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ABSTRACT
Automated test generation techniques for graphical user in-
terfaces include model-based approaches that generate tests
from a graph or state machine model, capture-replay meth-
ods that require the user to demonstrate each test case,
and pattern-based approaches that provide templates for
abstract test cases. There has been little work, however,
in automated goal-based testing, where the goal is a realis-
tic user task, a function, or an abstract behavior. Recent
work in human performance regression testing has shown
that there is a need for generating multiple test cases that
execute the same user task in different ways, however that
work does not have an efficient way to generate tests and
only a single type of goal has been considered.

In this paper we expand the notion of goal based interface
testing to generate tests for a variety of goals. We develop
a direct test generation technique, EventFlowSlicer, that is
more efficient than that used in human performance regres-
sion testing, reducing run times by 92.5% on average for test
suites between 9 to 26 steps and 63.1% across all test suites.
Our evaluation shows that the number of tests generated is
non-trivial – more than can be easily captured manually. On
average EventFlowSlicer generated 38 test cases per suite,
and as many as 200 test cases which all achieve the same
goal for a specified task.

CCS Concepts
•Software and its engineering → Software verifica-
tion and validation;

Keywords
software test generation, graphical user interfaces, goal-based
testing

1. INTRODUCTION
Many of our systems today use graphical user interfaces

(GUIs) as their front ends. In these systems the user inter-

acts with elements of the interface to perform a task, which
consists of a sequence of events to achieve some end state.
For instance, to open a new file in most editors the user will
click on the File menu item, select the Open menu choice and
then browse for the specified file, eventually double-clicking
on the file that they wish to open. Often, the same task may
be performed in multiple ways. Instead of opening the file
using a menu, there may be a button that provides a single
click to open the Browse file widget, or the user may be able
to type in a file name as a shortcut instead. Each variant of
this task can be thought of as one way of achieving a user
goal (an end state in the application achieved through a se-
ries of steps). Goals represent behaviors of a typical user and
are the basis for system validation, usability evaluation and
for providing workflow help for users who want to navigate
the system.

While goals are often functional (e.g. open file), how this
functionality is achieved can vary. For instance, in work
on human performance regression testing, Swearngin et al.
found that there were 81 ways to enter text, make it bold,
and then center it in a common word processor, LibreOf-
fice, using different combinations of buttons, menu items
and keyboard shortcuts [15]. For that goal the functionality
of each of the tests is the same, however how each different
test to achieve that goal differs slightly.

Goals may also be more abstract. For instance, a goal
might be to change the appearance of a text box and the
exact change may be undefined. In this case any method
that changes the end state of the text box satisfies this goal.

While there has been a large body of work on software
testing (and test case generation) for GUIs [2, 3, 5–8, 10, 12,
17], there has been less work for automatically generating
test cases that target specific user goals. The closest work
other than the human regression testing is that of AI plan-
ning [9] and pattern-based testing [12], however, neither of
these approaches aims to generate all test cases that sat-
isfy a particular goal, such as the work of HPRT. A parallel
to testing based on pre-defined goals was devised by Mor-
eira and Paiva [11] but this work does not allow the user to
expand freely upon the goals that may be tested.

The contributions of this paper are:

1. EventFlowSlicer: a technique to generate all tests for
a given user goal;

2. A study showing that EventFlowSlicer is feasible and
that an automated technique is needed.

In the next section we present some motivation and foun-
dations. We then present EventFlowSlicer in Section 3. Our
Case study is presented in Sections 4 and 5. We then present
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Figure 1: Microsoft Word Menus vs. Toolbars

(a)	

(c)	

(b)	

Figure 2: DrJava Search and Replace Options

related work (Section 6) and end with conclusions and future
work in Section 7.

2. MOTIVATING EXAMPLE
We begin by motivating a few different types of goals that

we might encounter in a GUI application. Figure 1 shows
the interface of the MS Word application. Suppose we want
to bold and center some text. This can be achieved either by
clicking buttons (left side of the figure) or by using menus
(right side). The same task can also be achieved using a
combination of menus and toolbars. We are showing con-
crete test cases, however, we can state this as an abstract
functional goal and any single test case that makes some
text bold and centered in a direct manner would satisfy the
given use case. Most model-based techniques would not be
able to generate a specific goal unless it happened by chance,
and given that this test case requires up to 10 events it is
unlikely that the commonly used length 2 or 3 test cases
would be of use for this goal.

Even if we generate a single test case for this particu-
lar functionality, we miss other ways that the goal can be
achieved. The differences in how tests are performed (i.e.
whether you center or bold first and if you use menus, but-
tons or combinations of these) is important in domains such
as usability where designers measure the time taken to per-
form tasks on an interface. Since the concrete path taken
to achieve a goal will impact the time it takes to perform
a task, having the full set of possibilities can be of interest
to an interface designer. In functional testing, it may also

be important to test a particular goal in multiple ways, to
ensure that particular requirements or use cases are covered
completely.

We call the different tests in this task structurally differ-
ent, meaning that the goal is achieved using different struc-
tural elements of the interface (using buttons versus using
menus). In the work of Swearngin et al. [14,15] they defined
the notion of generating test cases for human performance
regression testing (HPRT) and showed that there is a need
to generate test cases that perform this task in all possible
ways to evaluate user performance. If adding buttons to
the interface provides paths that increase the time it takes
a user to make text bold and centered, then this can mean
that the application has declined in quality and users may
opt to switch to a competitor. In the case of safety-critical
applications (such as a cockpit screen) the time taken to
perform a task can mean success or failure of a life-saving
maneuver [15].

In the HPRT study, a test generation technique to auto-
matically generate test cases like this was presented, however
it did not directly generate tests – instead it enumerates all
possible paths of events on an event flow graph that extend
to the length of provided parameter l, and then removes tests
based on a set of provided constraints C1, C2, .. to weed out
tests that do not actually perform the given task in a di-
rect manner (as would an expert user). While this has a
similar effect as the test case generator here, HPRT does
not scale since it requires exhaustive test case generation on
large models. In the example above, for instance, there are
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test cases of length 4, 5, 6, 7, 8, 9 and 10, which requires the
generation of all possible tests at each length which takes
over 2 hours. As the lengths get longer this grows expo-
nentially with the number of widgets. Prior work using AI
planning by Memon et al. [9] performed goal-based testing,
but did not consider structural differences when generating
tests (e.g. only a sample of test cases would be generated
from that technique).

Figure 2 shows another example of a user goal. In this
scenario we see the search and replace function within the
DrJava Editor. In this screen there are multiple ways to
find and replace text. On the left part of this figure you
see that we can enter text into the box to find and replace a
word. We can select specific options (such as matching case)
or not, and on the right we can find and replace multiple
instances by selecting the find and replace multiple times or
by simply clicking Find all. While also structurally different,
we believe that the tests generated for this task amount to
very different sets of tasks, even though the final state will
be the same. We view these as having the same Functional
Goal, but utilizing different steps in different ways to get
there. We differentiate this difference from the prior type of
task which differed only in structure. In HPRT, this type of
task is not supported – these would be considered different
tasks.

The last type of task that we identify in this work are
those tasks which have Abstract Goals. This type of goal
is loosely defined. We might say that we want to generate
tests to change the background, but do not have a complete
specification for what changing the background means. In
this case the user can change the background color, pattern,
transparency, etc. All achieve the same goal, but are differ-
ent. The work on pattern-based testing is the most similar
to this type of goal [12], however the aim of that work is to
define a general pattern and then generate some tests for it,
not to generate all tests. Pattern based testing also does not
utilize event flow graphs.

In this work we support all three types of tasks and for
each generate all possible ways to perform that task. We
summarize them here:

Structural Differences Only Test cases are differentiated
by only the type of widgets used (e.g. menus versus
buttons) to perform each basic test step (i.e. bold or
center) on the interface. There can be a direct map-
ping created between (sets of) events in one test case
to another, to functionally perform the same core steps
that are needed to achieve the goal from the starting
state. What is important is that the function of each
of the core steps does not differ. The steps can occur
in different orders, however, if that still achieves the
goal.

Same Functional Goal All test cases in a test suite of
this type must lead from the same initial state to a
single end state. In this type of test suite, the steps
to get to that single state can differ significantly and a
direct mapping between test cases may not exist. The
variation can occur both in the number of steps taken
to achieve the goal, and the types of steps taken. In
this type of goal, the steps to reach the end state are
disimilar in their function, while the test case end goal
is still the same.

Same Abstract Goal A tester’s end goal for each test case
may be defined more coarsely than just by what dif-
ferentiates the state of two instances. Different test
cases in this type of goal stem from the same initial
state, but may have a different end state, therefore
the steps taken to achieve these goals may be quite
different. The end state of the test is defined based on
an abstract definition of how the interface state should
change according to the tester. Judging the correct-
ness of the end state in this type of goal is more difficult
than it is for the other two types of goals.

2.1 Foundations
In this paper we utilize the model-based approach for

testing GUIs based on graphs [8, 13]. We extract an event
flow graph (EFG) automatically from a running application
through a ripping process that extracts events on the in-
terface. In event flow graphs, nodes represent events and
edges represent the follows relationships between nodes (i.e.
this node can follow another node). In the HPRT work [15],
Swearngin et al. presented a technique to reduce the EFG
by ripping only those events that are of interest to the user.
In that work they manually defined the events (we use a cap-
ture mechanism for this). They also defined a set of global
constraints that must be satisfied if a task is to represent a
realistic user task (performed by an expert user). A realistic
task is one that is performed directly without unnecessary
steps. These constraints are (1) task must end in a main
window (2) an expand event must be followed by a child
event (3) a window or tab open and close without any in-
termediate events is not allowed and (4) there are no repeat
events (unless overridden by local constraints). They also
provided local rules that the user needed to specify:

1. Exclusion. This rule says which events cannot appear
together. If for instance, there is a button to make text
bold as well as a menu item, these are included in an
exclusion rule.

2. Order. This constraint provides a partial order of
events in the test case. For instance, in the bold and
center example, Select must occur before both Bold
and Center, but Bold and Center are equivalent.

3. Requires. This rule says which events must be in
every test case. The HPRT generator does not use
this rule fully during generation. Instead it relies on
the test case length. We discuss a modification to this
rule in the next section.

4. Repeat. This rule allows us to override the global rule
that says no events can be repeated. This is necessary
for tasks which use the same widget (e.g. a menu item)
multiple times.

The global rules are built into the test case generator, how-
ever the user provides local rules. In order to generate test
cases for HPRT, the user must identify all possible lengths
that a particular task can take, and then run the generator
for each length. The generator will then traverse the graph
starting at entry nodes (nodes that the user can immedi-
ately access) using an exhaustive traversal strategy, such as
that of GUITAR [13]. The generator searches all possible
test cases that are of the given length, and for each test case
checks constraints, saving only those which pass the rules.
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This does not scale as we show in our case study, because it
is an exhaustive generation strategy and grows exponentially
with test case length. EventFlowSlicer does not require the
test case length parameter and thus requires only one run to
generate the entire test suite. It also removes graph edges
prior to traversal that violate certain constraints, and as it
generates tests it prunes paths, cutting off a subpath if it
will violate other constraints. We describe its generation
strategy in more detail in the following sections.

3. EVENTFLOWSLICER

Extract and reduce EFG Capture relevant steps 
for goal 

Define constraints 

•  Required 
•  Order 
•  Repeat 
•  Exclude 
•  Atomic 

Generate Test Cases 

1	 2	 3	

4	

Figure 3: EventFlow Slicer

We now present EventFlowSlicer (EFS), our strategy for
goal-based test case generation in GUIs. EventFlowSlicer
uses a 4-step process to generate test cases from an event
flow graph model, in which paths in the EFG that are not
relevant to the goal are pruned using a set of global con-
straints imposed by the generation platform, and by rules
the user can specify. Figure 3 shows the process which al-
lows for optional iteration back to the first step since we have
learned that modeling sometimes is an iterative process.
Capture. First the tester captures relevant steps for a goal
using a GUI interface, where only the events captured will
be nodes in the EFG.
Define Constraints. In step 2, the user defines the con-
straints, by selecting from the widgets captured and placing
them in “constraints groups” (discussed below).
Reduce EFG. In step 3, the application is ripped using
a model-based ripper such as that provided in GUITAR,
but modified to extract only those events captured in step 1.
The EFG is then reduced in several stages, removing edges
that violate the first three global constraints (defined in the
HPRT work [15]). In brief, these constraints reduce the EFG
by removing common threats to the generation of succinct
test cases– those that don’t help maintain direct progress
toward a goal. One of the reductions, for instance, removes
edges on an EFG that allow a window to be opened and then
closed without performing any additional actions. Another
ensures that a menu cannot be opened and then closed again
without some intermediate event. These reductions are es-
sential to the test case generation process; they cannot be
turned off. The last global constraint, “No Repeat Events”
cannot be applied to reduce the graph at this stage, because

it may remove edges that are necessary for other paths, and
additionally, the rule can be overridden by a local rule.
Test Case Generation. In the last step, test case gener-
ation occurs by generating all tests in the EFG (paths) us-
ing a depth first search algorithm on the reduced EFG that
are valid with respect to both local constraints provided by
the user, and those that do not violate the merged repeat
rules. Test case generation is both direct and focused. Tests
are generated top down, and paths are pruned whenever
branches of the EFG are reached that violate a constraint.
This is in contrast to HPRT which enumerates all tests first,
followed by a post generation removal of invalid tests.

Finally, if the user is not satisfied with the structure of
the test cases, the tester can return to the beginning of the
process to recapture new widgets and constraints, or can
skip the first step and redesign constraints if the constraints
defined don’t require a larger or smaller scope of widgets. In
the end, all test cases are generated from the reduced EFG
given the set of constraints prepared.

3.1 Key Differences
We highlight some differences between the HPRT and EFS

approaches. The HPRT approach is an exhaustive enumer-
ation solution. It generates all possible sequences of events
of a particular length which gives it a halting criterion. The
EFS solution on the other hand, operates on the same ini-
tial graph and does not miss any test cases that satisfy
constraints. By cutting off paths that violate constraints
(e.g. illegally repeat vertices, paths that violate rules lim-
iting when two widgets may be grouped together, or paths
violating the order in which events may appear) it does not
have to exhaustively traverse the graph. We have also elimi-
nated the search-depth parameter in EFS so that all possible
lengths of test cases are generated with a single run. The
EFS is perhaps more fragile in that a sufficient set of con-
straints are required in order to halt generation since there
is no maximum search depth given. We did not find this to
be a limitation in our experiments.

Another key difference is the type of goal supported. HPRT
was built to support only structural types of differences in
test cases.

3.2 New Constraints
We modified one of the local constraints from HPRT and

added a new one that we found was needed in some of our
tasks. We describe these next.

1. Atomic. This is a new constraint that allows the user
to specify strict sub-sequences with a test case. We
have found some scenarios where the partial order is
not strong enough.

2. Mutually Required. This is an extension to the
HPRT required constraint. It allows users to spec-
ify that at least one of a set of widgets must appear
(but not all). The original required rule only allows
individual widgets to be required. But when we have
different options (menu item versus a toolbar) this rule
is needed to halt test case generation.

4. CASE STUDY
In this section we present a case study to evaluate Event-

FlowSlicer. Supplementary material and artifacts can be
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Table 1: Table of Tasks
Goal Name Task Variants Description Source
LibreOffice Menus Only (M) Type some text HPRT
Writer Menus, Keyboards (MK) Make the text bold
Format Text (FT) MK + toolbars (MKT) and centered
(Structural)
LibreOffice Menus Only (M) Open “Hyperlink” window HPRT
Writer Menus, Keyboards (MK) Add a link
Insert Hyperlink (IH) MK + toolbars (MKT) Add link text
(Structural) Make the link text uppercase
LibreOffice Menus Only (M) Open “Function Wizard” window HPRT
Calc Menus, Keyboards (MK) Type a value in the cell
Absolute Value (AV) MK + toolbars (MKT) Shift the cell just edited one cell to the right
(Structural.) Turn off column and row headers
LibreOffice Menus Only (M) Open the “Table” window HPRT
Impress Menus, Keyboards (MK) Type number in the columns text box
Insert Table (IT) MK + toolbars (MKT) add a new slide
(Structural Hide the task pane
JEdit File is already open with some text
Comment Indent (CI) N/A Change line to a java source line comment N/A
(Structural) Shift the line of text one tab to right
DrJava File is already open with some text
Search Options (SO) N/A Open “Find/Replace” panel N/A
(Functional) Enter word in the [Find Next] box

Enter word in the [Replace With] box
Search for and replace the word

TerpWord N/A Type text in a document
Bold Center (BC) Make text bold and centered N/A
(Structural)
DrJava A Java HelloWorld Program is open StackOverflow
Compile File (CF) N/A Compile the program
(Structural) Run the program with no arguments
JEdit Text Color (TC) A Java program is open with a comment StackOverflow
Commented Text (CT) Background (BG) Open the “Style Editor” window
(Abstract) Both (FULL) Change appearance of all comments

Confirm any changes, and exit
JEdit Java file is open with four lines of text StackOverflow
FourParagraphs (FP) Window (W) Open the “Search and Replace” window
(Functional) Menu Dominant (MD) Enter a regular expression

to find and replace content in
all 4 lines

found on our website.1 We ask the following research ques-
tions.
RQ1 How does EventFlowSlicer compare with the HPRT
test generation algorithm in terms of efficiency?
RQ2 Can we effectively generate test cases for the different
types of tasks identified?

4.1 Objects of Study
For RQ1 we use the 12 tasks from the HPRT study [15].

These include test cases for four tasks in LibreOffice 3.4.3,
that utilize three of the applications modules, Writer, Calc,
and Impress. In addition we added 9 more tasks on three
more applications to show generalization. These are tasks
for JEdit version 5.1.0, DrJava version 20140826-r5761, and
TerpWord 3 (2003 release). For the TerpWord task we used
the bold and center task from LibreOffice since this is also a
word processor. For the other tasks we found user questions
on StackOverflow for JEdit and DrJava and translated those
into our goals. We show the task details in Table 1 along
with their classification and source. Some of the tasks have
different variants. For instance in the HPRT work there are
tasks that work on a version only with Menus (M), only with
Menus and Keyboards (MK) and on an application version

1http://cse.unl.edu/˜myra/artifacts/EventFlowSlicer/

that has Menus, Keyboards and Toolbars (MKT). We pro-
vide this information in the table. For each task we say if
it is structural, functional or abstract. Most are structural
differences only, since these were the subject of the HPRT
work. However, we do add two tasks (one in JEdit and one
in Dr. Java) that are of the type same functional goal. These
are both tasks to perform search and replace which can be
achieved in very different ways in the two applications. We
also have one abstract goal task in JEdit. This task aims
to change the appearance of comments in the current docu-
ment.

All test cases generated for this study were validated to
ensure that they make direct progress toward the desired
output - the state of the application should monotonically
progress toward resembling the intended final state. We ver-
ified using a manual review of all test suites that each test
case met this requirement. For the test cases for HPRT, we
validated that the same exact set of test cases were gener-
ated using both techniques. This ensures that the test cases
are realistic for an expert user (as in HPRT) and would be
potentially useful in industrial real-world use: they don’t re-
peat widgets unnecessarily and that each completes the task
in a direct manner.
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4.2 Metrics
For RQ1 we use the time taken for generation, and the

number of constraints into consideration. For time we want
to reduce running times of the generator. For the constraints
we want to reduce the count since the user must manually
define these. For RQ2 we show the number of test cases
obtained for each task and validate them visually for cor-
rectness.

4.3 Study Method
For all of the structural only difference tasks, we run

HPRT and EventFlowSlicer both and compare them. For
the tasks that are functional or abstract we run only Event-
FlowSlicer. We run all tests on the same computing cluster
with AMD Opteron(TM) CPUs running at 2000MHz and
128 GB memory. We run the HPRT generator one time due
to the long runtimes. For EventFlowSlicer we ran the gen-
erator 5 times and took the average time. We redirect the
output to a file to allow these to run without human inter-
vention. We validated each of the resulting test cases from
EventFlowSlicer manually by executing them using a test
case replayer and observing that they perform the required
task. This took approximately 23 man hours.

4.4 Threats to Validity
We have only validated our test generation on a limited

number of tasks, however we have used ones from the liter-
ature and added additional tasks obtained from StackOver-
flow. We believe that these are representative of small user
tasks. We did not consider the time taken to write the con-
straints in EventFlowSlicer, however this process is similar
to what is required to write constraints in HPRT and we do
not significantly increase the number that must be defined.
Finally, we did not use the test cases to evaluate faults, how-
ever we did run each test case in this study to confirm their
validity manually. We provide supplementary data on our
website with the constraints, EFGs and test cases to reduce
this threat.

Table 2: Cumulative Run Times
No. Task EFS HPRT Diff % Reduct

time(s) time(s)
1 FT M 9.2 8 -1.2 -13.0%*
2 FT MK 12.6 107 94.4 88.2%
3 FT MKT 19 11257 11238 99.8%
4 IH M 6.6 7 0.4 5.7%
5 IH MK 9.2 35 25.8 73.7%
6 IH MKT 10.4 295 284.6 96.5%
7 AV M 10 16 6 37.5%
8 AV MK 12 280 268 95.7%
9 AV MKT 18 4254 4236 99.6%

10 IT M 7.2 4 -3.2 -44.4%*
11 IT MK 8 23 15 65.2%
12 IT MKT 15 45 30 66.7%
13 CI 5 45 40 88.9%
14 SO 14.8 261 246.2 94.3%
15 BC 8.0 106 98.0 92.5%
16 CF 4.8 N/A N/A N/A
17 CT TC 10.8 N/A N/A N/A
18 CT BG 11.6 N/A N/A N/A
19 CT FULL 19.6 N/A N/A N/A
20 FP W 15.8 N/A N/A N/A
21 FP MD 10.4 N/A N/A N/A

5. RESULTS
We begin by answering RQ1 (test case efficiency). We

show a comparison of the test case generation between HPRT
and EventFlowSlicer in Table 2. For each task we show the
runtime in seconds of EventFlowSlicer (EFS) followed by
HPRT, the difference in seconds and the percent reduction
(% Reduct). For tasks that are either functional differences
or abstract we have not provided times from the HPRT gen-
erator, as HPRT cannot handle these. There is one excep-
tion. For the DrJava Search Options (SO) task (#14) we
were able to still generate tests using the correct test case
lengths (6,7,8,9,10) therefore we do have a comparison for
this case.) We also show the lengths of test cases (and the
counts at each length) in Table 3.

Table 3: Test Cases Lengths
Task # breakdown Avg.

TC (L) length/ (C) count Len

FT M 3
L 10 - - - - - -

3
C 3 - - - - - -

MK 24
L 6 7 8 9 10 - -

5.5
C 3 6 6 6 3 - -

MKT 81
L 4 5 6 7 8 9 10

5.5
C 12 6 18 21 12 9 3

IH M 2
L 9 - - - - - -

9
C 2 - - - - - -

MK 8
L 6 7 8 9 - - -

7.5
C 2 2 2 2 - - -

MKT 18
L 6 7 8 9 - - -

7
C 8 4 4 2 - - -

AV M 3
L 10 - - - - - -

10
C 3 - - - - - -

MK 32
L 9 10 11 12 - - -

10.5
C 4 12 12 4 - - -

MKT 72
L 7 8 9 10 11 12 -

9.5
C 8 12 12 20 16 4 -

IT M 3
L 8 - - - - - -

8.6
C 3 - - - - - -

MK 12
L 6 7 8 - - - -

7
C 3 6 3 - - - -

MKT 36
L 5 6 7 8 - - -

6.3
C 3 15 12 3 - - -

CI 16
L 3 4 5 6 7 8 -

5.5
C 2 2 4 4 2 2 -

SO 64
L 7 8 9 10 11 - -

8.6
C 2 8 18 24 12 - -

BC 8
L 8 9 11 12 - - -

10
C 2 2 2 2 - - -

CF 4
L 2 3 4 - - - -

3
C 1 2 1 - - - -

CT TC 26
L 5 7 8 9 10 - - 8.6
C 2 1 5 10 6 - -

BG 26
L 5 6 9 10 11 12 - 10.1
C 2 2 1 5 10 6 -
L 5 6 8 9 10 11 12

FULL 200 C 2 2 1 7 15 15 6 14.2
13 14 15 16 17 - -
3 16 50 59 24 - -

FP W 114
L 9 13 15 16 18 - - 15.9
C 6 6 48 6 48 - -

MD
36

L 11 19 20 25 26 - - 21.4
C 4 4 12 4 12 - -

We can see that the total running time of HPRT is as high
as 11,257 seconds (over 3 hours) for the Format Text MKT
task, yet it takes only 19 seconds using EventFlowSlicer.
We see as high as a 99.8% reduction in runtimes. Most of
the tasks have reductions higher than 60 percent. On two
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Table 4: Types and Counts of Constraint Rules Uses
Application Category Rules Rules EFS Rule Types Widgets

HPRT EFS REQUIRE EXCLUDE ORDER REPEAT ATOMIC
Format Text M 4 7 4 - 2 - - 9

MK 7 9 4 2 2 1 - 12
MKT 7 10 4 3 2 1 - 15

Insert Hyperlink M 6 7 5 - 2 - - 9
MK 8 9 5 2 2 - - 11
MKT 8 9 5 2 2 - - 11

Absolute Value M 6 8 5 - 2 1 - 11
MK 8 10 5 2 2 1 - 14
MKT 9 11 5 3 2 1 - 16

Insert Table M 4 6 4 - 1 1 - 7
MK 6 8 4 2 1 1 - 9
MKT 7 9 4 3 1 1 - 11

Comment Indent 5 8 3 3 1 1 - 9
Search Options 6 7 5 1 1 - - 11
Bold Center 6 8 4 2 1 1 - 12
Compile File NA 6 2 2 1 1 - 9
Commented Text TC NA 2 1 1 - - - 11

BG NA 3 1 1 - - 1 12
FULL NA 7 1 - - 4 2 13

Four Paragraphs W NA 12 4 3 1 - 4 12
MD NA 16 6 3 2 1 4 12

of the smaller tasks (Format Text using only menus and
Insert Table using only menus), EventFlowSlicer is slower.
These tasks are relatively simple with only 4 test cases. In
this situation the overhead of EventFlowSlicer loading and
reducing graphs seems to be an overriding factor, yet both
of the generators take less than 10 seconds to complete the
generation. The tasks from HPRT are limited to lengths
of at most 12 (after this point, the exhaustive generation
technique does not allow us to complete), however, we have
generated tests with lengths as high at 26 using EFS (last
task of Table 3).

Overall we see an average of 63.1% reduction of runtime
over HPRT. If we only consider test cases of length 9 and
above then EventFlowSlicer shows an improvement of 92.5%
over HPRT.

We next turn to Table 4 which shows the types and counts
of constraint rules used by each technique. First we show the
total number of constraints (rules) used for runs on either
generator. We see that there is a slight increase in rules
from HPRT to EFS, however we never increase constraints
by more than 3. We do see several tasks where the atomic
rule was used (this does not exist within HPRT). Not shown
in the table is that typically the extra rules came from the
need to define additional (mutually) requires rules, to ensure
that the generator finds the correct number of widgets before
accepting a test case as valid for output.
Summary of RQ1. We conclude that EventFlowSlicer is
more efficient timewise than HPRT. Although we see some
increase in constraints it is small.

To answer RQ2 we examine the tasks that we have defined
for this study. We include tasks from the original HPRT
work, ones that have functional differences only and ones
that are abstract. For each of these tasks we are able to cre-
ate rules and generate the tests using EventFlowSlicer. The
test cases generated are then run using a modified version
of the GUITAR Replayer and we observed them as they run
to confirm that they perform the required tasks. We were
able to re-create the HPRT tests successfully (we confirmed
both the lengths of tests, and also performed a diff of the

test cases). We found 3 test cases where the actual events
within the HPRT generator differed from ours, but after ex-
amination we believe that these were actually incorrect (we
believe that the wrong test cases were posted online).

We next examine the number of test cases generated for
the various tasks in Table 3. We see as many as 200 test
cases for one task and on average 38. This also shows that
EventFlowSlicer is effective in that it automates a difficult
manual process.
Summary of RQ2. We conclude that EventFlowSlicer is
effective at generating test cases for all three types of tasks
that we have identified.

6. RELATED WORK
There has been a large body of work on GUI testing

[2, 3, 5–8, 10, 12, 17]. We focus here on model-based and
other goal based techniques. In model-based testing, the
most widely used technique reverse engineers the interface
to create an event flow graph and then generates all tests
to satisfy some coverage criteria such as all length 2 test
cases, random of some length, or using combinatorial cover-
age [2,8,10,17]. We use model-based testing and event flow
graphs in this work and have built our techniques on top of
the GUITAR framework, however, in general this work aims
to cover events in a graph and has no notion of a test goal.

In early work by Memon et al. [9] they proposed the use
of AI planning to generate tasks (such as ours), however
in that work they do not aim to generate all tasks and do
not differentiate between structural events (e.g. bold is bold
whether it uses a menu or a toolbar).

In the work of Moriera et al. they propose pattern based
testing [11, 12]. That work is similar in that they define
abstract patterns that can occur on a GUI and then generate
test cases to perform that task. In their work they focus
only on the abstract tasks and do not attempt to perform
a complete generation. Furthermore their aim is primarily
for functional fault detection and do not consider the user
performance aspects.
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Several dynamic, state-based tools such as TESTAR [4,16]
and GUI Driver [1] have been proposed. TESTAR dynami-
cally produces long random test cases from a given starting
point on the application while GuiDriver [1] is built on GUI-
TAR. While these approaches scale to longer test cases they
do not solve the problem of generating tests for a particular
goal.

Finally, our work is most closely related to that of the
HPRT [15] research where the notion of a goal is for usabil-
ity testing [14]. We have built our generator on top of that
work but have extended its functionality. First we add dif-
ferent types of tasks that HPRT does not directly support.
Second we perform an EFG edge reduction and then gener-
ate only the tests that satisfy rules via a depth-first search
with pruning.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have presented EventFlowSlicer, a tech-

nique for goal based GUI test generation. EventFlowSlicer
uses a four step process to generate all test cases that per-
form a particular task. The test cases can be structurally
different, have different functionality, or be abstract. We
have compared EventFlowSlicer with the HPRT test case
generator and find that it is 92 percent more efficient on av-
erage when the test case lengths are above 9 steps and 63
percent more efficient overall. We also have shown that we
can successfully generate tasks for all three types, and that
the number of constraints does not grow too large.

In future work we will incorporate this into the HPRT
tool, will perform user studies to evaluate the ease of task
definition and will run larger empirical studies on more tasks
across more applications. We will also carry out testing for
both functional and human performance faults.
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