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ABSTRACT
Loops are challenging structures for program analysis, especial-
ly when loops contain multiple paths with complex interleaving
executions among these paths. In this paper, we first propose a
classification of multi-path loops to understand the complexity of
the loop execution, which is based on the variable updates on the
loop conditions and the execution order of the loop paths. Second-
ly, we propose a loop analysis framework, named Proteus, which
takes a loop program and a set of variables of interest as inputs
and summarizes path-sensitive loop effects on the variables. The
key contribution is to use a path dependency automaton (PDA) to
capture the execution dependency between the paths. A DFS-based
algorithm is proposed to traverse the PDA to summarize the effect
for all feasible executions in the loop. The experimental results
show that Proteus is effective in three applications: Proteus can 1)
compute a more precise bound than the existing loop bound analysis
techniques; 2) significantly outperform state-of-the-art tools for loop
verification; and 3) generate test cases for deep loops within one
second, while KLEE and Pex either need much more time or fail.

CCS Concepts
•Theory of computation → Program verification; Program anal-
ysis; •Software and its engineering → Software verification;
Automated static analysis; Software testing and debugging;

Keywords
Loop Summarization, Disjunctive Summary

1. INTRODUCTION
Analyzing loops is very important for successful program opti-

mizations, bug findings, and test input generation. However, loop
analysis is one of the most challenging tasks in program analysis. It
is described as the “Achilles’ heel” of program verification [12] and
a key bottleneck for scaling symbolic execution [47, 54].

∗Xiaohong Li is the corresponding author, School of Computer
Science and Technology, Tianjin University.

Generally, there are three kinds of techniques for analysing loops,
namely loop unwinding, loop invariant inference and loop summa-
rization. The most intuitive method is loop unwinding, where we
unroll the loop with a fixed number of iterations (a.k.a. the bound).
This technique is unsound and cannot reason about the program
behaviors beyond the loop bound. Loop invariant is a property that
holds before and after each loop iteration. It is mostly used to verify
the correctness of a loop. The limitation is that typically only strong
invariants are useful to prove the property; while commonly-used
fixpoint-based invariant inferencing [10] is iterative and sometimes
time-consuming. It may fail to generate strong invariants, especially
for complex loops. In addition, loop invariants often cannot suffi-
ciently describe the effect after the loop and hence are limited to
check the property after the loop.

Compared with loop invariants, loop summarization provides a
more accurate and complete comprehension for loops [47, 20, 51, 55,
12]. It summarizes the relationship between the inputs and outputs of
a loop as a set of symbolic constraints. We therefore can replace the
loop fragments with such “symbolic transformers” during program
analysis. This leads to a wider range of applications. For example,
we can use loop summarization to verify program properties after
a loop; and we can use it to better direct test input generation in
symbolic execution. Detailed discussion about invariant and sum-
marization can be found in Section 6.

The loop summarization techniques [20, 47] mainly handle single-
path loops (the simplest type of loops where no branches are present).
The recent advances of loop analysis [51, 55] are to perform loop
summarization for multi-path loops (the loops that contain branch-
es). However, the techniques cannot summarize the interleaving
effect among the multiple paths in a loop. The goal of this paper
is to reason about the interleaving of multiple paths in the loop
and generate a disjunctive loop summary (DLS) for such multi-path
loops.

As an example, the while loop in Fig. 1(a) contains an if branch,
which makes it a multi-path loop. In addition, the computation in the
if and else branches can impact the outcome of the if condition,
leading to interleaving of the two paths in the loop. It is the initial
values of the variables x,z and n that determine the different possibil-
ities of interleaving between the if and else branches. For some
of the multi-path loops, we can determine what types of interleaving
potentially exist and what are the loop summaries for the determined
types. Consider Fig. 1(a), let x, z and x′, z′ be the values before
and after loop execution respectively. When the initial values satisfy
x ≥ n, the loop effect is x′ = x∧ z′ = z. When x < n ≤ z, the loop
effect is x′ = n∧ z′ = z. When the loop starts with x < n∧ z < n,
the loop effect is x′ = z′ = n. Hence, a precise summary of the
loop effect should be a disjunction that includes all possible loop
executions due to different initial values of x, z and n. Thus, the dis-
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junctive loop summary for Fig. 1(a) is (x≥ n∧x′ = x∧z′ = z)∨(x<
n ≤ z∧ x′ = n∧ z′ = z)∨ (x < n∧ z < n∧ x′ = z′ = n). Comparing
with the loop summarization in [20, 47, 51, 55], DLS computes the
effect of each possible pattern of the loop execution, and it is more
specific and fine-grained.

This paper accomplishes two tasks to advance the state-of-the-art
loop analysis. First, we proposed a classification for multi-path, sin-
gle loops (non-nested loops) based on a deep analysis on challenging
loops found in real-world software. The classification defines what
types of multi-path loops we can handle precisely, what types of
multi-path loops we can handle with approximation, and what types
of multi-path loops we cannot handle. The classification is based on
two aspects: 1) the update patterns of variables that direct the path
conditions and 2) the interleaving patterns among the paths in the
loop. Second, we developed a loop analysis framework, named Pro-
teus1, to summarize the effect of the loops for each type. Proteus
takes a loop code fragment and a set of variables of interest as inputs
to compute the DLS. The DLS represents a disjunction of a set of
path-sensitive loop effects on the variables of interest.

Basically, Proteus generates a fine-grained loop summary in three
steps. The first step applies a program slicing on the loop according
to the variables of interest so that irrelevant statements are removed
to reduce irrelevant paths in the loop. In the first step, we also con-
struct the loop flowgraph based on the control flow graph (CFG)
of the sliced loop. The second step is a novel technique where we
construct a path dependency automaton (PDA) from the flowgraph
to model the path interleaving. Each state in the PDA correspond-
s to a path in the flowgraph; and transitions of the PDA capture
the execution dependency of the paths. The last step performs a
depth-first traversal on the PDA to summarize the effect of each
feasible trace in the PDA (which corresponds to an execution in the
original loop). The final result is a disjunction of the summaries
for all feasible traces. For the challenging loop types that cannot
be directly handled, we transform them to the simpler ones with
approximation techniques before summarizing them.

We have implemented Proteus and experimentally evaluated the
usefulness of summary by applying it to loop bound analysis, pro-
gram verification and test case generation. We collected 9,862 single
loops in total from several open-source projects to understand the
distributions of loop types and the complexity of loops in real-world
programs. We computed the loop bound for the loops in these
projects. The result shows that Proteus can compute a more precise
loop bound than the previous techniques [38, 28, 27, 26]. We per-
formed program verification using the benchmark SV-COMP 16 [1].
The result indicates that our approach can summarize 81 (65.85%) of
the total 123 programs; among these summarized programs, Proteus
can help correctly verify 74 (91.36%) of the programs. Compared to
Proteus, SMACK+Corral [31] that achieved the highest correct rate
in SV-COMP 16, can only correctly verify 68 (83.95%) of loops. In
addition, Proteus only took 75 seconds while SMACK+Corral took
more than 7 hours. We also evaluated test case generation by compar-
ing the two configurations of the symbolic execution tools KLEE [8]
and Pex [52] with Proteus. Our result shows that with Proteus, it
only took less than one second to generate the test cases for all the
loops, while KLEE either times out or needs much more time and
Pex often throws an exception.

To the best of our knowledge, this is the first work to compute
DLS for multi-path loops. The main contributions of this paper are:

1. we propose a classification for multi-path loops of four types to
understand the complexity of the loop execution;

1A Greek god who can foretell the future.
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Figure 2: The flowgraph and PDA for the loop in Figure 1(a)

2. we propose a path dependency automaton to capture the execu-
tion dependency and effects of the paths in multi-path loops;

3. we propose an algorithm to compute DLS based on the path
dependency automaton; and

4. we conduct an experimental study to classify the loops in real-
world projects as well as to evaluate the usefulness of DLS in
three important software applications.

2. OVERVIEW
In this section, we first formally introduce the concepts of flow-

graph and loop paths, which are needed to understand the rest of the
paper. We then present a classification of multi-path loops we iden-
tified and also provide an overview of Proteus that computes the
DLS for the identified types. Note that the loops in the scope are
multi-path single loops that do not contain other loops inside.

2.1 Preliminaries

Definition 1. Given a loop, the flowgraph of the loop is a tuple G=
(V, E, vs, vt , ve, ι), where V is a set of vertices, E : V ×V is a set
of edges that connect the vertices, vs, vt ∈V are two virtual nodes
that capture the start and end points of each loop iteration, ve is a
virtual node that represents the exit of the loop, and ι is a function
assigning every edge e ∈ E an instruction ι(e).

A node is a branch node if its out-degree is 2, and the instruction
on the edge that starts from the branch node is a boolean condition.
For example, Fig. 2(a) shows the flowgraph of the loop in Fig. 1(a).
Nodes a and e specify the start and end of the loop iteration respec-
tively, and node f is the exit node. Node b is a branch node, the
instructions on the edges (b, c) and (b, d) are conditions.

Intuitively, given a loop flowgraph G, each iteration in the loop
from node vs to vt is an execution path. We introduce the concept of
the loop path to better discuss how we model the effect of each loop
iteration to compute the summaries of the loop.

Definition 2. Given a loop flowgraph G = (V, E, vs, vt , ve, ι), a
loop path (we call it path here after for simplicity) π in G is a finite
sequence of nodes 〈v1v2 . . .vk〉, where k ≥ 1, (vi, vi+1) ∈ E, 1 ≤
i < k, v1 = vs, and vk ∈ {vt , ve}. A path is called an iterative path
if vk = vt , or an exit path if vk = ve. We use θπ to denote the path
condition of path π , which is a conjunction of the branch conditions
along the edges of path π . Given a loop flowgraph G, we use ΠG to
denote the set of all paths in G.

In Fig. 2(a), the flowgraph has two iterative paths π1 = 〈abce〉
and π2 = 〈abde〉, and one exit path π3 = 〈a f 〉. For path π1, the path
condition θπ1

is x < n∧ z > x.
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i n t n : =∗ ;
i n t x : =∗ ;
i n t z : =∗ ;
whi le ( x<n )

i f ( z>x ) x ++;
e l s e z ++;

a s s e r t ( x==z ) ;

(a) [28]

whi le ( i <100){
i f ( a <=5) a ++;
e l s e a−=4;
i f ( j <8) j ++;
e l s e j −=3;
i ++;

}

(b)

whi le ( i <LINT ) {
i n t j = n o n d e t ( ) ;
assume (1 <= j ) ;
assume ( j <LINT ) ;
i = i + j ;
k ++;

}

(c) [1]

whi le ( x1>0&&x2>0&&x3 >0)
i f ( c1 ) x1=x1−1;
e l s e i f ( c2 ) x2=x2−1;
e l s e x3=x3−1;
c1= n o n d e t ( ) ; c2= n o n d e t ( ) ;

a s s e r t ( x1 = = 0 | | x2==0
| | x3 = = 0 ) ;

(d) [1]

whi le ( i <A&&j <B)
i f (A[ i ]==B[ j ] )

i ++;
j ++;

e l s e
i = i−j +1 ;
j =0 ;

(e) [1]

i n t s =1 , x1=x2 =0;
whi le ( no n d e t ( ) )

i f ( s ==1) x1 ++;
e l s e i f ( s ==2) x2 ++;
s ++;
i f ( s ==5) s =1;
i f ( s==1&&x1 != x2 ) ERROR;

(f) [5]

Figure 1: Motivating loop programs from the recent work [28, 5] and the SV-COMP 16 benchmark [1]

2.2 Loop Classification
To summarize a multi-path loop, we need three critical pieces of

information: (1) value changes in each iteration of one path, (2) the
number of iterations of each path, and (3) the execution order of the
paths. Since a loop path consists of a finite sequence of nodes, we
can perform symbolic analysis to derive value changes at the end of
the path. The number of iterations of each path depends on the path
condition. If the variables in path condition are induction variables,
we usually can reason about the number of iterations. The execution
order of loop paths depends on the input of a loop. We found there
are patterns that we can summarize to describe the path interleaving.

Based on the above analysis, the difficulties of summarizing a
multi-path loop are determined by 1) the patterns of value changes
in path conditions, i.e., whether the variables are induction or non-
induction, and 2) the patterns of path interleaving, which we defined
the three types sequential, periodic and irregular. In the follow-
ing, we provide a detailed explanation for the two patterns, and al-
so present the classification of a multi-path loop based on the two.
The classification represents how difficult a multi-path loop can be
summarized.

Patterns of Value Changes in Path Conditions. Given variable
x and path π , we write Δi

π x to denote the value change of x between
the (i−1)th and ith iterations of π . We define the induction variable
as follows according to their value change during the execution.

Definition 3. Given a loop flowgraph G, a variable x is an induction
variable if ∀π ∈ ΠG, for any ith and jth iterations of π , Δi

π x = Δ j
π x.

Otherwise, x is a non-induction variable.

For an induction variable x, the value change of x is constan-
t in each iteration of π , and we write it as Δπ x. For example, in
Fig. 1(a), x is an induction variable as the change of x over each
iteration of the loop path π1, π2 or π3 is constant; and we have
Δπ1

x = 1, Δπ2
x = 0 and Δπ3

x = 0. Similarly, z and n are also induc-
tion variables. Note that it is undecidable to determine induction
variables. In our implementation, we perform a conservative static
analysis and report one variable as induction variable only when
we statically identify that the symbolic change of the variable is
constant in each iteration of a path.

Each condition in a path can be transformed to the form of E ∼ 0,
where E is an expression and ∼∈ {<, ≤, >, ≥, =}. For the oper-
ator �=, we transform it to E > 0∨E < 0. We use E as a variable for
the ease of presentation. We classify each condition into two types:

• IV Condition. A condition is an IV condition if E is an induction
variable. For example, the condition x < n in Fig. 1(a) is an IV
condition since Δπ1

E = 1 and Δπ2
E = Δπ3

E = 0, where E = x−n.

• NIV Condition. A condition is a NIV condition if E is a non-
induction variable. For example, the condition i < A in Fig. 1(e)
is a NIV condition since v = i−A is non-induction variable.

In some NIV conditions, the value change of E is solely depen-
dent on the input or context before the loop, but not the statements
in the loop. For example, the condition in the loop that traverses a

Table 1: A Classification of Single Loops
IV condition (∀) NIV condition (∃)

Sequential
Type 1 Type 3

Periodic

Irregular Type 2 Type 4

data structure is often dependent on the content of the data structure;
and a non-deterministic function as a condition cannot determine
the value change patterns over the iterations. We call such NIV con-
ditions input-dependent NIV conditions. In Fig. 1(e), the condition
A[i] == B[ j] is an input-dependent NIV condition since the value
change of A[i]−B[ j] depends on the element contents of A and B.
The conditions c1 and c2 in Fig. 1(d) are also input-dependent NIV
conditions as they depend on the non-deterministic function nondet.

Patterns of Path Interleaving. We use the concept of loop exe-
cution to define the patterns of path interleaving in the loop. The
precondition of the loop specifies the conditions of the variables be-
fore entering the loop. Note that, with different preconditions, the
loop may have different executions.

Definition 4. Given a loop flowgraph G with a precondition, a loop
execution ρG is a sequence of paths 〈π1, π2, . . . , πi, . . .〉, where
πi ∈ ΠG for all i ≥ 1. We use πi →∗ π j to represent a subsequence
from πi to π j in ρG.

If ∃ i �= j, πi →∗ π j →∗ πi is a subsequence of ρG, then ρG con-
tains a cycle. The cycle is periodic if its execution has the pattern

〈πki
i , . . . , πk j

j , . . .〉+ (its period is 〈πki
i , . . . , πk j

j , . . .〉), where ki
and k j are constant values that represent the execution times of πi
and π j respectively. For example, in Fig 2(a), the flowgraph contains

cycle π1 →∗ π2 →∗ π1, whose execution is 〈〈π1
1 , π1

2 〉, 〈π1
1 , π1

2 〉, . . .〉.
Thus, this cycle is periodic and its period is 〈π1

1 , π1
2 〉.

Given a loop flowgraph G with a precondition, we classify a loop
execution ρG into three types:

• Sequential Execution. If ρG does not contain any cycle, it is a se-
quential execution.

• Periodic Execution. If all cycles in ρG are periodic, it is a periodic
execution.

• Irregular Execution. If a loop execution is neither sequential nor
periodic, we call it an irregular execution. In this case, the loop
execution contains cycles; however, the path interleaving pattern
for the loop execution cannot be statically determined. Therefore,
we cannot easily compute the number of iterations for each path.

Loop Classification. In Table 1, we show a loop classification we
defined based on the above two patterns. The first row indicates that
we classify a multi-path loop based on whether all the conditions
in the loop are IV conditions (see Type 1 and 2) or there exists a
condition that can be the NIV condition (see Type 3 and 4). The
first column displays the criteria of path interleaving patterns, i.e.,
whether all the feasible executions of the loop are Sequential or
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Figure 3: An overview of our framework Proteus

Periodic (see Type 1 and 3) or there exists one loop execution that
can be Irregular (see Type 2 and 4).

Typically, the loops related to integer arithmetics, e.g., f or(; i <
n; i++), often belong to Type 1. The loops that traverse a data struc-
ture often belong to Type 3 and 4, as the loop iteration depends on
the content of the data structure. Intuitively, loops with NIV con-
ditions such as the ones related to complex data structures tend to
have no path interleaving patterns (i.e., irregular execution).

As examples, the loop in Fig. 1(a) is Type 1, as it only contains
IV conditions and has a periodic execution. The loop in Fig. 1(b)
belongs to Type 2. Although theoretically Type 2 loops should exist,
in practice, we did not find any Type 2 loops in real-world programs
(details are given in the evaluation section). The loop in Fig. 1(c)
contains an NIV condition and its execution is sequential; the loop in
Fig. 1(f) contains NIV conditions and has a periodic execution. Thus
both of them belong to Type 3. The loops in Figs. 1(d) and 1(e) be-
long to Type 4 because they contain input dependent NIV conditions
that can lead to an irregular execution.

2.3 Loop Analysis Framework
Fig. 3 shows the workflow of Proteus. It takes a loop program and

a set of variables of interest as input, and it reports a loop summary
for the variables of interest. The variables of interest are given by
the client analysis who uses the loop summary. For example, if the
goal is to determine the loop bound, the variables in the conditions
that may jump out of a loop are of interest; and if we use the loop
summary for program verification, we will need to summarize the
variables relevant to the properties to be verified. In this way, Proteus
performs a problem-driven summarization for the loop program.
Guided by the variables of interest, Proteus can further simplify the
loop to generate the summary more efficiently. If the variables of
interest are not specified, Proteus can also generate a summary for
all the induction variables in the loop.

Proteus mainly consists of four steps to summarize a loop. Step 1
performs a program slicing using the variables of interest as slicing
criteria and constructs the flowgraph for the sliced loop program.
The loop slicing removes the irrelevant statements, which can help
reduce irrelevant paths in the constructed flowgraph and make our
summarization more efficient. We implement the loop slicing based
on the program dependence graph (PDG) [45] which combines the
control flow graph (CFG) and data dependencies and the details can
be found in [38]. Then, the flowgraph is constructed based on the
CFG by adding the virtual start node, end node and exit node.

From the flowgraph, we can directly determine the type of the loop
from the loop conditions. If all the conditions in a loop are IV condi-
tions, the loop belongs to Type 1 or Type 2; otherwise, the loop be-
longs to Type 3 or Type 4. Summarizing the non-induction variables
is very challenging because of the uncertain value changes, we pro-
vide some approximation techniques (Step 2) to transform some of
the loops of Type 3 and Type 4 to Type 1 or Type 2. This approxi-
mation may cause imprecise summaries but may still be useful and
effective in specific applications. We cannot handle Type 3 and Type
4 loops that cannot be approximated.

In Step 3, Proteus extracts the path condition and value changes
of the variables from the flowgraph and analyzes the dependency
between any two paths. We propose a path dependency automaton
(PDA) to capture the execution order and path interleaving patterns
of the paths. Note that we can construct the PDA for Type 1 and
Type 2 loops. In Step 4, we perform a depth first search on the PDA
to check the feasibility of each trace in the PDA and summarize the
loop effect if it is feasible. The loop summary is a disjunction of
the summaries for all loop executions (i.e., all feasible traces in the
loop). The last two steps are our main contributions in this paper,
which will be elaborated in Section 3 and 4 respectively.

3. PATH DEPENDENCY ANALYSIS
This section presents the definition of path dependency automaton

(PDA) and the algorithm to construct a PDA from a flowgraph.

3.1 Path Dependency Automaton

Definition 5. Given a flowgraph G with a set of induction vari-
ables X , the path dependency automaton (PDA) is a 4-tuple M =
(S, init, accept, ↪→), where

• S is a finite set of states, each of which corresponds to a path in
ΠG. Each state s ∈ S is a 3-tuple (πs, θs, ΔsX), where πs ∈ ΠG
is the corresponding path, θs is the path condition of πs, and
ΔsX represents the set of the value changes for all the induction
variables after one execution of πs.

• init ⊆ S is a set of initial states.

• accept ⊆ S is a set of accepting states, which have no successors.
An accepting state is called an exit state if it corresponds to an exit
path, and a terminal state if it corresponds to an iterative path.

• ↪→⊆ S×S is a finite set of transitions. We use si ↪→ s j to represent
the transition (si,s j)∈↪→, and introduce a variable ki j (≥ 1) as the
state counter to indicate that si can transit to s j after ki j executions
of si. Each transition si ↪→ s j is annotated with a 3-tuple transition
predicates (φi j, ϕi j, Ui j). φi j is a constraint about ki j. ϕi j is the
guard condition, satisfying which, si ↪→ s j will be triggered. Note
that φi j and ϕi j are conditions on the variables before entering
into si. Ui j is a function computing X ′, which are the values of
variables X after ki j executions of si. That is, X ′ =Ui j(X ,ki j).

Note that a terminal state indicates that, once the execution en-
ters a terminal state, it never transits to other paths, i.e., the loop
will execute infinitely on the path. For example, there are two s-
tates corresponding to the two paths of the loop while(i < 10) i = 0.
The state corresponding to the iterative path i < 10∧ i = 0 is a
terminal state, leading to an infinite execution of the loop.

For a PDA M, a trace τ in M is a sequence of transitions s1 ↪→
. . . ↪→ si, where s1 ∈ init and si ∈ accept. A trace τ represents a pos-
sible loop execution. Note that not all traces in PDA are feasible, and
the existence of transitions si ↪→ sk and sk ↪→ s j cannot guarantee
si ↪→ sk ↪→ s j is feasible. We use EM to denote the set of all feasible
traces in M, and Xτ to represent the symbolic values of the variables
X after the execution of the trace τ .

Example. Fig. 2(b) shows the PDA of the loop in Fig. 1(a). Its
flowgraph is given in Fig. 2(a). In the PDA, S = {s1,s2,s3} corre-
sponds to the three paths of the loop, init = {s1,s2,s3} represents
the initial states (marked as red), and accept = {s3} corresponds
to the exit path in the loop. For state s1, it corresponds to path π1,
whose path condition θs1

is x < n∧ z > x. The value changes along
π1 are Δs1

{x,z,n} = {1,0,0} (here we omit the variables that do
not change over the loop iterations). The table above the transition
represents the transition predicates. For the transition s1 ↪→ s2, it
indicates that after executing s1 for k12 number of times, the loop
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Algorithm 1: ConstructPDA

input :G: flowgraph, precond: the precondition of the loop
output : M: PDA

1 Construct states S from paths ∏G;
2 Let X be the induction variables in the flowgraph G;
3 foreach s ∈ S do
4 if solve(precond ∧θs)= SAT then
5 init := init

⋃{s};

6 foreach si,s j ∈ S∧ i �= j do
7 Let ki j ≥ 1 be the state counter for si ↪→ s j ;
8 Let X ′

ki j−1 be the variables after ki j-1 executions of state si;

9 Let X ′
ki j

be the variables after ki j executions of state si;

10 cond := θsi [X
′
ki j−1/X ]∧θs j [X

′
ki j
/X ];

11 if solve(cond)= SAT then
12 (φi j)← simplify (cond);
13 (ϕi j)← eliminate (cond,φi j);
14 ↪→ := ↪→⋃{(si,s j)};
15 Annotate (φi j,ϕi j,Ui j(X ,ki j)) with the transition si ↪→ s j;

16 accept is the set of states which have no successors;
17 return M = (S, init,accept, ↪→);

leads to s2. The first row in the table specifies the constraint for
k12: k12 ≥ 1∧ k12 = z− x (i.e., φ12 ). The second row is the guard
condition ϕ12, z < n, indicating that when the condition z < n is
satisfied, s1 is transited to s2 after k12 number of iterations. The
function U12 (the third row) is {x′,z′,n′}= {z,z,n}, suggesting that
after executing s1 for k12 times, the symbolic values of x, z and n
become z, z and n. Note that the variables x,n,z on each table are
not the initial values before the loop, but the values before executing
the source state of the corresponding transition.

3.2 Construction of PDA
Algorithm 1 presents the procedure to construct a PDA from the

flowgraph. The input of the algorithm includes the loop flowgraph
G and the precondition of the loop precond. The output is the con-
structed PDA. At Line 1, we first construct the states S of PDA from
ΠG. For each state s ∈ S, we solve the constraint precond∧θs by us-
ing the SMT solver Z3 [14]. If the result is SAT (i.e., the constraint
is satisfied), the state s is added into init (Line 4–5).

Then we compute the transition between any two states si,s j in the
PDA (Line 6–6). First, we introduce the state counter ki j ≥ 1 for the
transition si ↪→ s j, and we also specify the value of variables after
ki j −1 and ki j times of execution of si as X ′

ki j−1 and X ′
ki j

(Line 7–9).

The key observation here is that if a transition between si to s j is
feasible, θsi should be satisfied with variables X ′

ki j−1 and θs j should

be satisfied with variables X ′
ki j

. We use θ [X ′/X ] to represent X are

substituted with X ′ in the condition θ . At Line 10, we get the guard
condition for si ↪→ s j by the conjunction of the substituted θsi and
θs j . This computation is effective for Type 1 and Type 2 loops that
only contain IV conditions (discussed in Section 4.1). In this case,
the change of the variables is linear along the path, i.e., X ′

ki j−1and

X ′
ki j

have a linear relation with X .

Finally, we use the SMT solver Z3 to solve the generated guard
condition at Line 11. If the result is SAT, the transition si ↪→ s j is
feasible (UNSAT means there is no transition from si to s j). We
simplify the linear inequalities in the guard condition based on an
extended Z3 tactics [14] and compute the predicate for ki j (Line 12).
At Line 13, we aim to eliminate the variable ki j in cond if possible
and simplify the guard condition ϕi j to use only loop variables. In
particular, if θsi implies cond, ϕi j can be simplified to true, which

Algorithm 2: SummarizeType1Loop

input :M: PDA, precond: precondition
output :SM : loop summary of M on precondition precond

1 Let X be the induction variables in M and rec be a summary map;
2 foreach si ∈ init do
3 SummarizeTrace(si, precond ∧θsi , X , rec);

4 return SM

Algorithm 3: SummarizeTrace

input :si: current state, tc: current trace condition
X ′: updated variables, rec: a map

1 if si ∈ rec then
2 Summarize cycle by checking the period;

3 else if si ∈ accept then
4 if si is exit state then
5 SM = SM

⋃ {(tc, Δsi X
′)} .

6 else
7 SM = SM

⋃ {(tc, Δ∞
si

X ′)};

8 else
9 foreach s j ∈ {sm | si ↪→ sm ∈↪→} do

10 Let (φi j, ϕi j, Ui j) be the predicates on transition si ↪→ s j;
11 if solve(tc∧ϕi j[X ′/X ])=SAT then
12 nrec := clone(rec);
13 nrec[si] := {tc∧ϕi j[X ′/X ], Ui j(X ′, ki j)};
14 SummarizeTrace(s j, tc∧ϕi j[X ′/X ], Ui j(X ′,ki j), nrec);

means once entering into si, si can always transit to s j . Note that if
it cannot be eliminated, it just keeps the original cond and does not
affect our approach. We add the transition into the set ↪→ (Line 14),
and update the variables in X using the state counter ki j . The result
Ui j(X , ki j) is used with φi j,ϕi j to annotate the transition (Line 15).

Example. Using the previous example in Fig. 2(b), we explain
how the transitions are computed. Consider the transition s1 ↪→
s2 in Fig. 2(b). The table on top of s1 ↪→ s2 in Fig. 2(b) shows
the 3-tuple transition predicates. Let k12 be the state counter. The
updates of the variables after k12 − 1 and k12 times of executions
of path π1 are X ′

k12−1: {x′ = x+ k12 − 1,n′ = n,z′ = z} and X ′
k12

:

{x′ = x+ k12,n′ = n,z′ = z} respectively. We then can compute the
conjunction of the two path conditions θs1

and θs2
by substituting

the variables X with X ′
k12

and X ′
k12−1 respectively, and obtain cond

as (x+k12−1< n)∧(z> x+k12−1)∧(x+k12 < n)∧(z≤ x+k12).
After the simplification of the inequalities, we can get φi j as z− x ≤
k12 < z− x+ 1, i.e., k12 = z− x. Using this information, we can
further simplify cond to be z < n (i.e., ϕ12). The update function
U12 is {x′,n′,z′}= {x+1×k12,n+0×k12,z+0×k12}= {z,n,z}.
Similarly, we can also compute ϕ21 = x < n for transition s2 ↪→ s1.
However, ϕ21 can be simplified as true since θs2

implies x < n,

4. DISJUNCTIVE LOOP SUMMARIZATION
In this section, we elaborate the algorithm for computing DLS,

which is formally defined below.

Definition 6. Given a PDA M generated from a loop flowgraph G
and a set of induction variables X , the summary of a trace τ ∈ M is
denoted as a tuple (tcτ , Xτ ), where tcτ is the condition needed to
meet when trace τ is feasible, and Xτ is the value of the variables
after executing the trace. The loop summary of M, denoted as SM , is
⋃

τ∈EM
{(tcτ ,Xτ )}, i.e., the union of all trace summaries in the loop.
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(a) Circles
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(b) Cycle
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sl: kl

sj: k kj
sn

...
...

si: ki

(c) Cycle Execution

Figure 4: Examples of cycle

4.1 Summarization for Type 1 Loops
Algorithm 2 shows the detailed procedure for summarizing Type 1

loops. It takes as inputs the PDA of a loop M, the precondition before
the loop precond, and returns the loop summary SM . Let X be the
set of the induction variables, which contain the variables of interest,
and rec be a map to record the summary for the current trace (i.e.,
from the initial state to the current state) (Line 1). Algorithm 2
traverses each initial state to summarize the feasible traces starting
from it by calling Algorithm 3 (Line 3).

Algorithm 3 performs a depth-first search (DFS) on the PDA to
summarize each transition of the trace until it reaches an accepting
state. Its inputs are the current state si, the current trace condition
tc for the prefix trace during DFS, the values of variables X ′ after
the previous transition summarization, and the summary map rec.
Specifically, if the current state si is contained in rec, a cycle is found
and we summarized the cycle by its period (which will be introduced
later) (Line 1–2). If si is an accepting state, the summarization for
one trace is finished (Line 3–7). In particular, if the accepting state
is an exit state, tc is the satisfied condition of the trace; the variables
X ′ are updated to Δsi X

′ in the exit path (Line 5). If si is a terminal
state, the trace corresponds to an infinite execution. Thus the current
variables X ′ are updated to Δ∞

si
X ′, where ∞ means the infinite update

of Δsi X
′. In the implementation, we use a symbolic infinite value to

represent this infinite update.
On the other hand, if si is not an accepting state, the algorithm

continues to summarize the transitions from si to its successors
(Line 9–14). For each successor s j, let (φi j, ϕi j, Ui j) be the tran-
sition predicates (Line 10). The guard condition ϕi j is updated by
substituting its variables X with X ′. The constraint tc∧ϕi j[X ′/X ]
is solved by the SMT solver to check whether the current trace
can transit to s j (Line 11). If feasible, the algorithm clones a new
map nrec for the new branch (Line 12), updates the current trace
condition to tc∧ ϕi j[X ′/X ], updates the variables to Ui j(X ′,ki j),
and stores the current trace summary into nrec (Line 13). Then it
continues the summarization from state s j (Line 14).

Example. For the PDA in Fig. 2(b), the precondition is true. Start-
ing with the initial state s3, Algorithm 3 reaches an exit state. Thus,
the trace condition is x ≥ n, the variables do not change, and the
summary for the trace s3 is (x ≥ n, x′ = x∧z′ = z∧n′ = n). Starting
with the initial state s1 which has two successors, the initial trace
condition is x < n∧ z > x. Consider the transition s1 ↪→ s3, the exe-
cution reaches an exit state after this transition. The trace condition
is updated to x < n∧ z > x∧ z ≥ n, simplified as x < n ≤ z. The vari-
ables are updated to {x′ = n∧ z′ = z∧n′ = n}. Thus, the summary
for trace s1 ↪→ s3 is (x< n≤ z, k13 = n−x∧x′ = n∧z′ = z∧n′ = n).

Cycle Summarization. Summarizing a cycle is challenging s-
ince the execution number of each state is uncertain during the
executions of the cycle. Multiple connected cycles are challenging
due to the interleaving of the cycles. For example, Fig. 4(a) shows
the interleaving of three cycles, which represents the dependencies
among the three paths in Fig. 1(d). The execution order of such con-
nected cycles are often undecidable. Hence, the loops that contain
multiple connected cycles are regarded as irregular execution. In our
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True 
x’=n, z’=z+n-x,n’=n 

  1,  =z-x 
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x++
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x>=n

s0
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Figure 5: The substitution of a cycle

Table 2: The summarization process for s1 ↪→ s2 ↪→ s1 ↪→ s2
trace tc X ′

sss111 ↪→ s2 x < n ∧ k12 = z-x,
z > x ∧ z < n x′ = z, z′ = z, n′ = n

s1 ↪→ sss222 ↪→ s1 x < n ∧ z > x k12 = z-x, k21 = 1,
∧z < n ∧ true x′ = z, z′ = z+1, n′ = n

s1 ↪→ s2 ↪→ sss111 ↪→ s2 x < n ∧ z > x k12 = z− x = 1, k21 = 1,
∧z < n ∧ z+1 < n x′ = z+1, z′ = z+1, n′ = n

experiments, we found the cycles that connected are all aperiodic,
and there is no loop containing connected periodic cycles.

However, if the cycle is periodic, each execution of the cycle
has the same pattern, i.e., the period (see Section 2). Then we can
compute the effect of each period and abstract the cycle as a new
state since the execution of the cycle is periodic. Each execution
of the new state represents a full execution of the cycle (i.e., the
period), and the state counter of the new state represents the execu-
tion number of the cycle. For example, Fig. 4(b) is a periodic cycle,

its period is 〈skl
l , . . . ,s

k j
j ,s

ki
i 〉, and it has one successor sn. Fig. 4(c)

shows the specific execution pattern of Fig. 4(b). The execution
consists of two parts: 1) k (≥ 0) executions of the complete cycle
(the red part), and 2) one execution of the remaining chain (a partial
cycle) sl ↪→ . . . ↪→ s j ↪→ sn (the blue part). The red part is abstracted
as a new state, each of whose execution represents kl , . . . , k j, ki
executions of the states sl , . . . , s j, si respectively.

Example. Table 2 shows the summarization for s1 ↪→ s2 ↪→ s1 ↪→
s2 in Fig. 2(b). In the third row, since s1 is already in rec, a cycle
c = s2 ↪→ s1 ↪→ s2 is detected. We can learn from k12 = k21 = 1
that c is periodic and the period is 〈s1

2, s1
1〉. Fig. 5 shows the PDA

after substituting the cycle as new state s0. The path condition θs0

is x < n∧ z ≤ x∧ true∧ z′ < n′ (where z′ = z+ 1,n′ = n) and the
variables x and z increase by one in each iteration of the cycle.
Then we compute the path dependency for s0 ↪→ s3. Finally, the
trace of the loop execution (acyclic) is s1 ↪→ (s2 ↪→ s1)

+ ↪→ s3
2,

and its summary is (x < z < n, k12 = z− x∧ k03 = n− z∧ x′ =
n∧ z′ = n∧n′ = n). Similarly, we can also compute the summary
for another trace s2 ↪→ (s1 ↪→ s2)

∗ ↪→ s1 ↪→ s3 as (z ≤ x < n, k21 =
x− z+1∧ k01 = n− x−1∧ k13 = 1∧ x′ = n∧n′ = n∧ z′ = n).

4.2 Summarization for Types 2, 3 and 4 Loops
It is non-trivial to summarize Type 2, 3 and 4 loops precisely as

they contain NIV conditions, irregular executions, or both. We intro-
duce several approximation techniques to Proteus to facilitate the
summarization, which are still effective for specific applications.

NIV Condition. NIV conditions are difficult to be summarized
because of the unpredictable value change for non-induction vari-
ables. We use different strategies for three kinds of NIV conditions.

1) If the variables in a condition are monotonically increased (or
decreased) and we only care about the path dependencies (e.g., in
loop bound analysis and termination analysis), we approximate the

2This trace is a simplification of s1 ↪→ (s2 ↪→ s1)
∗ ↪→ s2 ↪→ s1 ↪→ s3

as the chain after the cycle is also one complete cyclic execution.
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change of the value as increased by one (or decreased by one). This
approximation makes the variable becomes an IV. The summary can
still be used to get a safe result for some applications.

Example. The variable i in the loop in Fig. 1(c) is a non-induction
variable but it is always increased. If we want to compute a bound for
the loop, we approximate that i is increased by one in each iteration;
and we compute the loop bound as LINT , which is a safe bound.

2) Some NIV conditions are from the data structure traversal
(e.g., list), which are difficult to summarize. In bound analysis, we
perform a pattern-based approach to capture some of them; and the
string loops can also be summarized with our technique in [55].

Example. We use the attribute size(li) to describe the loop itera-
tions for the data structure traversal loop like f or(; li! = null; li =
li → next), then the loop can be converted to f or(; li < size(li); li+
+). Similarly, length(str) can be used to describe for the string
traversal loop like f or(char ∗ p = str; p! = ‘\0’, p++).

3) For input-dependent NIV conditions, they can always be satis-
fied in any iteration since their values are dependent on the input or
context but not the loop execution. Thus, we abstract them as true.

Example. The loop assume(i > 0); while(i >= 0&&v[i]> key)
i−−; contains one iterative path and two exit paths. The condition
v[i] > key is an input-dependent NIV condition. After abstracting
it as true, we get π1: {i>= 0∧true, i−−}, π2: {i>= 0∧true} and
π3: {i < 0}. Then we can summarize it as: (1) the trace summary
for π1 ↪→ π2 is (i > 0, 1 ≤ k12 ≤ i∧ i′ = i− k12) and (2) the trace
summary for π1 ↪→ π3 is (i > 0, k13 = i+1∧ i′ = −1). Note that
this loop summary is also precise. Imprecision can be caused when
the content of data structures are updated before or in the loop. We
will discuss the imprecision in Section 5.

Irregular Execution. For loops with irregular path executions,
the interleaving pattern can be arbitrary and thus cannot be deter-
mined. Hence, we do not consider the interleaving order between
any two paths, but consider the total effect of each path during the
whole loop execution by introducing a path counter [55] ki for each
path πi. Each path counter ki can be used to compute the values of
the induction variables after ki executions of the loop.

Intuitively, loops with irregular execution satisfies the following
condition: assume πi can transit to the exit path, then ∀ j �= i, after
k j iterations of π j and ki −1 iterations of πi, it will satisfy the exit
condition of the loop; and after k j iterations of π j and ki iterations
of πi, it will violate the exit condition.

Example. The loop in Fig. 1(d) has irregular executions with three
paths. We introduce path counters k1, k2 and k3 to represent their
total execution count. The variables after the loop can be x′1 = x1 −
k1∧x′2 = x2−k2∧x′3 = x3−k3. For the path π1 which can transit to
the exit path, the variables after k1−1 iterations of π1 satisfy the exit
condition, and the variables after the k1 iterations of π1 violate the
exit condition, which implies the constraints x1−(k1−1)> 0∧x′2 >
0∧x′3 > 0∧x′1 ≤ 0∧x′2 > 0∧x′3 > 0. By simplifying the constraints,
we can get x′1=0∧ x′2 > 0∧ x′3 > 0. Similarly, if the last iteration is
path π2 or path π3, we can compute x′2=0 or x′3=0. The summary
can be used to verify the property after the loop successfully.

4.3 Discussion
Precision. Our summarization for Type 1 loop is precise with re-

spect to the following aspects. First, we perform an equivalent trans-
lation from a loop program to its PDA. Second, with the induction
variables and state counters, the summarization is an accumulation
of the variable updates in the execution of the trace; and there is
no approximation involved when producing DLS from PDA in Al-
gorithm 2. Third, DLS is disjunctive and thus fine-grained, we
consider all of the possible loop execution patterns under different
preconditions of the loop. Types 2-4 loop summarization may intro-

duce imprecision because approximation is used on non-induction
variables. However, it can still be useful and precise in certain
applications.

Limitation. In this paper, we mainly focus on the systematic
summarization for Type 1 loops. Summarization for non-induction
variables and nested loops is still an area of open interest. Nest-
ed loops are challenging when changes in inner loops make the
variables become non-induction variables in outer loops. The prob-
lem is then equivalent to summarizing non-induction variables in
unnested loops. We will leave the systematic summarization for
non-induction variables and nested loops in the future work.

5. EVALUATION
The goals of our experiments are 1) to study the distributions of

loop classification in real-world programs, and 2) to demonstrate
the usefulness and accuracies of Proteus in practical applications.

We have implemented Proteus using LLVM 3.4 [37] and SMT
solver Z3 [14]. We planned the following experiments to achieve
our evaluation goals. In the first experiment, we selected five open
source projects of different categories, including coreutils-6.10, a
basic module in the GNU operating system containing the core utili-
ties, gmp-6.0.0, an arithmetic library, pcre2-10.21, the library that
implements regular expression pattern matching, libxml2-2.9.3.tar,
the XML C parser and toolkit developed for the Gnome project, and
httpd-2.4.18, the Apache HTTP Server Project. We studied the
loop classifications for these programs. The results help understand
the capabilities of Proteus in solving loops in real-world program-
s. In the next set of experiments, we applied Proteus for loop
bound analysis, program verification, and test input generation. The
experimental results are discussed in the following sections.

5.1 Classification of Real-World Loops
In Table 3, the programs under study are listed in the first column.

Under Total (Nest), we list a total number of loops discovered,
which includes both single loops and nested loops (the number of
nested loops is listed in the parenthesis). For the nested loops, we
classify only their inner loops. Under Type1, Type3 and Type4, we
list the total number of Type 1, 3, 4 loops found for each of the
benchmarks. There is no column for Type 2, as we have not found
any Type 2 loops in the five benchmarks. The Type 2 loop shown in
Fig. 1(b) is an constructed example. Theoretically Type 2 loops do
exist; however, we believe that such loop is difficult to understand
and maintain, and the developers typically do not write such code.

The last row of the table summaries the results for all the bench-
marks, and the 9862 programs can be classified in less than five
minutes. We show that for the five projects under study, we found
that 33.87% of the loops belong to Type 1, 19.49% is Type 3 and
46.64% belong to Type 4. Type 4 loops are most common loops, and
they are mainly caused by the usage of data structures and arrays
in the loop. Type 1 loops are the second most common category.
For example, gmp is an arithmetic library and many of its loops are
Type 1. Proteus is able to handle such category precisely. With the
techniques of demand-driven analysis and approximation, Proteus
is also able to handle some of the Type 3 and 4 loops. By further
investigating these loops, we found that the dominance of Type 1
and Type 4 loops makes sense—-when a multi-path loop contains
NIV conditions, the loop execution is often irregular (Type 4 loop-
s); and when a loop’s conditions are only IV conditions, the loop
execution is either sequential or periodic (Type 1 loops). There is
often a correlation between NIV condition and irregular execution.

In summary, our loop classification can provide a better under-
standing of real-world loops with respect to the four loops types. It
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Table 3: Results of loop classification
Projects Total (Nest) Type1 Type3 Type4

coreutils 4977(2620) 1401(28.14%) 812(16.32%) 2764(55.54%)

gmp 1088(114) 920(84.56%) 83(7.63) 85(7.81%)

pcre2 542(373) 188(34.69%) 157(28.97%) 197(36.34%)

libxml 2117 (1150) 640(30.23%) 566(26.74%) 911(43.03%)

httpd 1138 (468) 191(16.78%) 304(26.71%) 643(56.50)

Total 9862 (4725) 3340(33.87%) 1922(19.49%) 4600(46.64%)

also guides the design decision in Proteus to primarily focus on Type
1 Loops and to use approximation to handle other loop types.

5.2 Application on Loop Bound Analysis
To compute the loop bound using Proteus, we are interested in

knowing when the exit conditions are met. Thus, we use the ex-
it conditions as the slicing criteria to simplify the loops as the first
step. We perform summarization on the simplified loop and add
up the state counters for each state along feasible traces as a loop
bound.

In our experiment, we found that slicing is an effective technique
to improve the capability of the loop summarization for a given
problem. For example, we found that 83% of the loops in coreutils
is simplified as a result of slicing and 69.24% of the paths that are
irrelevant to bound analysis are pruned. Based on these sliced loop
programs, we can compute the bounds for 8799 (89.22%) loops in
the projects. Table 4 provided detailed results for each benchmark.
Under Type1, Type3 and Type4, we list the percentage of the loops
of Type 1, Type 2 and Type 3 where we successfully compute the
loop bounds. Under Total, we show the percentage of all the loops
where we can compute the loop bounds. We found that all these
loops are summarized in less than 20 minutes totally.

We investigated the cases where we are not able to compute the
loop bounds. We found the following reasons:

• NIV Conditions. The loops has non-induction variables whose val-
ue changes are not always increased or decreased in all loop paths,
e.g., for conditions that contain function calls. Note that many of
the loops we can handle also contain function calls, but they do
not affect loop conditions and can be removed via slicing.

• Irregular Executions. The loops have irregular interleaving of the
loop paths, and the execution order of the paths affects the bounds.
For example, in the loop while(i < n) {i f (a[i] == 0) i++;else
i−= 2;}, the value change of i depends on the execution order
of the paths, and thus the bound is non-deterministic.

We also tried to compare our loop bound analysis results with the
current techniques [27, 26, 28]. However, their tools are currently
not publicly available. Instead, we compared our approach with these
techniques based on the examples used in their work. General-
ly, our approach has three advantages: 1) When the value change
of the variables in some paths is not exactly one, we can compute a
more precise bound than them since we summarize the change. For
example, in the loop while(i < n) i += 2 (suppose i = 0 and n > 0),
the technique in [28] computes the bound as n while we compute the
bound as �n/2�. 2) Our approach can compute a fine-grained bound
for each possible loop execution trace with the disjunctive summary.
3) Our approach not only computes the bound for the loop, but also
computes the bound for each path. This is very crucial and useful
in some applications. For example, for worst case execution time
(WCET) analysis [53], it is easy to compute the whole execution
time based on the path bounds (given the estimated execution time
for each path). Differently, the techniques in [27, 28] can compute
bounds for some nested loops while we only consider single loops.

Table 4: Results of loop bound analysis
Projects Type1 Type3 Type4 Total

coreutils 1401(100%) 568(69.96%) 2578(93.27%) 4547(91.36%)

gmp 920(100%) 22(26.51) 57(67.06%) 999 (91.81%)

pcre2 188(100%) 107(68.12%) 136(69.04%) 431 (79.52%)

libxml 640(100%) 384(67.84%) 880(96.71%) 1904 (89.94%)

httpd 191(100%) 219(72.04%) 508(79.00) 918 (80.67%)

Total 3340(100%) 1300(67.64%) 4159(90.41%) 8799 (89.22%)

1 assume (0 <m<n ) ;
2 i := 0 ; j := 0 ;
3 whi le ( i <n && n o n d e t )
4 i f ( j <m) j ++;
5 e l s e j := 0 ; i ++;

(a)

i n t SIZE =∗+1 , a [ SIZE ] , j =0 ;
a [ SIZE / 2 ] = 3 ;
whi le ( j <SIZE && a [ j ] ! = 3 )

j ++;
a s s e r t ( j <SIZE ) ;

(b)

Figure 6: Loop examples for evaluation

We also found one imprecise loop bound computed by [26] (i.e.,
Example 3 in Fig.4 in [26]). That loop is shown in Fig. 6(a), which
contains interleaving among its multiple paths. Assume that path
π1 takes the i f statements (the true branch ), π2 takes the else state-
ments (the false branch), and π3 is the exit path. The loop has only
one execution trace π1 ↪→ (π2 ↪→ π1)

∗ ↪→ π2 ↪→ π3, whose summa-
ry is (i = 0∧ j = 0∧ 0 < m < n, k12 = m∧ k02 = n− 1∧ k23 = 1
∧ j′ = 0∧ i′ = n∧m′ = m∧n′ = n). Its periodic execution executes
π1 for m times and π2 for once. Thus, the bound is m+(m+1)∗
(n−1)+1 = n×m+n. However, the result in [26] is n×m.

In summary, using DLS, we can compute a more precise and fine-
grained loop bound than the existing loop bound analysis techniques.

5.3 Application on Program Verification
In this experiment, we apply DLS to program verification. We used

the benchmark Loops in Competition on Software Verification 2016
(SV-COMP 16) [1], which has 5 loop categories. This benchmark
contains small but non-trivial loops. Note that the loop-inv category
contains many assertions that are not relevant to loops, and thus we
used the other four categories.

We compared our verification results with several tools, which
represent the state of the art. CBMC [9] is the basic BMC-based
verification tool, and CBMCAcc [36] is the latest work to im-
prove the capability of CBMC on loops with a trace automata. S-
MACK+Corral [31], CPAchecker-LPI [3] and SeaHorn [30] are the
top tools with respect to correct rate in SV-COMP16 (CPAchecker-
LPI achieved the best score in SV-COMP16 for Loops). Note that
we select the tools based on correct rate rather than the score in
SV-COMP16 since we compare the number of correctly verified
loop programs. We also select the CPAchekcer based on predicate
analysis [5] and CPAchecker-Kinduction based on K-induction [5].

We configured CBMC as in [36], SMACK+Corral, CPAchecker-
LPI and SeaHorn as in the competition [1], and CPAchecker as in [5].
All of them were configured with a timeout of 15 minutes. Since
CBMCAcc is currently not publicly available, we only used the ex-
perimental results from [36] to do the comparison.

Table 5 shows the verification results of those techniques together
with the loop summarization statistics. Column Bench shows the
involved loop categories. Columns NV, AR and NL respectively
list the number of loops that cannot be summarized because of
non-induction variables, array variables and nested loops. Column
SM lists the number of loops that can be summarized. Column TT
reports the total programs (each program contains one loop) in each
loop category. Columns C report the number of programs that can
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Table 5: Verification results of CBMC, CBMC-Acc, CPAchecker, SeaHorn and Proteus

Bench NV AR NL SM TT
Proteus

CBMC CBMCAcc CPAchecker SMACK
+Corral

SeaHorn
B = 100 (100, 3) Predicate k-induction LPI

C T(s) C T(s) Acc C C T(s) C T(s) C T(s) C T(s) C T(s)

loops 4 16 4 40 64 37 35 22 107 22 31 35 2043 33 3050 32 2073 37 5211 31 19

loopacc 5 4 2 24 35 23 19 4 6 24 24 11 9943 12 11743 17 7265 14 12691 12 4601

looplit 2 1 1 12 16 9 14 3 33 - - 11 1137 5 6510 12 206 12 7052 12 687

loopnew 2 0 1 5 8 5 7 0 2 - - 0 4506 2 2704 3 1822 5 659 4 903

Total 13 21 8 81 123 74 75 29 148 46 55 57 17629 52 24007 64 11366 68 25613 59 6210

be correctly verified by the techniques, while columns T list their
time overhead. Column Acc gives the number of loops that can be
accelerated by the CBMCAcc tool. Here we only compared the
programs whose loops can be summarized because our goal is to
show the loop summary is complement to these tools to improve
their capability on loops.

We compared the verification results with the 81 loops that can be
summarized by Proteus. When the bound is set to 100, CBMC can
correctly verify 29 (35.80%) loops in 148 seconds. A large number
of loops cannot be verified correctly since the bound is not large
enough. We also set the bound to 1000, it can correctly verify 35
(43.21%) loops but takes 756 seconds (we omit this from the table
for the space limitation). On the other hand, with DLS, Proteus can
correctly verify 74 (91.36%) loops within 75 seconds. Note that
in Table 5 the time reported for Proteus includes both the time for
computing DLS and the time for proving properties with DLS. The
average time for computing DLS for each loop is 0.81 seconds. The
results indicate that BMC are often less effective, and our technique
can correctly verify more loop programs with less time overhead.

To compare with CBMCAcc, we only show the results for loop
categories loops and loop-acc since they only used these two cate-
gories in their paper [36]. In their experiments, the bound was set to
3 if the loop could be accelerated; otherwise, the loop was verified
by CBMC with the bound being 100. From their experimental re-
sults, we know it can accelerate 22 (55%) of the 40 loops in category
loops and 31 (77.5%) loops can be verified correctly, while our tech-
nique can verify 37 (92.5%) loops. The loops they fail to accelerate
are mostly multi-path loops containing complex interleaving. The
24 loops in category loop-acc have deep iterations but one single
path. Thus, CBMC-Acc can accelerate and verify all of them. Our
technique can verify 23 loops, the incorrect one is caused by the im-
precision in approximation of input-dependent NIV condition. The
results indicate that our technique can handle complex interleaving
based on the PDA while CBMCAcc often fails.

Compared with other tools, 57 (70.37%) loops can be correctly
verified in 17629 seconds for predicate analysis in CPAchecker, 52
(64.20%) loops in 24007 seconds for k-induction, and 64 (79.01%)
loops in 11366 seconds for LPI. SeaHorn takes 6210 seconds to
correctly verify 59 (72.84%) loops. SMACK+Corral can correctly
verify 68 (83.95%) loops in 25613 seconds. Note that the time
overhead of CPAchecker, SMACK+Corral and SeaHorn is very
large because some programs time out. The results indicate that our
technique slightly outperforms these top tools on effectiveness, and
significantly outperforms them on performance.

The incorrect verification results of our techniques are caused by
the potentially imprecise summaries with approximation. For exam-
ple, the program in Fig. 6(b), taken from category loops, has a input-
dependent NIV condition. Our technique approximates the condition
a[ j]!=3 as true and thus finds a counterexample j==SIZE. Actually,
the content of array a is changed at Line 2, which makes the property
j<SIZE always true.

In summary, using DLS, we can correctly verify more programs
with less time overhead than existing tools for those loops that we

Table 6: Test case generation results of KLEE, Pex and Proteus

Tool
functio phases overfl multiv simple simple
ns_false _false ow_true ar_false _false1 _false2

KLEE 23 min T/O T/O 11.97 s 22 min 0.02 s

Pex F F F F F 0.11 s

Proteus 0.06 s 0.18 s 0.04 s 0.05 s 0.03 s 0.03 s

can summarize. Therefore, our loop summary can be en effective
complementary to existing tools.

5.4 Application on Test Case Generation
In this experiment, we apply DLS to test case generation. We did

not compare with other summarization techniques [47, 20, 51] since
their tools are not available, and the comparison of the approaches
are discussed in the related work. We compared the performance
of our technique with the symbolic execution tools KLEE [8] and
Pex [52] using the loops in loop-acc, which contain deep loops
(with large loop iterations). A test case is generated for the assertion
after the loop to be true by using KLEE, Pex and our technique. Our
goal is not to compare the tools but to show DLS can be potentially
used to scale symbolic execution.

Table 6 shows the results for six programs. For the other 18 pro-
grams, five of them are the corresponding patched versions of the
selected programs and the results are similar; and 13 of them do not
have very deep iterations (about 1024 iterations) and the results us-
ing the three tools are all less than one second. In the table, T/O rep-
resents that KLEE cannot generate a test case within 30 minutes
and times out; and F means that Pex fails to generate a test case and
throws an “out of memory” exception for the large branches.

Among the six programs, the program phases_false has a multi-
path loop, and the other five programs contain simple loops, each of
them only contains one statement. The results show that even for
the simple loops, KLEE timed out for two programs and took much
more time for three programs. Pex failed to generate test cases for
five programs. This is because symbolic execution consumes much
time to keep unfolding the loop. On the contrary, Proteus generated
test cases for all the programs in less than one second.

In summary, the state-of-the-art symbolic execution tools KLEE
and Pex can take much time or throw exceptions when a loop has
many iterations. In such cases, DLS can be helpful to improve the
performance of these tool by utilizing the summary during symbolic
execution. We leave it as our future work to integrate disjunctive
loop summarization into symbolic execution.

6. RELATED WORK
Loop invariant is a property hold at the beginning or at the end

of each loop iteration (including the exit of the loop). On the oth-
er hand, loop summarization focuses on capturing the relations of
variables at the entry of the loop and at the exit of the loop, which
can also generate symbolic constraints at the exit of the loop. Com-
paring to loop invariants, loop summaries are more precise and more
rich. Hence, computing summary is more challenge than invariant.
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In the following, we present the related work on the two areas, and
discuss loop analysis in different applications.

6.1 Loop Summarization
Several techniques have been proposed to summarize the loop ef-

fect [47, 20, 51, 55, 12]. LESE [47] introduces a symbolic variable
trip count as the number of times a loop executes and uses it to infer
the loop effect. The technique in [20] detects loops and induction
variables on the fly and infers the simple partial loop invariants and
generates pre- and post-conditions as loop summaries. These tech-
niques only focus on single-path loops.

APC [51] introduces path counter for each path to describe the
overall effect of variable changes in the loop. It summarizes a loop
by computing the necessary condition on loop conditions. S-Looper
[55] summarizes multi-path string loops using path counters. It ex-
tracts the string pattern from each path and then generates the string
constraints. Both APC and S-Looper cannot handle loops with
complex path interleaving, e.g., the loop in Fig. 1(a). Proteus aims
to model path interleaving of a multi-path loop, and we compute
fine-grained DLS which none of the existing techniques have done.
In [21], they compute the may and must summary compositional-
ly and use them for program verification. However, they do not
compute the loop summary and loops are handled with invariants.

6.2 Loop Invariant Detection
A number of advances have been made on loop invariant infer-

ence [2, 11, 4, 34, 32, 22, 23, 49, 43, 29, 50]. Most of them are
based on abstract interpretation [10], which iterates the loop until
a fixpoint is reached. To ensure the termination, they often use the
widening operator, which can lead to imprecision. Techniques [46,
40, 41, 48, 32] are proposed to accelerate the iteration and reduce im-
precision. These approaches mainly focus on conjunctive invariants,
which cannot represent disjunctive program properties.

Several attempts have also been made to infer disjunctive invari-
ants. The techniques in [22, 23] are based on octagons and polyhe-
dra, and it cannot compute complete disjunctive invariants. The tech-
nique in [49] decomposes a multi-path loop into several single loops,
which is difficult to handle complex interleaving. The technique in
[43] uses dynamic analysis to generate disjunctive invariants over
program trace points, but it is often hard to compute effective trace
points for each invariant. The template-based technique [25] needs
user-provided templates, and thus is not fully automatic. The tech-
niques in [19, 35] synthesize invariants using templates and learning
techniques, which are not sufficient and precise for some properties.

Compared with loop summary, loop invariant has several limita-
tions. First, it cannot guarantee to provide the required invariants
(strong and precise enough). Our summarization computes stronger
constraints and can also be used to infer invariants [18]. Second,
invariant is more suitable for checking properties inside the loop.
It cannot describe the loop effect (i.e., postcondition). Proteus can
compute symbolic values for variables after a loop and thus can be
used in symbolic execution. Finally, most techniques focus on con-
junctive invariant, which cannot represent disjunctive properties.

6.3 Loop Analysis for Different Applications
Loop analysis can be applied to various domains. Here we focus

our discussion on loop bound analysis and program verification. The
existing symbolic execution tools [8, 52] mainly handle loops by
unrolling the loop, and thus are omitted here.

Loop Bound Analysis. Lokuciejewski et al. [38] compute the loop
iteration counts based on abstract interpretation [10]. Their polytope-
based approach assumes that the variable in the loop exit condition
must increase in each loop iteration and cannot handle the loops in

Fig. 1(d) and 1(e). Gulawani et al. [24] compute bounds for multi-
path loop based on user annotations. Gulwani et al. [27] use counter
instrumentation strategies and a linear arithmetic invariant genera-
tion tool to compute the bound. However, it is limited for multi-path
loops when disjunctive invariants are needed. It also fails to compute
the bound for the loop in Fig. 1(a).

Gulwani et al. [26] use control-flow refinement and progress in-
variants to estimate loop bounds. Control-flow refinement is similar
to PDA, but PDA contains more information and is more specific
than control-flow refinement. Its bound computation relies on the
standard invariant generator and the result is usually inequalities.
Gulwani et al. [28] also propose a two-step solution (computing dis-
junctive invariants and a proof-rule based technique) to compute the
bound. However, if the variables are not increased (or decreased)
by one in each iteration, their result is an upper bound and not
precise. Differently, Proteus can compute a precise bound with
the disjunctive summarization on the PDA.

Program Verification. Bound Model Checking (BMC) is a tech-
nique to check the properties with bounded iterations of loops [39,
9, 13]. It is mainly used to find property violations based on SAT
solvers [17, 7, 14], but it can not prove safety properties soundly.
Kroening et al. [36] overcome this problem by introducing trace
automata to eliminate redundant executions after performing loop
acceleration, which is limited for multi-path loops whose accelerat-
ed paths interleave with each other. The technique in [5] combines
predicate analysis with counterexample-guided abstraction refine-
ment. However, it depends on the discovered predicates, which are
often difficult to control.

Several techniques propose to handle loops by combining BM-
C with k-induction. SCRATCH [16] supports combined-case k-
induction [15] but needs to set k manually. However, split-case
k-induction [42, 5] can change k iteratively. ECBMC [42] assigns
non-deterministic values to loop termination condition variables,
making induction hypothesis too weak and unsound. PKIND [33],
CPAchecker [5] and KIKI [6] strengthen the induction hypothesis
with auxiliary invariants. However, their effectiveness and perfor-
mance depend on the inferred invariants. k-induction technique
may consume much more time to get a better k. Proteus can help
verify programs with the loop summary effectively, as shown in our
experimental results.

7. CONCLUSIONS
In this paper, we propose a classification for multi-path loops to

understand the complexity of loops. Based on the classification, we
propose a path dependency automaton to describe the executions of
the paths in a loop as well as a loop analysis framework Proteus to
perform disjunctive summarization for different types of loops. To
the best of our knowledge, this is the first work that can identify d-
ifferent execution patterns of a loop, and compute disjunctive loop
summary for multi-path loops with complex path interleaving. In
the future, we plan to extend Proteus to support nested loops, sum-
marize Type 3 and 4 loops with abstraction approaches and apply it
to more applications such as detection of loop-related performance
bugs [44] and analysis of the worst-case execution time [53].
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