
SmartHR: A Resume Query and Management System
Based on Semantic Web

Yeqing Ke, Zhirou Ma, Haijiang Wu, Jie Liu, Hua Zhong, Jun Wei
Institute of Software, Chinese Academy of Sciences

{keyeqing12, mazhirou, wuhaijiang12, ljie, zhongh, wj}@otcaix.iscas.ac.cn

ABSTRACT
Organizations are always confronted with the challenge of
efficiently finding out suitable candidates from massive re-
sumes. Traditional human resource management based on
the information management system usually adopts SQL
queries or keywords search, which cannot capture the im-
plicit information, while the manual work is always time-
consuming. To fill this gap, this paper presents SmartHR,
a resume query and management system based on seman-
tic web. Benefiting from knowledge base, it can understand
users’ intentions more intelligently and search for suitable
candidates more accurately. In this paper, we propose two
key technical difficulties which SmartHR meets, including
the complexity of knowledge base construction and the time-
consuming semantic search, and then give appropriate solu-
tions respectively. Four channels are adopted to construct
knowledge base, which are well illustrated. Furthermore, a
variety of performance optimizations are employed and the
effectiveness is evaluated on real datasets of up to million-
s of triples and the results show a great improvement. As
a representative application in semantic web, our practice
in SmartHR provides useful experience and conclusions for
developers.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Theory

Keywords
Semantic Web, RDF, SPARQL, Performance Optimization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CrowdSoft’14 , November 17, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3224-8/14/11 ...$15.00.

1. INTRODUCTION
With the rapid development of globalization, unprece-

dented fierce competition makes organizations have a greater
awareness of talents’ importance. Unfortunately, how to find
the suitable candidates from numerous resumes accurately
and efficiently poses challenges to human resources manage-
ment. The resumes are always semi-structured data consist-
ing of complex information. Traditional process, which relies
heavily on HR, is manual intensive and time-consuming. To
alleviate this pressure, a variety of techniques, such as infor-
mation retrieve, have been adopted and gained a reasonable
degree of maturity. In general, these techniques are based
almost purely on the occurrence of keyword and tend to
get the exactly-matched results. However, they can hardly
meet the requirements for many situations. For example,
one may want to find out the implicit information through
query ”who once worked in poor areas?”, while the resumes
only contain the persons’ work locations such as provinces,
cities and counties, rather than the ”poor area” keyword.

To address this problem, we present SmartHR, a resume
query and management system based on semantic web. Ben-
efiting from knowledge base, it can understand users’ inten-
tions more intelligently and search for suitable candidates
more accurately. The semantic web [8] has been widely
applied due to its great potential for providing a common
framework that allows data to be shared and reused across
applications and enterprises. In SmartHR, semantic anno-
tations for various heterogeneous resources are represented
as RDF [2] data model and the query language SPARQL is
leveraged to figure out triples. Benefiting from these advan-
tages, SmartHR provides not only the extensible mechanism
for data source management, but also the interfaces for user-
s to allow for sophisticated semantic search on resumes. It
facilitates users, who are unfamiliar with SPARQL or un-
derlying ontology, to explore the RDF annotated data.

This paper presents two essential techniques for building
up SmartHR, the typical semantic web application. First we
construct knowledge base by four channels, including map-
ping from relational database to RDF data store, knowledge
base maintenance, semantic extension and semantic parsing.
Second, we make a variety of performance optimizations of
the semantic search engine from the aspects of SPARQL
query rewriting, hybrid storage strategy for RDF data and
in-memory cache adoption. The experimental results show
the effectiveness of these optimizations. Our main contribu-
tions are as follows.

• We build a powerful ontology to characterize human
resource management and make a real-world case s-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

CrowdSoft’14, November 17, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3224-8/14/11...$15.00
http://dx.doi.org/10.1145/2666539.2666573

42

Map to RDF

Relational
database

Ontology
edit

Sparql
search

OWL2 inference
engine

Java API
Knowledge
Base Engine

semantic
parsing

semantic
extension

RDF
import/export

Semantic
search

Knowledge
Maintenance

Entity
disambiguation

Knowledge
Management

Web Page

RDF
database

Figure 1: The System Architecture of SmartHR.

tudy for semantic web related techniques, offering use-
ful experience and conclusions for developers.

• We propose four channels to construct the knowledge
base. The process of construction is always complex
and confronted with many problems, such as ambigu-
ity which should be eliminated.

• We make various performance optimizations for se-
mantic search. The results show that they can im-
proves the query performance.

The remainder of this paper is organized as follows. In Sec-
tion 2, we make an overview of SmartHR’s architecture de-
sign. Section 3 presents its technical details of knowledge
base construction. Performance optimizations are demon-
strated in Section 4. Section 5 demonstrates the effective-
ness from experiments and we introduce the related work in
section 6. Conclusions and future works are summarized in
Section 7.

2. OVERVIEW OF SMARTHR
This section makes an overview of SmartHR’s architec-

ture design. As demonstrated in Figure 1, it mainly con-
sists of four components: the transformation component
which maps relational data into RDF storage, the knowl-
edge base engine component, the knowledge management
and web page components. Moreover, these components
in SmartHR are loosely coupled, that is, they can even be
adopted separately by other applications.

The left part in Figure 1 is the transformer, which takes
semi-structured relational data extracted from resumes as
its input. In our practice, semi-structured resumes are usu-
ally processed as tuples (such as name, age and the corre-
sponding description for a person) to be stored in relational
databases. This design makes SmartHR easy to integrate
with other applications, such as the online e-recruitment sys-
tems. The web component is a present layer which provides
friendly interfaces for users to query data and get the result-
s. Components about the knowledge base are the central of
SmartHR. It relies on a dynamic knowledge management
strategy, and contains a variety of tools to meet users differ-
ent functional requirements. In knowledge base engine, Java
API plays as an intermediate layer between the underlying
search engines and the upper knowledge management layer.

It can be seen that, SmartHR gains a flexible and exten-
sible architecture. In the following sections, we will main-
ly concentrate on two essential categories, the knowledge

Relational
Database

Xml files RDF files

SmartHR
knowledge base RDF File Upload

xml2rdfdb2xml

domain knowledge
base

knowledge base
maintenance

semantic extension
condition

semantic
extension

Entity
disambiguation

Semantic parsing

Figure 2: Knowledge Base Construction.

Is a Is a Is a Is a

candidates

Learning experience Work experience

Is part of Is part of

Graduate school

Is part of

985 University 211 University

Work unit

Is part of

company University

profile

Domain
ontology

Figure 3: A Brief Scheme of Ontology.

base construction and performance optimization, to reveal
the technical details and challenges in semantic web appli-
cation.

3. KNOWLEDGE BASE CONSTRUCTION
Knowledge base is the foundation of semantic search. Our

system constructs knowledge base through four channels
shown in Figure 2. Fisrt of all, we get data from existing in-
formation in relational databases and transform it into xml
files. And then the xml files are mapped to RDF files so that
we can import the RDF files into our RDF data store. Be-
sides, we can manage our knowledge base through domain
knowledge maintenance, semantic extension and semantic
parsing.

3.1 Relational Database to RDF Mapping

3.1.1 Ontology Design
By taking into account all considerations, ontology for S-

martHR has been designed. A brief scheme of the ontology is
shown in Figure 3. The main concepts are ’candidate’, ’pro-
file’ and some specified domain concepts which are named
classes in SmartHR. All the main concepts and relationships
relevant to them are detailed in the following sections.

Concepts. In our system, concepts are always classes
which are a set of individuals, including ’candidate’, ’profile’
and some specific domain concepts. ’candidate’ represents a
set of job candidates. The properties defined for the concept
are: name, date of birth, gender, country, province and city.
The candidates have to specify their abilities in order to cre-
ate their own profile. ’profile’ is central in the application
since it determines whether an offer is suitable for a candi-
date or not. It is mainly composed by two parts: learning
experience and work experience. Learning experience in-
cludes information about candidates’ graduate school, high-
est school, major and so on. Work experience includes infor-
mation about candidates’ work units, positions and so on.

43

This ontology also contains many specific domain concept-
s, such as University, 985 University, Enterprise and so on,
which help us find out suitable candidates.

Relations. Two types of inter conceptual relations are
used in the system, namely, ’Part-of’ and ’IS-A’. A ’Part-
of’ relation means that one concept is a part of another
one. In the SmartHR, the relation of ’Part-of’ is divided
into two types, namely, object property and data property.
Object property is the relation between individuals and data
property is the relation between individual and literals. The
’IS-A’ relation is used for creating categorical structures.
In our system, it is implemented as the relation between
classes and the relation between individuals and classes. For
example, the 985 University is subclass of the university class
and meanwhile the Peking University is an individual of 985
University.

Individuals. A set of individuals compose a class. For
example, the class of candidate is intended to describe a set
of candidates, such as Mary, John and so on.

3.1.2 Mapping RDBMS to RDF Implementation
The candidates’ resume information stored in relational

database is shown in the following tables (Table 1, Table 2
and Table 3). According to the ontology designed above, two
main steps are adopted to automatically map the original
relational database to RDF data store.

Table 1: Basis
uid name age
1 Mary 34

Table 2: Learning Experience
id uid school start
2 1 Peking University 1996

Table 3: Work Experience
id uid location and position
3 1 Beijing, manager

Step1: First, it extracts useful information such as candi-
date’s name, age, learning experience, work experience and
so on from the original relational database and transforms
it to semi-structured data stored as XML files using Jdom2.
Then it preprocesses unstructured words such as ”Location
and position” by word segmentation and generate xml files
shown in Figure 4. Step2: According to classes, individuals
and properties in the ontology designed above, it converts
xml files to RDF files by a recursive algorithm shown in Al-
gorithm 1 and Algorithm 2. If the element in the xml file has
children, an object property and an individual are created
and then its children are traversed recursively. Otherwise,
a data property is created. It is implemented by Jena API
and the output RDF file shown in Figure 4.

3.2 Domain Knowledge Base Maintenance
The knowledge base is dynamically evolving, so the S-

martHR allows to edit classes, individuals and properties.
When a new class is created and a set of new individual-
s need to be imported, ambiguity between new individuals
and the individuals of the new class’s super classes should
be eliminated. The process we maintain the specific do-
main knowledge base is demonstrated in detail as Figure
5. If the new individual is matched with the individual of
the new class’s super classes’, the existing individual will be
just added to the new class instead of being created. For
example, there is a class named university, which has an in-

<rdf:Description rdf:about="http:// Org#1">
 <j.1:name_Property>Mary</j.1:name_Property>

<j.1:age_Property>34</j.1:age_Property>
<rdf:type rdf:resource="http:// Org#candidate_Class"/>
< j.1:study_Property rdf:resource="http:// Org#2 "/>
< j.1:work_Property rdf:resource="http:// Org#3"/>
< j.1:work_Property rdf:resource="http:// Org#4"/>

</rdf:Description>
<rdf:Description rdf:about="http:// Org#2">
 <j.1:school_Property rdf:resource="http:// Org#5 "/>
 <j.1:start_Property>1996</j.1:age_Property>
 <rdf:type rdf:resource="http:// Org#study_Class"/>
</rdf:Description>
……
<rdf:Description rdf:about="http:// Org#5">
 <j.1:code_Property> Peking University</
j.1:code_Property>
 <rdf:type rdf:resource="http:// Org#school_Class"/>
</rdf:Description>

<candidate id=”1”>
 <name>Mary<name>
 <age>34</age>
 <study id=”2”>
 <school id=”5”>
 <code>Peking University</code>
 </school>
 <start>1996</start>
 </study>
 <work id=”3”>
 <location>Beijing</location>
 <position>manager</position>
 </work>
</candidate>

Figure 4: Transformation from xml to RDF.

Algorithm 1 XML to RDF Transformation

Input:
The XML file of the candidate’s resume

Output:
The RDF file of the candidate’s resume
Reading the xml file and getting the root element
Creating a new rdf file
if there is no candidate class then

Creating a candidate class
end if
Creating an individual of the candidate class
Traversing depth-firstly the root element of the xml and
writing the rdf file. (detailed in Algorithm2.)
return the RDF file

dividual named Tsinghua University in SmartHR. When a
subclass of university named 985 university is created and a
list of 985 university individuals which also contain Tsinghua
University needs to be added, maybe the individual has ex-
isted in 985 university class’s super class which is university
class by matching algorithm. In this case, the individual,
Tsinghua University, is just added to 985 university class
created so that ambiguity is avoided.

3.3 Semantic Extension
Sometimes our individuals of a concept may be incom-

plete. It is necessary to extend a specific concept effectively
by binding it with other individuals’ property. Thus, new in-
dividuals are created if it is only a data property , otherwise
individuals which the object property links to are obtained.
Then they are added to the mapping class if they don’t ex-
ist in the specific concept. The matching process is called
entity disambiguation shown in Figure 6. For example, the
University class s need to be extended. First, we bind the

Knowledge
base

Obtain domain
entity list

Create class hierarchy
of domain knowledge

Obtain the individuals
of the top super class

Entity disambiguation

Create a new individual Add the existing individual to the class

Match or not?

Domain
knowledge list

Entity match
Algorithm

Failure Success

Figure 5: Domain Knowledge Base Maintenance.

44

Algorithm 2 Traversing depth-firstly the element in the
xml and writing the rdf.

Input:
Element e; Individual parentInd;
for each child elchild of e do

if elchild has no children then
Creating a statement where Element e is a data prop-
erty of parentInd

else
if there is no class named e’s name then

Creating a class named e’s name.
end if
Creating an new individual eind for e as an individual
of the class named e’s name.
Creating a statement where eind is a object property
of parentInd
Traversing depth-firstly the elchild.

end if
end for

candidates’ school property p with s. If school property is
a data property, new individuals will be created which are
a set of candidates’ school. Second, we add the candidates’
school individuals to s if the school does’t exist in s.

3.4 Semantic Parsing
It is common that many elements in xml files are auto-

matically mapped to dataproperty in RDF data store since
they have no children. As we know, the node which data
property links to is literals which are just values. To search
candidates semantically, data property need to be parsed
and converted to the object property. The process includes
creating new class, adding individuals to the new class and
adding statement <s,p,o> to our knowledge base where s
is the individual which links to data property, p is the new
object property, o is the new individual. For example, the
candidate Mary’s location property is a data property be-
cause it has no children in the xml file. The system can
convert it to a object property p. First it creates a class
named location class and an individual named Beijing. Sec-
ond, it adds the new individual into the new class. Third, a
new statement <Mary, p, Beijing> is added to the knowl-
edge base.

4. PERFORMANCE OPTIMIZATION

4.1 SPARQL Query Optimization
Query optimization is the first stage of optimization and

it occurs automatically at the end of query parsing. The
aim of query optimization is to reorder the triple patterns
within each graph pattern to do several things: evaluate the
most selective triple patterns first, evaluate FILTER at the
earliest possible point and minimize the complexity of joins
within graph patterns and across graph patterns. According
to these rules, we rewrite the sparql queries and the time of
searching doesn’t reach our goals.

4.2 Storage Optimization
Vertical table stored in the storage is the most direct so-

lution which stores RDF triples directly in a three-column
table consisted of three columns including subject, predicate
and object. Since all of the RDF data is stored in the same

extend properties
according to conditions

Get Individuals of mapping
class according to conditions

Entity
disambiguation

Create new
individuals

Add individuals to the
new map class

failure

success

Data
Property

Object
Property

Individuals of
mapping class

Matching

Semantic extension condition

Figure 6: Semantic Extension.

Class needing
to parse

Get the class’s
individuals s

Data property
needing to parse

Semantic parsing
Create new class
and individuals o

after parsing

add object properties p
for individuals s and o

Figure 7: Semantic Parsing.

SELECT DISTINCT ?x ?info
 WHERE
{

?x p.1:Foundation_Property ?info.
?x rdf:type p.1:985UniversityCandidate_Class.

}

Figure 8: The optimized SPARQL of 985 University.

data table, resulting in a big table with a large amount of
triples and the lower query response performance. Besides,
triples with the same subject and different predicates are
stored in different rows so that when the SPARQL query is
translated into SQL queries, there are a lot of join opera-
tions which lead to low query performance. For example, in
the 985 University case, we can see a lot of join operations
when we want to retrieve the candidate’s name, age, sex and
so on. When the table is too large, the increasing number
of join operation will lead to a significant increase in query
time.

4.2.1 Minimize the Join Operation
We preprocess the candidates’ basic information and store

them in advance as the candidates’ object properties. We
also make classification of the candidates in advance. And
then rewrite the 985 University sparql as shown in Figure
8 in order to minimize the join operations. We can see the
sparql become much more brief and when it is translated
into the SQL, the join operations reduce to once. While the
number of triples reaches 400000, only one join operation
will lead to the poor query performance. So we adopt the
optimization solution below further.

4.2.2 Hybrid Storage of Vertical Property Tables
Property tables are the n-column tables designed to store

RDF data. The same subject and corresponding proper-
ty values are stored in each row. However, a multi-valued
problem exists when it is directly applied in SmartHR. For
example, a candidate’ types are multi-valued since the can-
didate can belong to the class of who have graduated from

45

985 University, the class of who have graduated from 211
University and the class of who ever worked in enterprises.
In this situation, the subject of candidate has more than one
object value for the property of type and then each distinct
value is listed in a successive row in the table for that prop-
erty. It is vertically partitioned in the multi-valued property
shown in Table 4. The SQL translated from the SPARQL
Query above is shown below, and we can see it has no join
operation.

Select Candidate.ID, Candidate.Foundation Property
From Candidate
Where Candidate.University type=”985UniversityCandi-

date Class”

Table 4: Candidates
ID Basic Property Type
Id1 Info1 985UniversityCandidate Class
Id1 Info1 EntepriseCandidate Class
Id1 Info1 211UniversityCandidate Class
Id2 Info1 BasicLevelCandidate Class
Id2 Info2 211UniversityCandidate Class

4.3 In-memory Cache Optimization
We also propose an approach of in-memory cache opti-

mization. We know memory becomes more and more cheap.
When we start the server, results of queries will be loaded
in advance and the index for them will be built in memo-
ry cache. Once users send a request for search, the serv-
er will search the query in memory first. If the query is
hit, the results will be sent to the user immediately, other-
wise the application server will send the query request to
the database server and the server process the request and
retrieve the results to users. The optimized cache provides
better query performance by reusing previously executed re-
sults and, when possible, avoids sending new queries to the
data source.

5. EXPERIMENTS
As mentioned in Section 1, performance is a significant

problem in the semantic analysis for human resource man-
agement where a large number of resources need to be pro-
cess. Some factors, such as the number of triples in tables
and the number of query results affect the system perfor-
mance. We conduct a series of experiments to study the
performance of SmartHR and understand which factors se-
riously affect the system performance. The total number of
candidates is 12000. And total numbers of quads stored in
MySQL is 400,000. Our experiment environment is list in
Table 5.

Table 5: Experiment Environment
CPU Intel Core i5-3470
Memory 100GB
Tomcat Server version 7.0.47
MySQL Server version 5.5.28

5.1 Query Example
When a user enters words into the search box such as ”who

is graduate from 985 University”, the SmartHR will segmen-

0

500

1000

1500

2000

2500

3000

3500

4000

Q1 Q2 Q3 Q4

Th
e

 n
u

m
b

e
r

o
f

su
it

ab
le

 c
an

d
id

at
e

s

Figure 9: Suitable Candi-
dates Number.

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

Before Opt Opt1 Opt2 Opt3

Th
e

 r
o

w
s

n
u

m
b

e
r

fo
r

se
ar

ch

Figure 10: The Rows
Number for Search.

SELECT DISTINCT ?name ?birthday ?sex ?position ? school ?degree
WHERE
{

?x p.1:name_Property ?name.
?x p.1:birthday_Property ?birthday.
?x p.1:sex_Property ?s.
?s rdfs:label ?sex.
?x p.1:position_Property ?position.
?x p.1:study_Property ?y.
?y p.1:school_Property ?m.
?m rdf:type p.1:985University_Class.
?m rdfs:label ?school.
?y p.1:degree_Property ?degree.
FILTER(regex(str(?degree),"GB68644")).

}

Figure 11: The SPARQL of 985 University.

t these words and extract the keywords ”985 University” to
the application server. The server will translate them in-
to the SPARQL Language Query in the Figure 11. Then
the SPARQL search engine will process it and retrieve the
results.

5.2 Experiment Results and Analysis
We can see from Table 6, Figure 10 and Figure 9 that

as the number of suitable candidates meeting the condi-
tions and the number of rows where each query searches
increase, the time of search increases greatly so that users
can’t tolerate. After three performance optimizations intro-
duced above, the queries’ number for each search decreases,
which shown in Table 8 and Figure 12. Further, the cost
time of search reduces to within 1s. Query time comparison
is shown in Table 7 and Figure 13. Q1-Q3 searches for candi-
dates who have studied in 985 universities, who have studied
in military universities, who have worked in enterprises and
who have worked in poor areas. Opt1 represents SPARQL
query optimization. Opt2 means storage optimization after
Opt2. Opt3 stands for In-memory cache optimization af-
ter opt2. Besides, we also implement combination query in
memory cache, whose performance after three optimizations
has significantly improved shown in Table 9 and Figure 14.

6. RELATED WORK
RDF data is a collection of statements, called triples, of

the form < s, p, o > where s is called subject, p is called
predicate, and o is called object, and each triple states the
relation between a subject and an object. Such a collection
of triples can be viewed as a directed graph, in which nodes
represent subjects and objects, and edges represent predi-
cates connecting from subject nodes to object nodes. Most

46

0

2

4

6

8

10

12

14

16

18

20

Q1 Q2 Q3 Q4

Q
u

e
ri

e
s

n
u

m
b

e
r

fo
r

e
ac

h
 s

e
ar

ch

Before Opt

Opt1

Opt2

Opt3

Figure 12: Queries Number.

0

10

20

30

40

50

60

Q1 Q2 Q3 Q4

Q
u

e
ry

 T
im

e

Before Opt

Opt1

Opt2

Opt3

Figure 13: Query Time.

0

20

40

60

80

100

120

140

160

180

200

C
o

m
b

in
at

io
n

 Q
u

e
ry

 T
im

e

before optimization

after optimization

Figure 14: Combined Query Time.

Table 6: Factors on Performance
Factor1 Q1 Q2 Q3 Q4
Number 249 3109 1414 3375
Factor2 Before Opt Opt1 Opt2 Opt3
Rows 400000 400000 12000 below 4000

Table 7: Query Time
Q1 Q2 Q3 Q4

Before Opt 3.1s 51s 18s 49s
Opt1 3s 50s 17.5s 46s
Opt2 1s 8s 5s 7s
Opt3 0.5s 0.7s 0.6s 0.9s

Table 8: Queries number for each query
Q1 Q2 Q3 Q4

Before Opt 11 12 16 18
Opt1 11 12 16 18
Opt2 2 2 2 2
Opt3 2 2 2 2

Table 9: Performance of Combination Query
Q1,2 Q2,3 Q1,2,3 Q1,2,3,4

Number 108 500 56 35
Before Opt 10s 3min 30s 1min
After Opt 1.3s 1.5s 2s 3s

of existing RDF storage systems use relational DBMS, such
as Jena[10], Sesame [11], 3store [12], RStar [14]. The main
advantage of the approach is that the SPARQL queries are
translated into equivalent SQL queries and a mature and
vigorous relational query engine with transactional process-
ing support can be reused to provide major functionalities
for RDF stores. However, there are lots of join operations in
real applications which make query time-consuming. As a
result, both Jena and Oracle propose changes to the schema
to reduce the number of joins. It has been proved that s-
toring RDF triples by different property tables outperforms
storing all triples in a single table. It also makes attribute
typing possible, which saves space and can speed up cer-
tain operations such as numerical functions, aggregations,
or comparison operations within index code. But this ap-
proach need the RDF data structured, otherwise it makes
the tables sparse. Besides, as Wilkinson points out[5] to
avoid sparsity of tables, too many property tables are creat-
ed. Thus, queries requiring joins or unions to combine data
from more tables which reduce the query speed. There is

also a problem of the abundance of multi-valued found in
RDF data with property tables . Abadi D J et al. point out
SW-Store[4], which is a vertically partitioned DBMS. It can
avoid sparsity of property table and solve the multi-valued
problem, but increase the number of joins.

Jena is a leading Semantic Web toolkit which provides rich
Model API for manipulating RDF graphs, including I/O
modules for: RDF/XML, N3 and N-triple; and the query
language RDQL. Users can choose to store RDF graphs in
memory or in persistent stores. The Jena database subsys-
tem implements persistence for RDF graphs using an SQL
database through a JDBC connection. Jena also supports t-
wo basic schema types: both a denormalized schema used for
storing generic triple statements as well as property tables
to store subject-value pairs related by arbitrarily specified
properties.

7. CONCLUSION AND FUTURE WORK
There is usually a promising hope that semantic technolo-

gies can be put into work to allow for smart data manage-
ment and query. This paper presents SmartHR, a typical
web semantic application for human resource management.
It provides semantic interfaces for users to find the suit-
able candidates accurately and efficiently from massive re-
sumes. As the basis, we build an ontology to character-
ize human resource management. Our main work includes
designing and implementing the fundamental architecture,
knowledge base construction and further performance opti-
mization. Our work covers the common and essential tech-
niques in semantic web, such as data model transformation,
storage and search engine design. From our practice, devel-
opers can draw useful experience and conclusions.

For a long period, our future work will still focus on the
performance optimization. Current query response time will
be impacted negatively by the candidate number’s rapid
growth. Distributed systems, for example the popular NoSQL
stores, or even parallel computing paradigms may be lever-
aged to handle the continuous growing up data. Moreover,
how to extract the structured data from some unstructured
files (such as images) is also worthy of study.

8. ACKNOWLEDGEMENTS
This work was partially supported by the National High-

Tech Research and Development Plan of China under Grant
No. 2012AA011204.

47

9. REFERENCES
[1] Berners-Lee, et al. The Semantic Web. Scentific

American Magazine. Retrieved March 26, 2008.

[2] Klyne G, et al. Resource description framework
(RDF): Concepts and abstract syntax. W3C
recommendation, 2004, 10.

[3] Carroll J J, et al. Jena: implementing the semantic
web recommendations. WWW, 2004:75-83.

[4] Abadi D J, Marcus A, et al. SW-Store: a vertically
partitioned DBMS for Semantic Web data
management. VLDB Journal 2009, 18(2):385 406.

[5] Wilkinson K. Jena property table implementation.
Proc of the 2nd Int Workshop on Scalable Semantic
Web Knowledge Base Systens. 2006:35-46.

[6] Harris S, Shadbolt N. SPARQL query processing
with conventional relational database systems. SSWS
2005.

[7] Elliott B, et al. A complete translation from
SPARQL into efficient SQL. IDEAS 2009. 31 42.

[8] N. Shadbolt, T. Berners-Lee, W. Hall, The Semantic

Web revisited, IEEE Intell. Syst. 21 (3) (2006)
96-101.

[9] K. Wilkinson, et al. Supporting Scalable, Persistent
SemanticWeb Applications, IEEE Data Eng. Bull. 26
(4) (2003) 33-39.

[10] K. Wilkinson et al. Efficient RDF storage and
retrieval in Jena2. In Proc. of the International
Workshop on SWDB, 2003, pp. 131-150.

[11] J. Broekstra, A. Kampman, F. van Harmelen,
Sesame: a generic architecture for storing and
querying RDF and RDF Schema. ISWC 2002, pp.
54-68.

[12] S. Harris, et al. 3store: efficient bulk RDF storage, In
Proc. of the International Workshop on Practical and
Scalable Semantic Systems (PSSS), 2003.

[13] Erling, O. Implementing a SPARQL compliant RDF
triple store using a SQL ORDBMS. Technical
Report, 2001.

[14] L. Ma, et al. RStar: an RDF Storage and Query
System for Enterprise Resource Management. CIKM
2004, pp. 484-491.

48

