the design of se-
mantics preservation tests a tedious task. In this paper, we
apply the approach of model-driven testing to the domain of
model transformation. We present a visual domain-specific
language for the design of model transformation tests, which
reduces test cases to their essential components. Our lan-
guage enables an immediate execution of test cases with pre-
cise validation feedback. We evaluate our approach in terms
of a case study based on the MechatronicUML model-
ing language for the software development of cyber-physical
systems.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Veri-
fication—model checking ; D.2.5 [Software Engineering]:
Testing and Debugging—testing tools; D.2.9 [Software En-
gineering]: Management—software quality assurance; I.6.4
[Computing Methodologies]: Simulation and Modeling—
model validation and analysis

General Terms
Design

Keywords
Model transformation, test case design, semantics preserva-
tion

1. INTRODUCTION
Model transformations are an integral part of contempo-

rary model-driven software development (MDSD) processes.
They play the vital role of bridging the gap between plat-
form-independent models and concrete execution platforms,
generating executable software systems from abstract spec-
ifications. In order to ensure that a generated software sys-
tem meets its specified requirements, model transformations
in MDSD need to be semantics-preserving, i.e., the meaning
of a model must not be distorted (only refined) by the trans-
formation. However, proof techniques for semantics preser-
vation during model transformations are still in the early
stages of development [10]. Therefore, viable quality assur-
ance for model transformations reduces mainly to testing
approaches [2].

Test cases for model-to-model semantics preservation are
characterized by a heterogeneous infrastructure in terms of
tools, technologies, and methods involved. On the one hand,
a variety of special-purpose model transformation languages
exists [3], and requires to invoke specific transformation en-
gines during the execution of test cases. On the other hand,
different requirements in terms of testing precision give rise
to various kinds of test oracles [16], which are consulted dur-
ing the execution of test cases in order to assess the correct-
ness of the transformation result. For example, validating
the output model against syntactic constraints could be a
sufficient oracle, when the primary goal is to exclude seman-
tic invalidity. In contrast, model comparison [13] represents
an established and more restrictive test oracle, demanding
syntactic equality between the output model and a carefully
selected, manually certified reference model. As syntactic
equality implies semantic equivalence, model comparison is
sufficient to test semantics preservation between output and
reference model.

However, syntactic equality is far from a necessary condi-
tion for semantics preservation, because two disparate mod-
els can still be equivalent with respect to a selection of rep-
resentative semantic properties. Therefore, model compari-
son often appears as a too strict oracle for the preservation
of semantic properties during model-to-model transforma-
tions. Especially when the model transformation is work in
progress, the structure of the output model might change
frequently and cause false positive test failures. MDSD suf-
fers from this problem in particular, as it involves behav-
ioral models with intrinsic dynamic semantics, which define
the runtime execution behavior of a software system. Static

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

A-TEST’15, August 30-31, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3813-4/15/08...$15.00

http://dx.doi.org/10.1145/2804322.2804323

1



reasoning at syntax level is inappropriate to argue about
these dynamic semantic properties. Hence, testing seman-
tics preservation efficiently requires a test oracle that oper-
ates beyond the syntax level, and analyzes output models
in terms of their dynamic semantics. Thus, oracles need to
explore the runtime statespace of the models involved, using
dedicated tools for model simulation or model checking [7].

Test cases for model-to-model semantics preservation re-
quire a considerable amount of repetitive glue code, usually
written in a general-purpose programming language that
supports the integration of heterogeneous technologies. For
example, a test case could invoke a specific transformation
engine to transform an input model into an output model,
before invoking a specific model checker to analyse the out-
put model for certain semantic properties. Integrating such
heterogeneous technologies makes the test case design for
model transformations a tedious task, because the repeti-
tive integration code is irrelevant to the essential logic of
the test cases.

In this paper, we apply the approach of model-driven test-
ing to the domain of model transformation. We present a vi-
sual domain-specific language (DSL) for the design of model
transformation tests, which abstracts from irrelevant details
and reduces test cases to their essential components. Our
DSL supports the visual flow-based modeling of test cases,
and enables to specify the flow of models between different
components, while abstracting from the concrete execution
order. The approach also enables an immediate test execu-
tion with precise visual validation feedback. We evaluate our
approach in terms of a case study based on the Mechatro-
nicUML modeling language for the software development of
cyber-physical systems [4].

In summary, the contribution of this paper is (i) a lan-
guage concept for the model-driven design of test cases for
semantics preservation during model-to-model transforma-
tions, and (ii) a visual DSL as an application of our concept,
enabling the design and execution of semantics preservation
test cases in the context of MechatronicUML.

Our paper is structured as follows: Section 2 describes
our model-driven testing approach for model transforma-
tions. In Section 3, we demonstrate our approach in terms
of a visual DSL for the design and execution of test cases.
We discuss related work in Section 4, before concluding in
Section 5.

2. MODEL-DRIVEN TESTING OF MODEL
TRANSFORMATIONS

Common to the typical components of model transforma-
tion test cases (e.g., loading test models, invoking trans-
formation engines, or consulting oracles) is their usage of
models as inputs or outputs. Hence, regardless of the high
amount of repetitive glue code that is usually required to
integrate heterogeneous components, they share a common
type of interface in terms of models. Based on the observa-
tion of models as primary interfaces between components,
we abstract from their technological distinctions and apply
the approach of model-driven testing to the domain of model
transformation. In Section 2.1, we present a formal design
approach for model transformation test cases in terms of a
domain-specific modeling language. Based on this modeling
approach, Section 2.2 describes the execution of test cases
and how to determine the result of an execution.

2.1 Test Case Design
The core elements of a test case are its components, which

we model using nodes: Each node represents one specific
action, such as loading a model or verifying assertions. To
accomplish its task, a node exhibits individual input ports
from which it receives data. After its execution, it may issue
results to its individual set of output ports. These, in turn,
can be connected to input ports of other nodes, yielding a
dataflow network. As we specify test cases, each node may
also fail: If a node observes unexpected behavior or finds
its assertions are incorrect, it issues a relevant error message
and triggers the whole test case’s failure. Formally, such a
system can be summarized as follows:

Definition 1. A test case C is a 7-tuple (V, I,O,D, opt,
exe, L) with

• the set of nodes V ,

• the set of all input ports I,

• the set of all output ports O,

• the dataflow relation D ⊆ O × I,

• a function opt : I → {true, false} determining if an
input is optional,

• a function exe : V → {true, false} determining if the
execution of that node was successful, and

• a function L : (V ∪ I ∪ O) → Σ assigning labels to
nodes and ports, with Σ the set of labels.

For a node v ∈ V let I(v) ⊆ I be its disjoint set of input
ports and O(v) ⊆ O its disjoint set of output ports.

The above definition describes all possible test cases, but
also includes invalid ones that cannot be executed. For ex-
ample, one could define an input port that is part of more
than one node. To amend this, we introduce the notion of
valid test cases:

Definition 2. A test case C = (V, I,O,D, opt, exe, L) is
valid iff

• every input port (analog for output ports) is assigned
to exactly one node:

∀i ∈ I(∃! v ∈ V (i ∈ I(v))),

• the input ports (analog for output ports) have unique
labels:

∀v ∈ V (i1, i2 ∈ I(v)⇒ (i1 = i2 ∨ L(i1) 6= L(i2)),

• each input port is connected to at most one output
port:

∀i ∈ I ¬(∃o1, o2 ∈ O ((o1, i) ∈ D ∧ (o2, i) ∈ D)),

• every non-optional input port is connected to at least
one output port:

∀i ∈ I (opt(i) = false ⇒ ∃o ∈ O : (o, i) ∈ D) and

• the dataflow relation D is acyclic, i.e., you cannot ar-
rive at the same node using dataflows after leaving it
through an output port.

2



Load Model

model

Save Model

model

(a) (b)

Transformation
outputinput

String
string

(c) (d)

Model Checking

resultmodel
properties

Compare

resultmodel 1
model 2

(e) (f)

Assert Success

result

Assert Failure

result

(g) (h)

Figure 1: Different Types of Nodes Used to Test
Model Transformations

The number and type of ports as well as the concrete
nature of the function exe(v) of a node v ∈ V depend on
its type. Figure 1 shows a variety of node types that we
conceived as part of a visual DSL to test model transfor-
mations: Loading (a) and saving (b) models is essential, as
is executing model transformations (c). A way to specify
and output arbitrary strings (d) is required too, mainly to
parametrize model-to-model transformations. Also, a model
checker should be available (e) and two models should be
comparable on a syntactical level (f). Lastly, the results of
the model checking and comparison can either be asserted
to be a success (g) or a failure (h).

2.2 Execution of Test Cases
Ultimately, all nodes of a test case should be executed.

The order of the nodes’ execution is not an arbitrary deci-
sion, however. One has to take into account the dependen-
cies that are implied by the dataflow relation D.

Definition 3. A node v2 ∈ V directly depends on v1 ∈ V
(v1 ; v2) iff a dataflow (o, i) ∈ D with o ∈ O(v1) and
i ∈ I(v2) exists. The transitive closure ;∗ of ; contains all
dependencies.

A dependency v1 ;∗ v2 implies that v1 has to be exe-
cuted before v2. This is the case whenever a node directly
or indirectly requires the output of another one for its own
computations. A correct order of execution needs to respect
all dependencies imposed by ;∗ and actually always exists
for valid test cases:

Theorem 1. For every valid test case C = (V, I,O,D,
opt, exe, L) there exists a topological sorting, i.e., a bijective
mapping ord : V → {1, ..., n}, n = |V |, such that

v1 ;
∗ v2 ⇒ ord(v1) < ord(v2) ∀v1, v2 ∈ V .

Proof. The dependency relation ;∗ defines a strict par-
tial order over V : It is irreflexive because we required acyclic-
ity in Definition 2, and transitive because it is defined as
a transitive closure (see Definition 3). Thus, the implied
graph G = (V,;∗) is a directed acyclic graph (DAG). For
every DAG a topological sorting of its nodes exists, which
in particular yields a topological sorting for every valid test
case.

There are various canonical algorithms to calculate such
a topological sorting, e.g., by Kahn [11]. Once a topological
sorting has been acquired, a test case can be executed in its
entirety. Every node has to finish successfully in order for
the whole test case to be regarded a success:

Definition 4. A test case C = (V, I,O,D, opt, exe, L) with
a topological sort ord is successful iff

n∧
j=1

exe(ord−1(j)) = true .

3. CASE STUDY
The goal of this case study is to demonstrate that our DSL

enables an effective test case design and execution for model-
to-model semantics preservation. For evaluating our ap-
proach, we consider the MechatronicUML domain-specific
modeling language [4], which targets the model-driven soft-
ware development for cyber-physical systems. Mechatro-
nicUML supports modeling of behavioral contracts for real-
time coordination by means of Real-Time Statecharts, a
combination of UML statemachines and timed automata.
One of the key features of MechatronicUML is the verifi-
cation of these contracts against temporal logic safety prop-
erties (e.g., deadlock freedom) by means of model check-
ing. To this end, MechatronicUML provides a model-
to-model transformation which translates Real-Time Stat-
echarts into timed automata that can be analyzed by the
model checker Uppaal [5]. In order to ensure reliable re-
sults, the transformation needs to preserve the semantics of
the input Real-Time Statecharts, i.e., the output timed au-
tomata need to be semantically equivalent. In Section 3.1,
we describe our prototypical implementation of a domain-
specific testing language in the context of Mechatronic-
UML, using Eclipse and a variety of its tools. Afterwards, in
Section 3.2, we evaluate our approach by testing the model
transformation from MechatronicUML to Uppaal for se-
mantics preservation.

3.1 Implementation
The architectural basis is laid out by two separate meta-

models which we model using the Eclipse Modeling Frame-
work (EMF, [19]). Figure 2 shows an overview of our archi-
tecture. As EMF is a commonly used standard framework
for model-driven software development it makes our test case
models easily usable, allowing for a straightforward integra-
tion with existing software. The execution logic is added
to the metamodel by taking advantage of the EMF Valida-
tion Framework1: We supply our own strategy to calculate
a topological sorting (see Theorem 1), which the EMF Val-
idation Framework uses to execute our nodes in the correct
order. Furthermore, a graphical editor implementing our

1https://projects.eclipse.org/projects/modeling.
emf.validation

3

https://projects.eclipse.org/projects/modeling.emf.validation
https://projects.eclipse.org/projects/modeling.emf.validation


Test Framework

Test Cases

Topology

Behavior
(Specification)

EMF
Validation

Frameworkexecutes

Graphical
Editor

models

                          

                             accesses

External Software (SUT and Tools)

Figure 2: Relationship Between Components in our Framework’s Architecture

concrete syntax (see Figure 1) is realized using the Graphi-
cal Modeling Framework2 (GMF).

One metamodel (labeled Topology) contains all the topo-
logical aspects of the test cases, while the other (labeled
Behavior) uses a strategy pattern to easily define and imple-
ment new node types. They are intertwined such that each
topological node has access to its particular set of behav-
ioral instructions. The EMF Validation Framework accesses
the topological level to calculate the topological sorting, and
afterwards the behavioral level to execute the test case.

The nodes themselves may access any external tool that
they need to perform their computations. In our case, we im-
plement the node types given in Figure 1. For this we employ
QVTo, an Eclipse integration of the QVT Operational Map-
pings model transformation standard [18], Uppaal as an
external model checker, and EMF Compare [6] to compare
arbitrary EMF models. Additionally, our implementation is
tailored for use with the MechatronicUML tool suite. It
supports the specification of temporal logic properties us-
ing a domain-specific variant of the Timed Computation
Tree Logic [1], called MTCTL, as well as the transforma-
tion of MechatronicUML models to Uppaal-compatible
timed automata in order to conduct model checking.

3.2 Evaluation
The evaluation of our approach is based on the guide-

lines for case studies by Kitchenham et al. [12]. We consider
four different MechatronicUML software models of inter-
connected transportation systems (e.g., autonomous cars,
trains, or miniature robots). Our models include an over-
all amount of thirteen contracts for real-time coordination
behavior such as overtaking or collision avoidance. All con-
tracts are equipped with temporal logic verification proper-
ties expressed using MTCTL. According to the Mechatro-
nicUML semantics, all the attached properties hold on the
given models. Our expectation is that the transformation
from MechatronicUML to Uppaal preserves these seman-
tics. Thus, the evaluation hypothesis for our evaluation is
that our approach allows to design test cases which trans-

2http://www.eclipse.org/modeling/gmp/

form the given MechatronicUML models to Uppaal, and
then check for semantics preservation by model checking the
given properties on the output timed automata. To this end,
we also prepare an erroneous variant of our model transfor-
mation, which deliberately introduces semantic distortions
between input and output model. We regard our hypothesis
as fulfilled if the execution of our test cases clearly sepa-
rates the semantics-preserving model transformation from
the semantics-distorting variant.

Figure 3 illustrates the pattern that we used to design
our test cases. Using a Load Model node, we first load one
of the exemplary MechatronicUML models which already
includes a temporal logic property (meaning that once a
certain state x becomes active, the state y will invariably be
reached). A String node is used to specify the name of the
particular coordination contract to transform in a particular
test case. Both nodes act as inputs to a third node of type
Transformation, which represents the execution of our model
transformation from MechatronicUML to Uppaal using
the QVTo engine. The two outputs of the transformation
(a network of Uppaal timed automata, and the translated
TCTL properties) connect to a node of type Uppaal, which
invokes Uppaal’s command line verification tool. Finally,
we use an Assert Success node to express that the expected
model checking result is true for all verified properties.

According to the above pattern, we design one test case
for each of the thirteen contracts to test. Initially, the Trans-
formation nodes in all our test cases refer to the semantics-
preserving variant of our model transformation from Me-
chatronicUML to Uppaal. After the test case design,
we run all our test cases using our integration with the
EMF Validation Framework described in Section 3.1. We
observe that our tests run successfully, as the final Assert
Success node in each of our test cases can be executed with-
out any deviations from our specified expectations. In the
next step, we redesign all of our test cases to refer to the
semantics-distorting variant of our model transformation.
Again, we execute all of our test cases and observe the test
results. All of our thirteen test cases fail after switching to
the semantics-distorting model transformation, because at
least one of the specified MTCTL properties can not be ver-

4

http://www.eclipse.org/modeling/gmp/


Load Model

model
Transformation

ntamuml

String
string

name
nta

UPPAAL
Assert Success

resulttctl

stateActive(x)
leadsTo
stateActive(y) trans_x

-->
trans_y

Figure 3: Failing Test for Semantics Preservation of a Model-to-Model Transformation

ified successfully by the Uppaal model checking. Figure 3
depicts a failing execution of an exemplary test case. The
graphical editor gives a precise feedback, by marking the
Assert Success node as the point of failure.

In summary, our case study successfully separates the se-
mantics-preserving model transformation from its seman-
tics-distorting variant. We therefore regard our evaluation
hypothesis as fulfilled, and thus conclude that our approach
enables the effective testing of model-to-model semantics
preservation.

4. RELATED WORK
In this section, we discuss related work in terms of exist-

ing frameworks for model transformation tests, as well as
alternative testing techniques for semantics preservation.

Küster et al. [14] describe four test design techniques for
the incremental development of model transformations, and
discuss their integration into a test framework. Whereas
our DSL covers several of these techniques (such as integrity
testing against the syntactic constraints induced by the tar-
get metamodel, or model comparison against reference out-
comes), none of the mentioned techniques explicitly addresses
testing at the dynamic semantics level.

Garćıa-Domı́nguez et al. [8] present the EUnit framework
for testing of model management tasks such as model trans-
formations. Similar to our approach, they enable modeling
of executable test cases by means of dataflow networks. In
contrast to our approach, the Epsilon Object Language used
for the textual specification of test cases is less abstract than
our visual DSL. Although the presented framework is highly
extensible, the authors do not explicitly address testing at
the dynamic semantics level using model checking or com-
parable techniques.

Model transformation contracts [9] represent a contrary
approach for testing model transformation outputs at syntax
level. In general, a contract consists of syntax constraints
over the input/output models, whereas one single constraint
may also refer to both models and describe a certain relation
between model elements. Thus, a contract may restrict the
output model’s syntax depending on specific syntactic char-
acteristics of the input model, or vice versa. If the specified

characteristics are stable (i.e., remain unaffected by changes
to a transformation which is work in progress), contracts
can reduce the number of false positive test failures in com-
parison to plain model comparison approaches [13]. There-
fore, we regard the specification of contracts as a promising
extension to our DSL for test case design. In particular,
contracts specified in the scope of a trace model [15] could
help to define more precise contracts by referring explicitly
to the relations between particular input/output elements
recorded during a transformation.

Varró and Pataricza [20] explicitly address the testing of
dynamic semantics preservation by means of model checking.
In contrast to our approach, they propose a model checking
for both input and output models in order to compare the
results. Whereas our DSL basically supports this design
technique, model checking an input model given in terms of
a DSL requires its dynamic semantics to be fully formalized
and operational, which is usually a barrier to a successful
implementation of the proposed technique. In comparison,
we focus on model checking only the output model.

Narayanan and Karsai [17] analyze the semantic equiva-
lence of particular input/output models with respect to a
given property. To this end, they check the bisimilarity be-
tween particular runtime snapshots, and therefore require
an exploration of the runtime statespace for both models.
In contrast, whereas our approach explores the statespace
of the output model as well, it increases the applicability
by employing a general-purpose model checking tool for this
task.

5. CONCLUSION AND FUTURE WORK
In this paper, we propose a model-driven design approach

for semantics preservation tests in the scope of model-to-
model transformations. We provide a concept for a domain-
specific modeling language, which abstracts from the repeti-
tive code required to integrate different technologies for load-
ing test models, invoking transformation engines, or consult-
ing oracles. Our modeling approach also enables the test
execution with appropriate validation feedback.

Our case study reports the successful implementation of
the aforementioned language concept in terms of a test de-

5



sign language in the context of MechatronicUML, a do-
main-specific modeling language for the software develop-
ment of cyber-physical systems. We design a range of test
cases including the transformation from MechatronicUML
to timed automata, and the verification of particular tem-
poral logic properties on these automata, using the Uppaal
model checker as test oracle. The execution of these test
cases successfully separates the semantics-preserving model
transformation from a semantics-distorting variant.

Design engineers for test cases benefit from our approach,
as they require less effort to create executable test cases that
integrate different technologies. Both our language concept
and implementation are highly extensible in terms of differ-
ent transformation engines/languages, or alternative tools
used as oracles.

Future work on our approach encompasses the integration
of alternative testing techniques to our DSL. As discussed
in Section 4, model transformation contracts [9] represent a
promising approach towards testing model transformations
by specifying syntactic relations between input/output mod-
els. Especially promising is the approach of specifying such
contracts in the scope of a trace model [15], which explic-
itly relates particular input/output elements and therefore
enables a more precise contract definition. Additionally,
future work includes design support for parametrized test
cases, differing only in terms of their particular input data.
Our evaluation demonstrated that test case design often re-
duces to a common pattern, such that designers highly ben-
efit from a parametrized approach.

6. ACKNOWLEDGMENTS
We thank Stefan Dziwok for providing test models for

our case study. Christopher Gerking is member of the PhD
program “Design of Flexible Work Environments – Human-
Centric Use of Cyber-Physical Systems in Industry 4.0”, sup-
ported by the federal state of North Rhine-Westphalia.

7. REFERENCES
[1] R. Alur, C. Courcoubetis, and D. L. Dill.

Model-checking in dense real-time. Information and
Computation, 104(1):2–34, 1993.

[2] B. Baudry, T. Dinh-Trong, J.-M. Mottu,
D. Simmonds, R. France, S. Ghosh, F. Fleurey, and
Y. Le Traon. Model transformation testing challenges.
In H. Eichler and T. Ritter, editors, Proceedings of the
ECMDA Workshop on Integration of Model Driven
Development and Model Driven Testing. Fraunhofer
IRB, 2006.

[3] B. Baudry, S. Ghosh, F. Fleurey, R. B. France,
Y. Le Traon, and J. Mottu. Barriers to systematic
model transformation testing. Communications of the
ACM, 53(6):139–143, 2010.

[4] S. Becker, S. Dziwok, C. Gerking, C. Heinzemann,
W. Schäfer, M. Meyer, and U. Pohlmann. The
MechatronicUML method: Model-driven software
engineering of self-adaptive mechatronic systems. In
P. Jalote, L. Briand, and A. van der Hoek, editors,
36th International Conference on Software
Engineering (ICSE Companion 2014), pages 614–615,
New York, 2014. ACM.

[5] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson,
and W. Yi. Uppaal – a tool suite for automatic

verification of real-time systems. In R. Alur, T. A.
Henzinger, and E. D. Sontag, editors, Hybrid Systems
III, volume 1066 of LNCS, pages 232–243,
Berlin/Heidelberg, 1996. Springer.

[6] C. Brun and A. Pierantonio. Model differences in the
Eclipse Modelling Framework. CEPIS Upgrade,
9(2):29–34, Apr. 2008.

[7] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. MIT Press, Cambridge/London, 2000.

[8] A. Garćıa-Domı́nguez, D. S. Kolovos, L. M. Rose,
R. F. Paige, and I. Medina-Bulo. EUnit: A unit
testing framework for model management tasks. In
J. Whittle, T. Clark, and T. Kühne, editors, Model
Driven Engineering Languages and Systems, 14th
International Conference, MODELS 2011, volume
6981 of LNCS, pages 395–409, Berlin/Heidelberg,
2011. Springer.

[9] M. Gogolla and A. Vallecillo. Tractable model
transformation testing. In R. B. France, J. M. Küster,
B. Bordbar, and R. F. Paige, editors, Modelling
Foundations and Applications, 7th European
Conference, ECMFA 2011, volume 6698 of LNCS,
pages 221–235, Berlin/Heidelberg, 2011. Springer.

[10] M. Hülsbusch, B. König, A. Rensink, M. Semenyak,
C. Soltenborn, and H. Wehrheim. Showing full
semantics preservation in model transformation – a
comparison of techniques. In D. Méry and S. Merz,
editors, Integrated Formal Methods, 8th International
Conference, IFM 2010, volume 6396 of LNCS, pages
183–198, Berlin/Heidelberg, 2010. Springer.

[11] A. B. Kahn. Topological sorting of large networks.
Communications of the ACM, 5(11):558–562, Nov.
1962.

[12] B. Kitchenham, L. Pickard, and S. L. Pfleeger. Case
studies for method and tool evaluation. IEEE
Software, 12(4):52–62, July 1995.

[13] D. S. Kolovos, R. F. Paige, and F. A. Polack. Model
comparison: A foundation for model composition and
model transformation testing. In Proceedings of the
2006 International Workshop on Global Integrated
Model Management, pages 13–20, New York, 2006.
ACM.

[14] J. M. Küster, T. Gschwind, and O. Zimmermann.
Incremental development of model transformation
chains using automated testing. In A. Schürr and
B. Selic, editors, Model Driven Engineering Languages
and Systems, 12th International Conference,
MODELS 2009, volume 5795 of LNCS, pages 733–747,
Berlin/Heidelberg, 2009. Springer.

[15] N. D. Matragkas, D. S. Kolovos, R. F. Paige, and
A. Zolotas. A traceability-driven approach to model
transformation testing. In B. Baudry, J. Dingel,
L. Lucio, and H. Vangheluwe, editors, Proceedings of
the Second Workshop on the Analysis of Model
Transformations, (AMT 2013), volume 1077 of CEUR
Workshop Proceedings, 2013.

[16] J.-M. Mottu, B. Baudry, and Y. Le Traon. Model
transformation testing: oracle issue. In 2008 IEEE
International Conference on Software Testing,
Verification and Validation Workshop (ICSTW’08),
pages 105–112. IEEE, 2008.

6



[17] A. Narayanan and G. Karsai. Towards verifying model
transformations. Electronic Notes in Theoretical
Computer Science, 211:191–200, Apr. 2008.

[18] Object Management Group. Meta Object Facility
(MOF) 2.0 Query/View/Transformation Specification.
Number formal/15-02-01. 2015.

[19] D. Steinberg, F. Budinsky, M. Paternostro, and
E. Merks. EMF: Eclipse Modeling Framework. The
Eclipse Series. Addison-Wesley, 2nd edition, 2008.

[20] D. Varró and A. Pataricza. Automated formal
verification of model transformations. In J. Jürjens,
B. Rumpe, R. France, and E. B. Fernandez, editors,
2rd International Workshop on Critical Systems
Development with UML (CSD-UML 2003), pages
63–78, 2003.

7


	Introduction
	Model-Driven Testing of Model Transformations
	Test Case Design
	Execution of Test Cases

	Case Study
	Implementation
	Evaluation

	Related Work
	Conclusion and Future Work
	Acknowledgments
	References

