
Engineering Search Computing Applications:
Vision and Challenges

Marco Brambilla, Stefano Ceri
Dipartimento di Elettronica e Informazione, Politecnico di Milano

Piazza L. Da Vinci, 32
20133 Milano, Italy
+39 02 2399 7621

marco.brambilla@polimi.it, stefano.ceri@polimi.it

ABSTRACT
Search computing is a novel discipline whose goal is to answer
complex, multi-domain queries. Such queries typically require
combining in their results domain knowledge extracted from
multiple Web resources; therefore, conventional crawling and
indexing techniques, which look at individual Web pages, are not
adequate for them. In this paper, we sketch the main
characteristics of search computing and we highlight how various
classical computer science disciplines - including software
engineering, Web engineering, service-oriented architectures, data
management, and human-computing interaction - are challenged
by the search computing approach.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques.

D.2.9 [Software Engineering]: Management – Lifecycle.

D.2.11 [Software Engineering]: Software Architectures –
Domain-specific Architectures.

H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval.

General Terms
Algorithms, Design, Human Factors.

Keywords
Search computing, Software Engineering, SOA, Web Services,
Search Services.

1. INTRODUCTION
The current evolution of the Web is characterized by an
increasing availability of online services and novel search
facilities (e.g., services for searching scientific literature, photos,
videos, vacation offers, travels, slow-food restaurants, online
shops, and so on). Being specific to a restricted domain, the
quality of their answers goes much beyond what can be achieved
via conventional, general purpose search engines. The overall
amount of data that can contribute to such queries is continuously
growing, mainly within the so-called deep Web, i.e., in a form not
immediately indexed by search engines.

While these services can be individually accessed, they often
provide value to users in the context of complex interactions,
where users try to solve specific tasks, such as planning their
vacations, or searching for medical treatments offered by local
doctors and hospitals, or checking that local stores have in stock
goods which are described by their manufacturers. Typically a
user is not only concerned with queries about a single domain;
while current technological limitations confine a user to such
interaction, in reality users’ need for information typically spans
over multiple domains, which must be semantically connected. In
light of these considerations, multi-domain queries, i.e., queries
that can be answered by combining knowledge from two or more
domains, no longer represent a mere academic exercise; rather,
they demonstrate how intricate real life queries may be.

Answering multi-domain queries requires the combination of
knowledge from various domains. These queries are hardly
managed by general-purpose search engines, because they cannot
be found on a single page, where a page is the classical unit of
crawling and indexing. Moreover, domain-specific systems
exhibit more sophisticated knowledge than general-purpose
search systems about their own field of expertise; such expertise
(about cultural events, medical specializations, popular rock
songs, and so on) is contributed through social processes (e.g.,
rating, tagging, commenting) or through a long and careful
process of knowledge construction by experts. At the current state
of the art, multi-domain queries over such engines can be
answered only by patient and expert users, whose strategy is to
interact with specialized engines one at a time, and feed the result
of one search in input to another one, reconstructing answers in
their mind.

With the advent of service computing and the growing interest for
the Web as the predominant interface for any human activity, we
expect such knowledge to become more and more exposed in the
form of search services. But the mere composition of such
services by sequential invocation will not solve multi-domain
queries, as their interplay usually requires a lot of expertise,
especially in handing and composing the search results.

In this paper, we present a conceptual framework for addressing
the composition of search services for solving multi-domain
queries, and we discuss the novel challenges that such systems are
posing to the software engineering discipline. We will investigate
the meaning and intrinsic properties of search services and the
ways such services can be orchestrated. This setting leaves within
each search system the responsibility of maintaining and
improving its domain knowledge, and defines new search
computing systems that provide the glue between search service
competences.

Copyright is held by the author/owner(s).
ESEC/FSE’09, August 24–28, 2009, Amsterdam, The Netherlands.
ACM 978-1-60558-001-2/09/08.

365

We are aware that the general formulation of the search
computing problem, going from registration of arbitrary services
and acquisition of arbitrary queries to the production of sensible
results, is very complex; many simplifying assumptions can be
used to reduce the problem complexity, ranging from a pre-
selection of the domains of interest and of the search engines, to a
progressive reduction of the expressive power of the query.

To better appreciate the approach, we consider a running
example, consisting of the domain, service, and query analysis
steps required to answer the query: Where can I attend a DB
scientific conference in a city within a hot region served by luxury
hotels and teachable with cheap flights?

The paper is organized as follows: Section 2 presents a bird eye’s
view of search computing through a brief description of its
registration and control flows; Section 3 deals with search
services and their orchestration; Section 4 introduces the software
development environments that we plan to build for service
registration and composition, while Section 5 describes the search
environment framework that will host the search computing
applications, including its deployment upon scalable architecture
and the availability of flexible and generic user interfaces. Section
6 sketches how the development process of search computing
differs from other software systems and illustrates the roles of
developers, designers, and users in the various phases of the
process, and finally Section 7 presents our vision about how
search computing could lead to the development of communities
of content developers and application providers.

2. ARCHITECTURE OF SEARCH
COMPUTING SYSTEMS
Figure 1 shows the overall architecture of a search computing
system, together with the main execution flows. We identify two
main activity flows: the registration flow - that deals with the
declaration and description of domains, and the registration of
search services and their association to domains- and the query
execution flow - that deals with the actual processing of the
queries. Registration is performed by administrators of the
platform, and the framework helps them in selecting the domains
and services, annotating them, and creating mappings between
them. Queries are performed by final users.

The objects managed by the activity flows include: domains and
their properties, search services, high level multi-domain user
queries, low-level queries (adorned conjunctive datalog queries),
query plans (coarse-granularity descriptions of query execution
strategies); and query execution schedules (well-defined
schedules of fine-granularity operations).

In the registration flow, we address the following problems:
semantic description, storage, management, and access to search
services; clustering of services into domains; and definition of
admissible join conditions between services.

In the query execution flow we address the following problems:
definition of proper interfaces for submission of multi-domain
user queries; splitting of the query into subqueries; mapping of
subqueries to domains and to associated search services, for
defining low-level queries; generation of query plans and their
evaluation against several cost metrics so as to choose the most
promising one for execution; generation and processing of query
execution plans; and transformation and rendering of the results
for user consumption.

The role of domains is relevant in the context of query
decomposition, i.e., the process of decomposing user query into
subqueries, each specific to a given domain. Such problem is
relevant in order to bring search computing up to dealing with
“universal queries”. However, in this paper we take a focused
view, where queries are addressed to specific services via a
software engineering approach which deals with the delivery and
composition of services by developers. In such context, the role of
domains is less crucial.

Domain
Repository

Front End

Query Planner

Query To Domain
Query To Service

Query Analysis

Query Engine

Op1 Op2 Op n

Search Service
Framework

Service
Repository

Result
Transformation

High-Level Query

Sub-queries

Query Plan

Low-level queries
Merged
Results

Domain
Framework

Rendered
Results

Service
request(s)

Service
response(s)

Search
Web

Services

Search
Web

Services

Search
Web

Services

Query
execution flow

Registration
flow

Legend

...

Service
Analyzer

Figure 1. Overall architecture and execution flows.

3. SERVICES FOR SEARCH COMPUTING
3.1 Search Services
The spreading of search computing relies on the availability of
components capable of effectively performing search tasks. Such
systems range from generalized search engines, such as Google
and Yahoo, to very specific and sophisticated search systems,
e.g., capable of locating slow-food restaurants within given
geographic districts, or to characterize the last-minute world-wide
offers of specific hotel chains. Such components are software
services which receive queries as input, and respond objects with
associated rankings, where the ranking reflects a combination of:
item-based rank computation algorithms, social
recommendations, context-based adaptation to the user, business
incentives, and so on. In search computing, we assume that such
services will be characterized by the use of uniform interfaces,
which follow the service-oriented paradigm, such that:

 Interaction is based upon request-responses, where:

o Requests = queries

o Responses = ranked lists of items

366

 Requests are associated with input parameters, which may
represent search keywords or attribute-value pairs.

 Output items contain attribute-value pairs, links to resources,
and possibly unstructured content.

 Rankings are normally opaque, although it is fair to assume
that items are presented in decreasing order of the ranking
function.

 Lists are too long and should be partially retrieved.
Therefore lists are presented in chunks, and each chunk
normally contains a fixed number of elements.

Thus, search services give to their users a greater amount of
flexibility in interaction, as the same query can be answered by a
variable number of requests; every new request retrieves the
successor chunk of results given what had been retrieved so far. In
general, however, user interaction requires only the first chunks of
results for a given query, because users are only interested in the
top results.

Such services will live in the context of other generic services,
characterized by classical request-response interfaces, and
offering results which are not ranked, but instead all equal in
relevance (as a consequence, no result can be omitted in order to
fully answer to a query). If we consider a service as part of a data-
flow, such services may be associated to a cardinality, seen as the
average ratio between service outputs and inputs, and as such
some of the services are “selective” (because the flow halts after
the service result is produced), other are “proliferative” (because
one input is associated with many outputs).

The originality of the model resides in introducing a simple and
yet effective classification of services: exact services have a
“relational” behavior and return either a single answer or a set of
unranked answers; search services return a list of answers in
ranking order, according to some measure of relevance. The
interplay of “exact” services with “search” services is one of the
relevant aspects of the search computing research [2].

3.2 Orchestration of Search Services
A search computing engine is mainly an orchestrator of search
services, possibly interleaved with other generic services. The
orchestration is started at query presentation, but requires a lot of
preparatory work, distributed among three distinct phases: service
registration, query registration, and query execution.

At registration, services are described through a complex and
detailed interaction with designers, described in the next Section,
so as to capture their semantics (what the service does) and their
composition potential (how services relate to each other). The
typical operations to be performed upon service results, after their
invocation, are algebraic operations such as joins, unions, and
differences. These enable to build “compositions” of service
results, which represent complete answers to a query, such that
every composition is associated with a global ranking value. The
goal of orchestration is to generate strategies that present
compositions to users in descending order of the aggregate
function, however such requirement is not strict, as the
orchestration attempts as well at generating the first compositions
very fast. The generation of an orchestration is very similar to the
generation of “query execution plans” by database management
systems, although data are retrieved from services rather than
from internal storage. Therefore, most of the work is performed

when a query is registered, assuming that a given query
registration process can be reused for multiple query executions.

An example of service orchestration is shown in Fig. 2. The query
“where can I attend a DB scientific conference in a city within a
hot region served by luxury hotels and teachable with cheap
flights?” requires combining 4 services, about conferences,
weather, cities, and travels, such that the first two are exact
services and the last two are search services. The conference
service is proliferative, returning all DB conferences (such as:
Sigmod, VLDB, ICDE, EDBT,...) without ranking them, the
second one is selective, as it excludes the cities with cold weather,
and the third and fourth are search services, extracting cheap
flights (in descending order of price) and luxury hotels (in
descending order of stars), while a global aggregate function
composes the number of stars and travel costs so as to assign a
global ranking to the compositions. The query plan uses a
particular operation called “merge scan join”, defined in [1].

The annotations of the query plan indicate that, in order to
produce 15 compositions in the end, the plan calls for invoking
three times the flight service and four times the hotel, while
initially 20 conferences are selected but then only one is filtered.
This query plan is used at execution time to orchestrate service
calls and join operations; it consists of invoking the conference
service, then the weather service, and finally the flight and hotel
services according to a three-to-four fixed relationships, with the
expectation of generating “enough” results (i.e., 15) after one
such collection of invocations. The query could be installed and
be made parametric, e.g. with regard to the topic of the
conferences, the kind of weather, the time of the event, the
maximum number of flight connections or of flight time, and so
on.

conf(1) weather

flight

hotel(1)

OUTIN

MSFflight=3

Fhotel=4

tconf=20 tweather=20

tweather=1

tflight=1

tMS=1500

tMS=15

*
in

out in

out

in

out

tflight=75out

outthotel=20thotel=1in

Figure 2. A fully specified search service orchestration

4. DEVELOPMENT ENVIRONMENT
The peculiar features of search computing systems must reflect
into proper support by C.A.S.E. (Computer Aided Software
Engineering) tools. Given the needs for flexibility and
adaptability of search applications, several development activities
move from the traditional design and development phases to a
phase subsequent to the search framework deployment, when
developers can “configure” the framework for the actual needs.
Thanks to this paradigm shift, most of the development cost
involved into new search application development moves from
design time to configuration time. Indeed, the main multi-domain,
configurable platform is developed once and for all, and then is
properly configured according to the needs.

367

We distinguish between tools to be used at registration time (for
registering and describing services), and tools to be used at
integration time (for defining the integration strategies between
the services).

4.1 Registration-time tools
The development environment that supports developers at
registration time will cover the following aspects:

 High-level representation of services: search services are
described through a high-level model that comprises: service
name and parameters, i.e., name-type-value(s)-direction(I/O)
tuples. Such representation abstracts from several details of
the service, thus providing information hiding and the correct
abstraction level for describing a search service, including all
its peculiar properties. This representation is suitable for a
large set of implementation options, that span from single
web services, to compositions of services whose combined
result is exposed through a single interface, to one or more
materialized tables. Such complex implementations can be
hidden in the code developed for defining the component,
and are masked by the abovementioned abstract interface.

 Web service wrapping: search services on the Web are
available in a plethora of formats, including SOAP Web
services, REST services, and user oriented search
applications. Each of them exposes a specific interface,
which needs to be adapted to the search framework needs.
Therefore, the first step in the integration is the wrapping of
the services so as to have a common interface towards all of
them. For some formats, appropriate tools can be used. For
instance, user oriented search applications could be wrapped
using tools like Lixto [10], which in turn could be refined for
adapting to the specific needs of search interfaces.

 Web service registration: once the service is properly
wrapped, it must be referenced within the service repository.
This requires to store the endpoint of the service (or the
wrapper), together with the description provided by the
service provider (e.g., WSDL specifications) and all the
information for accessing it;

 Access paths definition: for each service, the access paths
that are allowed for its use must be defined. This basically
consists in specifying the correct sets of inputs and outputs
that are allowed for the service.

 Web Service description: furthermore, services need to be
described through some lightweight semantics mechanisms,
for allowing unique semantics to be associated to service
operations, parameters, and results. This can be achieved by
annotating the service API with tags. For instance, tags could
be synsets1 taken from repositories like Wordnet [9], and
domains defined in the design environment as clusters of
services that refer to the same field.

 Join path definition: finally, the designer is in charge of the
definition of admissible join paths between services. The
goal of this task is to identify, for every pair of services that
can be invoked for answering a query, the join attributes that
will be used for composing their results. This can be

1 A Synset, or Synonym ring, is a group of data elements considered

semantically equivalent for the purposes of information retrieval.

performed by the designer through a proper visual mapping
interface between services, but can also be supported by a set
of recommendation algorithms that suggest the best
candidates for matching based on the service clustering, and
their operation interfaces (name and parameters annotations
and types). For each pair of classes belonging to different
domains, the tool can identify parameters having the same
type and annotations, which are candidates for being
qualified as join attributes. Then, the process of pairing
services is progressively performed, with the help of
developers, who can tell if the join paths identified by the
system can indeed be used for connecting domains, and, if
so, how elements of join paths should be paired and join
conditions be fully qualified.

 Default presentation of service data: given that a service is
provided with a set of inputs and outputs, the designer can
optionally specify a set of default presentation rules that will
be used at query time for building the user interface, for
allowing both query submission and result browsing by the
user. The tool should provide predefined rules based on
parameter types and annotations.

4.2 Integration-time tools
Once search services are registered in the repository according to
the guidelines provided above, the development of a search
computing application becomes a matter of combining the proper
search services and defining the user interfaces for accessing
them. More precisely, the actions to be performed are:

 Choice of the domains of interest: the analyst is in charge of
understanding the search problem and of identifying the
domains that are relevant for the search application;

 Selection of the services: the developer selects the kinds of
services that are useful, based on the selected domains and
requirements from the analyst. This task can be supported by
tools that allow to prune the list of available services (which
in principle could be huge, for some domains), based on their
interface and annotations;

 Selection of the best join paths: the designer selects the most
suitable join paths among the ones that connect the services;

 Design of the user interfaces: the designer builds the user
interfaces that allow the final user to submit the queries and
to browse the results. This task is simplified thanks to the
available default presentation rules specified at registration
time, that allow to automatically get a coarse interface once
the services and the join paths are selected.

5. SEARCH ENVIRONMENT
Although the main design choices for the search application are
taken at registration and composition time, the framework must be
flexible enough to provide the possibility of refining or
optimizing the behavior of the application even at query time.

Three challenges must be faced to obtain this result: a flexible
infrastructure for planning and executing the queries; the
configurable deployment of the framework to grant easy access to
search computing and corresponding scalability properties; and a
user interface that satisfies the need for flexibility in the query
and result specification.

368

5.1 Infrastructure
The core search computing infrastructure must deal with two
main aspects: query execution and query plan optimization. The
latter is optional, in the sense that a trivial plan can be defined
starting from the specification of the designer at composition
time.

5.1.1 Query execution
The processing of query execution schedules is in charge of a
query execution engine. The executable schedules include fine-
granularity operations, like service invocations, and control
structures, that define parallelism, sequence, branching, and so on.

The execution schedule is a lower level representation of the
visual language that describes query plans. At this level, the plan
could include an explicit allocation of cache memory, as well as
the exploration strategies for the join executions.

Apart from enacting the execution and orchestrating the
prescribed service invocations, it is the query engine
responsibility to cope with any unexpected behavior, and apply
correction policies, including the cases of: anticipated stopping
policies if the query is likely to generate more results than
needed; heuristics to restart the computation when the query
returns fewer results than expected; dynamic change of the join
strategy in the presence of trends in the scoring functions that
clearly contradict the expected ones. In order to leverage parallel
execution as much as possible, all invocations must be performed
by different threads (normally one per node in the query plan) and
results are pushed forward in a continuous way, as soon as they
are available, according to a producer-consumer paradigm. Nodes
that accept input from more than one node may be blocked
waiting for delayed data, but his doesn’t prevent other branches
from proceeding with the computation.

5.1.2 Query plan optimization
A query plan is an orchestration of service invocations that
complies with their access modes and exploits the ranking order
in which search services return individual results to rank the
global query results. To optimize the execution of queries the
search system must address the problem of generating query plans
and evaluating them against a cost metric so as to choose the most
promising one for execution. A preliminary version of query
planner was presented in [2].

The optimization accepts as input low-level queries, i.e.,
conjunctive queries that list the specific services to be invoked.
Query plans schedule the invocations of Web services and the
composition of their inputs and outputs. A plan is defined as the
orchestration of service invocations, possibly in parallel, which
takes into account the most significant features of the service,
including its ability to chunk the results (i.e., to return a given
number of answers with a single request-response). Within plans,
the main operations are joins between Web service results, whose
execution can take place according to several join strategies,
already investigated in [1].

The optimization strategies progressively refine choices and
produce an access plan by performing the following steps:

1. Choice of the specific access patterns for each of the services
involved in the query;

2. Definition of the order of invocation of the different services,
some of which may be invoked in parallel;

3. Definition of an execution strategy for each join operation
between services;

4. Definition of an execution cost for each plan, based on the
cost, time of execution, and number of calls to services.

The Query Planner searches for an optimal query plan by
considering all feasible choices in the above context, yet reducing
its search space by a branch-and-bound exploration that associates
expected costs with every choice. A suitable cost metrics is the
total execution time, but others are possible.

The outcome of the query planner is the selection of the access
plan that minimizes the cost of interaction with the services, while
producing a given expected number of results in output; results
are lists of entries, ranked by the combination of low cost and
high number of beach stars (which are clearly independent
criteria).

While query plan designate the orchestration of several services
and the methods used for their integration, more sophisticated
optimization methods can be devised for their join, including
methods which guarantee the optimality of top-k result extraction.
The result is a detailed query schedule. For instance, a more
refined model could consider objects that can be accessed
according to various methods, broadly classified as sorted,
producing a very long ranked list of objects, or attribute-based,
producing a narrower set of objects, normally not ranked, which
satisfy a selection over the attributes. The query planner
formulates the problem of optimal extraction of top-k
combinations, whereby the optimization is performed with respect
to the access costs involved with the different services and the
available access methods. For the specific case of the binary join
between two Web services (e.g. finding the top ranked hotel-
restaurant combinations, i.e. with highest combined score, in the
same city district), we devise an iterative execution strategy that,
at each step, determines the way of accessing services, such that
the probability of obtaining the combinations with the highest
combined scores is maximized, while the overall cost of accessing
the services is minimized.

5.2 Deployment
The “operational semantics” defined by the producer-consumer
approach perfectly matches the requirements of deployment on
highly parallel computing infrastructures. While a monolithic
deployment configuration is always possible, search computing is
flexible enough to be deployed on cloud computing environments.
This provides the option of delivering the framework as a
standalone application to be installed at the customer premises, or
to provide it according to the SaaS (Software as a Service)
paradigm, exploiting commercially available services.

This approach provides the additional advantage of allowing
automatic load balancing in case of peaks of requests. Indeed,
once the search computing system is configured and in place,
massive query submissions could compromise its performances,
as for any other open web system. In case of search computing,
three main potential bottlenecks can be identified:

 Search services: search services generally have a limited
throughput and may be described by a set of non functional
properties that describe their behavior with respect to
changes to the workload. An overwhelming number of
requests may overload the service, finally producing a denial
or service error;

369

 Choreography optimizer (aka, query planner): in case of
open multi-domain search infrastructure, the optimization
might be needed at query time too, which could lead to an
additional bottleneck instead of providing performance
improvements;

 Choreography execution engine: the execution engine could
become a limited resource too, thus slowing down the
performance of all the queries.

Although several specific strategies could be applied to these
different components to improve their performances (that should
be applied by the producers of the components at the various
levels of the architecture), at this stage we mainly envision a
unified view to the scalability problem. Basically, we identify
each component of the framework as a valuable resource, which
can be shared among various processes, and therefore may need
some load balancing strategy to overcome the risk of low
performances. Therefore, we rely on the cloud computing vision
[10]. Ideally, all the resources and subsystems of the architecture
can be virtualized and assigned to a cloud computing platform,
which allows for automatic replication of the resource and load
balancing upon traffic overload. Several cloud computing
environments now exist and can be exploited as state-of-the-
practice systems for any purpose. One of the most know examples
is Amazon EC2[1], a web service that provides resizable compute
capacity in a cloud of machines. It is designed to make web-scale
computing easier for developers, who can setup and configure a
cloud structure for a single-server Web application with limited
efforts. Thanks to these features, cloud computing appears to be
in line with the search computing approach.

5.3 Flexibility of the Interface
The design of a user interface for search computing systems must
deal with:

• building a interface for the user to express multi-domain
queries in a facilitated way, by also providing hints about his
expected semantics (e.g., personal service preferences, a
priori disambiguation of terms, etc.);

• building an interface for presenting results, incorporating an
explanation facility, whereby the user can drill down the

result set and understand where each piece of information
comes from;

• enabling query refinement, whereby the user can peruse the
results of past queries to better reformulate his information
need (e.g., using a faceted query modality over the result set
to narrow down the scope of query processing to selected
services/domains, adding terms to the query to make it more
precise, and so on);

• enabling result refinement, by allowing to change the shape
and the extent of the results, (e.g., by dropping extracted
details, asking for further information, and so on).

These aspects blend together in a vision towards fluid treatment
of queries, whose borders become flexible and allow continuous
query and result refinement. Support of such flexibility can be
performed within the environment instead of being delegated to
developers, as the search computing framework can automatically
provide this behavior, by exploiting the information gathered on
services at registration and composition time. Interfaces and
interaction features can be automatically calculated, given a set of
properties of services and their orchestrations.

6. DEVELOPMENT PROCESS
Once the system and the development tools are in place, the
actual development process for search computing applications
must be put in place. Although traditional development cycles
(e.g., waterfall, Bohem’s spiral, or fast prototyping) could be
applied to search computing, the peculiar features of search
systems must be taken into account when defining the
development methods. Among the various aspects to be
considered, the most crucial ones are:

 The general vs. vertical focus of the application: the first
decision when designing a search system is whether to
implement a general purpose search or a domain-specific
vertical search. In the former case, a generic user interface
must be designed and knowledge and services from several
domains must be gathered and query plans must be
completely flexible. In the latter case, a specific canned
interface must be devised, allowing the user to submit only
the required parameters; selections of services and plans is

Table 1. Summary of activities, involved roles, and expertise needed for search computing.

 Service development
and framework

adaptation

Service registration

Application development

Application execution

Activity Search
service
development

Framework
adaptation

Wrapping
and
registration

Access
path and
join path
definition

Service
annotation

Default
presentation
definition (UI
default)

Choice of
domains

Selection
of
services
and joins

Design of
the user
interface

Query
submission

Query
refinement

Result
browsing
and
refinement

Type of
activity

Software
development

Software
development

Lightweight
software
develop.

Visual
mappings
and
selections

Visual
mappings
and
selections

Graphics and
stylesheet
definition

Analysis
and requi-
rement
specificat.

Visual
mappings
and
selections

Graphics
and
stylesheets

Web
interface
interaction

Web
interface
interaction

Web
interface
interaction

Role Developer Developer Software
Designer

Software
Designer

Software
Designer

Graphic
Designer

Software
Designer

Software
Designer

Graphic
Designer

Final user Final user Final user

Needed
Expertise

Programming
knowledge
(Java, .NET,
WSDL, …)

Programming
knowledge
(Java, .NET,
WSDL, …)

Web
Services
Interfaces

Search
Services
basics

Search
Services
basics

Graphics Domain
and requi-
rements

Search
Services
basics

Graphics No specific
skills

No
specific
skills

No
specific
skills

370

more limited. This must be considered both at the
requirement collection and design phases.

 The need for components provided by third parties (in
particular: search services, as discussed so far; description of
domains; tagging systems): this implies that a novel phase
must be introduced in the process, for scouting and
investigating the existing ecosystem of the domains of
interest.

 The need for configurability of the interfaces and of the
overall applications: the continuous evolution of several
pieces of the architecture (services, tags and descriptions,
interfaces, results) makes several steps of the development
more conveniently located at runtime instead of design time.
For instance, decision over possible “join paths” between
search services can be postponed at query registration and
execution time, while the definition of connections between
classes/entities was a crucial design step in for traditional
systems (e.g., think to database schema design).

Overall, these features push forward a trend towards
empowerment of the user, who can get more and more flexibility
and facilities in the query process. This is matched with a change
in the perspective for development too, as summarized in Table 1.
Only the basic tasks that deal with service development now
require programming expertise. Several design activities are now
moved to the service registration and composition phases, where
the profiles of the designers only require conceptual
understanding of services and queries, and do not ask for low-
level programming, since only graphical model-based tools are
exposed to the designer.

7. SEARCH COMPUTING VISION
The vision behind search computing is to develop enabling
technologies for two new communities of users:

a. Content providers, who want to organize their content (now
in the format of data collections, databases, web pages) in
order to become available for search access by third parties.
They will be assisted by the availability of a developer
environment facilitating at most their task, and will be
provided with the possibility to register their data within a
community. In this way, the "long tail" of content providers
will see a concrete possibility to deliver searchable
information.

b. Application developers, who want to offer new services built
by composing domain-specific content in order to go
"beyond" general-purpose search engines such as Google and
the other main players. They will be assisted as well by the
availability of a developer environment facilitating at most
their task, and will in addition find a deployment
environment, either obtained by installing run-time
components upon their servers, or - most interestingly - by
finding servers already deployed within cloud computing
architectures where they could run their applications.

In the simplest scenario, the same person or organization may
play the role of service and application developer, and provide to
generic users the access to a specific content. In the most
interesting and challenging scenario, application developers
would act as the "brokers" of new search applications, built by
assembling arbitrary services, some of which could be generic,
world-wide, and powerful (e.g., general purpose search engines or

other generic utilities, such as geo-localization services), while
other could be specialized, localized, and sophisticated (e.g., the
"gourmet suggestions" about slow-food offers in given geographic
regions).

In this vision, a new market of service providers and brokers
could be established, with appropriate regulations concerning
right to contents and the sharing of profits based upon
accountability of the click-through generated traffic or of actual
committed transactions. This market is compatible with the
current business models adopted by the major search engine
companies (e.g., Google or Yahoo), but it may enable much larger
communities of content providers and application brokers.

8. CONCLUSIONS
This paper presented a set of problems that need to be solved
when addressing multi-domain queries, highlighting the
challenges posed to the software engineering field. The main
trends that we envision for this kind of applications are: the
availability of search services, with specific interfaces that
provide more accurate web information retrieval capabilities; a
slow but continuous move from one time design to runtime
configuration of applications. Thanks to this paradigm shift, most
of the development cost involved into new search application
development moves from design time to configuration time. This
might exploit results proposed by mashup tools, cloud computing
frameworks, and user-oriented development.

9. ACKNOWLEDGEMENTS
This research is funded by the “Search Computing” (SeCo)
project, funded by the European Research Council (ERC), under
the 2008 Call for “IDEAS Advanced Grants”, dedicated to
frontier research. SeCo started on November 1st, 2008 and will
last 5 years, until October 31, 2013.

10. REFERENCES
[1] Amazon. Elastic Compute Cloud (EC2).

http://aws.amazon.com/ec2/

[2] D. Braga, A. Campi, S. Ceri, A. Raffio. Joining the results of
heterogeneous search engines. Inf. Syst. 33(7-8): 658-680,
2008.

[3] D. Braga, S. Ceri, F. Daniel, D. Martinenghi. Optimization
of Muti-domain queries on the Web. VLDB’08, pp. 562-573,
2008.

[4] D. Braga, S. Ceri, F. Daniel, D. Martinenghi. Mashing Up
Search Services. IEEE Internet Computing 12(5): 16-23,
2008.

[5] I. Elgedawy, Z. Tari, and M. Winiko. Exact functional
context matching for web services. In ICSOC, 2004.

[6] R. Fagin. Combining fuzzy information from multiple
systems. J. Comput. Syst. Sci., 58(1):83-99, 1999.

[7] R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, and E. Vee.
Comparing partial rankings. SIAM J. Discrete Math.,
20(3):628-648, 2006.

[8] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. J. Comput. Syst. Sci., 66(4):614-
656, 2003.

371

[9] C. Fellbaum, ed. WordNet: An Electronic Lexical Database
(Language, Speech, and Communication). MIT Press, May
1998.

[10] G. Gottlob, C. Koch, R. Baumgartner, M. Herzog, S. Flesca.
The Lixto data extraction project: back and forth between
theory and practice. ACM PODS 2004, Paris.

[11] B. Hayes. Cloud computing. Communications of the ACM
51(7): 9-11 (2008).

[12] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Supporting
top-k join queries in relational databases. VLDB J.,
13(3):207-221, 2004.

[13] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-
query processing techniques in relational database systems.
ACM Comput. Surv., 40(4), 2008.

[14] D. Kossmann, F. Ramsak, S. Rost. Shooting stars in the sky:
an online algorithm for skyline queries. In VLDB'02, pp.
275-286.

[15] N. Mamoulis, M. L.Yiu, K. H. Cheng, and D. W. Cheung.
Efficient top-k aggregation of ranked inputs. ACM TODS,
32(3), 2007.

[16] C. D. Manning. Probabilistic Syntax. In Rens Bod, Jennifer
Hay, and Stefanie Jannedy (eds), Probabilistic Linguistics,
pp. 289-341. Cambridge, MA: MIT Press, 2003.

[17] MetaSearch. http://www.lib.berkeley.edu/TeachingLib/
Guides/Internet/MetaSearch.html.

[18] D. Papadias, Y. Tao, G-Fu, and B. Seeger. Progressive
skyline computation in database systems. ACM TODS,
30(1):41-82, 2005.

[19] M. Papazouglu and K. Pohl eds, Wp 2009-2010 expert
group: Longer term research challenges in software &
services. 2008.

[20] A. A. Patil, S. A. Oundhakar, A. P. Sheth, and K. Verma.
Meteor-s web service annotation framework. In WWW 2004,
pp. 553-562.

[21] S. Ran. A model for web services discovery with QOS.
SIGecom Exch., 4(1):1-10, 2003.

[22] Stanford Natural Language Processing Group. Statistical
parser. http://nlp.stanford.edu/software/lex-parser.shtml

[23] M. Stollberg, U. Keller, H. Lausen, and S. Heymans. Two-
phase web service discovery based on rich functional
descriptions. In ESWC '07: pp. 99-113. Springer-Verlag,
2007.

372

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

