
Automatic Consistency Assessment for
Query Results in Dynamic Environments

Jamie Payton
Department of Computer

Science
University of North Carolina at

Charlotte

payton@uncc.edu

Christine Julien
Department of Electrical and

Computer Engineering
The University of Texas at

Austin

c.julien@mail.utexas.edu

Gruia-Catalin Roman
Department of Computer
Science and Engineering

Washington University in Saint
Louis

roman@wustl.edu

ABSTRACT
Queries are convenient abstractions for the discovery of in-
formation and services, as they offer content-based infor-
mation access. In distributed settings, query semantics are
well-defined, e.g., they often satisfy ACID transactional prop-
erties. In a dynamic network setting, however, achieving
transactional semantics becomes complex due to the open-
ness and unpredictability. In this paper, we propose a query
processing model for mobile ad hoc and sensor networks suit-
able for expressing a wide range of query semantics; the se-
mantics differ in the degree of consistency with which results
reflect the state of the environment during execution. We
introduce several distinct notions of consistency and formal-
ize them. A practical contribution of this paper is a protocol
for query processing that automatically assesses and adap-
tively provides an achievable degree of consistency given the
state of the operational environment throughout its execu-
tion. The protocol attaches an assessment of the achieved
guarantee to returned query results, allowing precise reason-
ing about a query with a range of possible semantics.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory—semantics; D.1.3 [Programming Techniques]:
Concurrent Programming—Distributed Programming

General Terms
Algorithms, Reliability

Keywords
Mobile Computing, Query Semantics

1. INTRODUCTION
The widespread adoption of portable devices has the po-

tential to support truly ubiquitous computing. These devel-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’07, September 3–7, 2007, Cavtat near Dubrovnik, Croatia.
Copyright 2007 ACM 978-1-59593-811-4/07/0009 ...$5.00.

opments have led to heightened interest in designing software-
intensive systems for mobile ad hoc and sensor networks, i.e.,
dynamic networks formed opportunistically by nodes within
wireless communication range. Applications in such settings
are often designed to exploit information and services pro-
vided by other applications in the network. In marketplace
applications, a shopper may search for nearby services or
products. In military scenarios, soldiers can use informa-
tion in the surrounding network to locate support services.

An abstraction that can help simplify the process of dis-
covery in such applications is a query. Query processing
masks the details of complex network communication re-
quired to discover information and services distributed across
a mobile ad hoc or sensor network. Query use in such open
and dynamic settings is particularly appropriate, as queries
eliminate the unrealistic assumption of knowing in advance
the location or exact nature of the desired information.

Traditionally, database query semantics have been pre-
cisely defined to ensure that executing a query results in a
single, correct answer, usually requiring a transaction which
upholds ACID properties. In distributed databases, preserv-
ing these properties often requires a distributed locking pro-
tocol that prevents changes to data during query execution.
In effect, a query appears to execute over all hosts in the
network in a single step. Applying the ACID properties be-
comes more complicated when hosts are mobile because such
locking protocols are expensive in highly dynamic environ-
ments rife with disconnections. In addition, using locking
protocols in sensor networks, which are often designed to
provide access to streaming data, is not feasible. In both
settings, attempting to strictly adhere to the ACID seman-
tics can make it difficult, if not impossible, to receive any
query results under common operational conditions.

We contend that a number of applications for dynamic
computing environments may require guarantees other than
strict transactional semantics. We propose a new perspec-
tive on query semantics that allows us to discover, precisely
define, and reason about the kinds of query semantics needed
by applications in these dynamic environments. We intro-
duce a model that can be used to formalize a range of consis-
tency semantics associated with query execution in mobile
ad hoc and sensor networks. To our knowledge, this is the
first attempt to provide a general specification method for
query execution semantics in such networks. We use this
model to formally express novel consistency semantics that
lie in between the extreme strong and weak forms of consis-
tency typically identified in query processing models.

245

The ability to express query consistency semantics will
provide a solid intellectual foundation for discovery and en-
hanced understanding, but without a practical realization of
a particular semantic, it is of no use in application design.
For this reason, our work couples the formal expression of
query semantics with protocol development. We present a
protocol for query execution in dynamic ad hoc networks
that automatically assesses the changing operating environ-
ment and adapts its execution to provide query results. An
assessment of the achieved consistency semantic is provided
with the query results. Such a protocol offers a more flexible
approach to query execution than transactional approaches
yet allows for careful reasoning about query results.

This paper is organized as follows. Section 2 introduces
our model of query execution. A range of consistency se-
mantics is introduced in Section 3. In Section 4, we present
an adaptive, self-assessing protocol for query execution that
provides varying degrees of consistency; an implementation
and evaluation of the protocol appears in Section 5. Sec-
tion 6 reviews related work, while Section 7 concludes.

2. MODELING QUERY EXECUTION
In this section, we introduce a model that formally cap-

tures query execution in dynamic ad hoc networks. We can
use this model to precisely define the query processing guar-
antees that can be offered in query in such environments.
Furthermore, the model can drive the discovery of new se-
mantics that may be beneficial in application development.

We view an ad hoc network as a system of hosts, where
the number of hosts may be large but the universe of hosts
is bounded. We assume each host h has a location and a
single data value (though a single data value may represent a
collection of values). A host is represented as a tuple (ι, ν, λ),
where ι is a unique host identifier, ν is the host’s data value,
and λ is the host’s location. The global abstract state of an
ad hoc network, which we call a configuration, is simply a
set of host tuples. Formally, we describe a configuration as:

C ≡
H�

i=0

(ι, ν, λ)i

where H is the number of hosts in the network.
Given a specific host h̄, called the reference host, we define

an effective configuration as the projection of the configura-
tion that includes the hosts that are reachable from h̄. Typ-
ically, reachability is defined in terms of physical network
connectivity, which can be captured by a relation that con-
veys the existence of a (possibly multi-hop) network path.

We use a binary logical connectivity relation K to deter-
mine if a direct (one-hop) communication link exists between
hosts h1 and h2. Reachability is defined as the reflexive
transitive closure relation K∗. Using a host’s state (i.e., the
values of fields of a host tuple), we can derive physical and
logical connectivity relations in a configuration and, in turn,
the reachability relation on hosts in the ad hoc network. A
physical connectivity relation that represents a connectivity
model with a circular, uniform communication range can be
defined using the location field of host tuples:

(h1, h2) ∈ K ⇔ |h1 ↑ 3 − h2 ↑ 3| ≤ d

where ↑ 3 refers to the third field of a triple—in this case,
the host’s location—and d refers to a bound on the distance

query
initiation
bound

query
termination

bound
active configurations

C0 CnA0 Am

Figure 1: Query bounds and active configurations

between two hosts to consider them connected. This state-
ment requires that the two hosts h1 and h2 are within a
physical distance less than d. It is possible to model other
physical connectivity models in a similar fashion, and log-
ical connectivity relations can be defined using constraints
on the identifier and value fields of a host tuple.

Given this definition of reachability, we define the por-
tion of the global abstract state of the ad hoc network that
may, in principle, be visible to a reference host. We call
this locally visible state an effective configuration, which is
a projection of a configuration with respect to the reachable
hosts. We formally define an effective configuration E for a
reference host h̄ in a configuration C as:

C ↓ h̄ = 〈∪h, h̄ : h ∈ C ∧ h̄ ∈ C ∧ h̄K∗h :: h〉
where K∗ is logical connectivity, and ↓ denotes projection.

The environment evolves as the network topology changes
and value assignments occur. We model network evolution
as a state transition system where the state space is the set
of possible system configurations, and transitions are con-
figuration changes. Sources of configuration change include:
Variable assignment. A single host changes its data value
ν, resulting in a new configuration. Formally, this is:

value change ≡ 〈∃h : h ∈ Ci :: 〈∃h′, v : h′ ∈ Ci+1 ∧
v = h ↑ 2 :: h′ = (h ↑ 1, v, h ↑ 3)〉〉

Neighbor change. The change in a host’s location impacts
the logical connectivity of the network; as a result, some host
in the network will experience a change in its set of logically
connected neighbors. A neighbor change occurs when a host
is no longer connected to a previous neighbor (i.e., the pair
of hosts no longer belongs to the connectivity relation K) or
becomes connected to a new neighbor (i.e., the pair of hosts
now belongs to the relation). We formally describe this as:

neighbor change ≡ 〈h1, i : h1 ∈ Ci ::

〈h′
1, h2, l : h′

1 ∈ Ci+1 ∧ h2 ∈ Ci+1 ::

h′
1 = (h1 ↑ 1, h1 ↑ 2, l) ∧ l = h1 ↑ 3 ∧

(((h′
1, h2) ∈ K ∧ (h1, h2) /∈ K)) ∨

(((h′
1, h2) /∈ K ∧ (h1, h2) ∈ K)))〉〉

We can now define a configuration change as:

ΔC ≡ 〈value change ⊕ neighbor change〉
The exclusive-or notation ⊕ indicates that we model one
change at a time. From a global perspective, system evolu-
tion can be viewed as a sequence of configurations associated
with successive transitions. For a reference host, this evolu-
tion can be viewed as a sequence of effective configurations.

We use this model of an evolving system to reason about
the results of a query issued over a mobile ad hoc network.

246

Consider the sequence of configurations in Figure 1. A sin-
gle query may span such a sequence, starting with the con-
figuration in which the query is issued and ending in the
configuration that corresponds to the delivery of the result.
We call the endpoints the query initiation bound (C0) and
the query termination bound (Cn), respectively. We define
〈C0, C1, . . . Cn〉 as the set of configurations over which a
query is executed. No configuration before the query ini-
tiation bound or after the query termination bound impacts
the query result. Processing time at the query issuer may
delay a query’s submission to the network. For this rea-
son, the set of configurations that are “active” in the query
processing may be a subset of those between the query ini-
tiation bound and the query termination bound. All of the
configurations, starting with the one in which the first host is
interacted with and ending with the configuration in which
the last host is interacted with, are the active configurations.
The end-points of the sequence of active configurations are
the active initiation bound (A0) and the active termination
bound (Am). Every component of a query’s result must be
a data element that is part of some active configuration.

Since the query issuer can only interact with reachable
hosts, only its effective configurations can contribute to its
active configurations. We refer to this refined sequence as
effective active configurations whose endpoints are the ef-
fective active initiation bound (E0) and the effective active
termination bound (Em). E0, E1, . . . Em is the sequence of
effective active configurations that correspond to the active
configurations A0, A1, . . . , Am, as shown in Figure 2.

query
initiation
bound

query
termination

bound
active configurations

C0 CnA0 Am
...

E0

Em

Figure 2: Effective active configurations. Circles are
hosts; solid lines represent the logical connectivity relation.
Dashed lines show effective active configurations.

A query can be viewed as a function from a sequence of
effective active configurations to a set of host tuples. Since a
configuration is simply a set of host tuples, this model allows
for a straightforward expression of a query’s results: the re-
sult itself is a configuration. This perspective on a query’s
result directly correlates the result with the environment in
which the query was executed, simplifying the expression of
the consistency of those results. The configuration compris-
ing the results is subject to a set of constraints. First, each

element r in the result configuration ρ must be reachable
from the query issuer in at least one of the effective ac-
tive configurations. Second, only one query result per host
should be present in the result set. Formally:

h ∈ ρ ⇒ 〈∃i : 0 ≤ i ≤ m :: h ∈ Ei ∧
〈∀r : r ∈ ρ − {h} :: h ↑ 1 = r ↑ 1〉〉

which states that any host tuple h in the result ρ must have
existed in one of the effective active configurations (Ei) and
that, for every host tuple in the result, there must not be
another tuple in the result with the same unique id (h ↑ 1).

Our goal is to define the degree of consistency for a query
issued over a dynamic ad hoc network. Given our model, we
can achieve this by examining the relationship between the
result configuration ρ of a query and the effective active con-
figurations that contributed to the query’s evaluation. Next,
we use this model to formalize new notions of consistency
that may be useful to application developers.

3. QUERY CONSISTENCY SEMANTICS
We wish to capture a range of consistency degrees that

are desirable for applications in mobile ad hoc and sensor
networks. In this section, we enumerate a set of consistency
guarantees that can be determined for queries that involve
a single request/reply exchange between the query sender
and the other nodes in the active configuration(s). For each
of the semantics we provide, we give a precise formalization
that conveys the relationship between the state of the ad
hoc network and the query’s returned result.

To demonstrate the usefulness of this new set of consis-
tency guarantees, we provide application examples from two
domains and indicate how results for each semantic can be
used. The first domain entails a military commander who
queries an ad hoc network spanning the battlefield to re-
quest the identities and locations of assets in the network.
In the second example, a query searches a mobile ad hoc net-
work for ticket reservation prices (or any commodity offered
by multiple sellers) and returns specifics about the potential
reservation (e.g., flight times) and the associated price.

3.1 Guaranteed Availability: IMMEDIATE

The strongest consistency guarantee ensures that all of the
results a query returns were available at the same time and
that they are still available when the query returns. In the
military scenario, a query with immediate semantics gives
the commander a complete picture of the battlefield at the
instant the query returns, allowing him to know which assets
are currently present and to issue directives to those assets.
In a travel reservation system, a query response with such
strong semantics indicates that all of the returned potential
reservations are competitive prices that can be purchased at
the instant the query returns.

Formal Specification. The immediate consistency
states that not only were all of the results returned present
in the same configuration but that the results were available
when the query started and were still available to the re-
quester when the query returned, i.e., that nothing changed
while processing the query. Formally, this is:

IMMEDIATE ≡ ρ = E0 ∧ m = 0

where ρ is the set of results returned and m indicates a
configuration in the sequence of active configurations.

247

3.2 Strong Guarantees: ATOMIC

Many applications require that a query result provides
an exact view of the surrounding environment but may not
require that the results are still available. In our military
command and control example, a sequence of results with
atomic semantics gives the commander a temporal picture
of asset changes and locations. In a travel reservation sys-
tem, a query with such semantics gives the shopper a guar-
antee that the prices quoted are comparable across different
carriers since the results were all collected in the same con-
figuration. In these cases, the relationship among the items
returned is important; all of the responses returned should
have been present in the same configuration to give an ac-
curate picture of the network state at a single point in time.

Formal Specification. We capture the atomic consis-
tency level in our model by stating that the query was per-
formed on a single effective active configuration (Ei(h)) and
that it effectively returned a snapshot of that configuration.
Formally, this is simply:

ATOMIC ≡ ∃i : 0 ≤ i ≤ m ∧ ρ = Ei(h)

where h is the reference host (so Ei(h) is an effective active
configuration for host h). Setting ρ equal to the configura-
tion signifies not necessarily that the application uses all of
the results but that they are available. We believe this is
the strongest consistency semantic we can potentially pro-
vide given data and network dynamics.

3.3 Partial Results: ATOMIC SUBSET

In many instances, applications may only need a certain
number of resources to complete a task. A military com-
mander may need a certain number of vehicles for a task,
and a query that returns the exact relative locations of some
subset of the assets available may be sufficient to complete a
particular mission. In the reservation system, a query that
has an atomic subset guarantee ensures that all the re-
sults that are returned are comparable (since they were all
collected in the same configuration). It does not guarantee,
however, that all possible ticket prices were returned.

Formal Specification. An atomic subset consistency
dictates that all of the results that are returned should have
been present in the same effective configuration, but does
not require that everything present in that configuration is
returned. Formally, we express this as:

ATOMIC SUBSET ≡ ∃i : 0 ≤ i ≤ m ∧ ρ ⊂ Ei(h)

which states that the result set ρ is exactly a subset of one of
the effective active configurations. That is, all of the results
in ρ were present in a single configuration, but the result set
may not contain all of the values from that configuration.

3.4 Degrees of Partial: QUALIFIED SUBSET

A slightly better picture for the reservation system would
provide the shopper some information about what fraction
of results the query potentially missed. If the returned result
represents a large sample of the possible results, the shop-
per may have more confidence in the lowest fare reported
being near the actual lowest fare. We refer to this seman-
tic as qualified subset because the result is qualified with
respect to the potential result. In the military scenario, a
query of asset locations on the battlefield gives the comman-
der a view of a certain percentage of the available assets,
potentially allowing him to make some worst-case plans.

Formal Specification. The formalization of the quali-
fied subset consistency level is a specialization of atomic
subset to constrain the results returned. It requires that
at least α percent of the results that were available in all of
the effective active configurations are returned. Formally:

QUALIFIED SUBSET ≡ ∃i : ρ ⊂ Ei∧ |ρ |> α |Ei |

where | ρ | is the cardinality of the set of results returned,
and | Ei | is the total number of results that were present
over all the effective active configurations.

3.5 Weak Guarantees: WEAK

The weakest guarantee our framework provides to appli-
cations simply ensures that all of the results returned were
present in at least one of the effective active configurations.
Our military commander may have no significant use for
weak semantics because they give him no reliable informa-
tion about his assets. In our reservation system, on the other
hand, there is no guarantee that the fares are directly com-
parable (since they may have been collected from different
carriers at different times), but they offer a view of some of
the options. This can give the shopper a quick idea of what
the fare range is, but it is likely not something a shopper
will want to base a purchase on unless pressed for time.

Formal Specification. We capture the weakest form of
guarantee by ensuring that anything that was returned was
at least present in one of the effective active configurations:

WEAK ≡ ρ ⊆
m�

i=0

Ei

This semantic does not provide any information about the
relationships among the returned results and is the weakest
meaningful consistency semantic we can provide.

3.6 Degrees of Weak: WEAK QUALIFIED

The final consistency semantic our framework can pro-
vide is weak qualified. In this case, the results collected
may have come from across all effective configurations (i.e.,
they may not have all existed at the same time), but the
requester is guaranteed to have received at least some frac-
tion of the possible results. In the military scenario, this
gives the commander some information about the relative
recent availability of some assets. He can use this informa-
tion to make some worst-case plans, but he can’t base these
plans on complete information on, for example, relative lo-
cations of assets, since the information comes from different
configurations. In the reservation system, the shopper is
again guaranteed to have received a certain percentage of
the available fares, but since these may have come from dif-
ferent configurations, they may not be directly comparable.

Formal Specification. As a slightly stronger version of
the weak guarantee, the WEAK QUALIFIED consistency
specifies that the result contains at least some minimum
fraction of the results that were present over all the effective
active configurations. That is:

WEAK QUALIFIED ≡ ρ ⊆
m�

i=0

Ei∧ |ρ |> α |
m�

i=0

Ei |

248

4. QUERY EXECUTION AND
CONSISTENCY ASSESSMENT

In this section, we present a protocol that can provide any
of the consistency semantics introduced in Section 3. The
semantic achieved depends on the conditions of the envi-
ronment during query execution. The protocol dynamically
assesses which semantic is achieved and attaches this as-
sessment to the returned query results. By providing this
protocol, we demonstrate the feasibility of implementing the
semantics and provide developers with a flexible mechanism
for query execution that has a formal foundation.

4.1 Protocol Overview
A typical approach to providing strong consistency relies

on locking data items that contribute to a query’s result.
This solution may hinder concurrent execution; data items
that are merely read and not changed by a query’s execution
are locked and therefore unavailable to others during query
execution. Our approach does not require data items to be
locked during query execution and instead maintains state
about data values that will be accessed during query eval-
uation and determines if the values remain accessible and
unchanged throughout execution. Using this information,
the protocol can compute the semantic the query achieved.

We rely on a controlled flooding approach to distribute
and evaluate a query. One can think of a message spreading
throughout the reachable portion of the network like a wave.
Hosts that have received the message are “behind” the wave,
while hosts that have not yet received the message are “in
front of” the wave. We use these notions of “behind” and “in
front of” to determine the impact of environmental changes
on the protocol’s execution and the semantic achieved.

Our protocol uses two flooding phases. The first phase
precisely identifies the query initiation bound (as defined in
Section 2), while the second collects the data values to re-
turn. The first phase constructs a tree of the query’s initial
participants, and every member in this tree knows both its
parent and its children. This phase completes when the ref-
erence host has collected replies from all of its children, and
the query initiation bound is established. When a host in
the tree receives the second phase of the query, it passes the
query to its children. When all of its children have replied,
the host replies. The query is complete when the reference
host has received replies from all of its children.

Each of these flooding phases comprises two waves: one
that disseminates the request and one that returns the re-
sponse. Each participating host monitors changes in its state
(i.e., variable changes and neighbor changes) that occur be-
hind and in front of each wave and may impact the achiev-
able consistency semantic. For example, if a host that is
established as a participant in the query during the first
phase becomes disconnected before replying in the second
phase (i.e., in front of the second phase’s second wave), the
atomic guarantee cannot be provided. The disconnected
host’s parent logs the disconnection and passes this infor-
mation to the query issuer with the result. The reference
host communicates to the application the strongest possible
semantic that the protocol can guarantee was satisfied.

In practice, flooding an entire network can be prohibitively
expensive and may cause unreasonable response times. One
way to control this cost is to limit the query’s scope. In
our approach, flooding is constrained by a query’s logical
connectivity relation K. Previous work provides practical

solutions for scoping [5, 6, 13]; these can easily be adapted
to provide foundational execution support for our protocol.

In Section 4.2, we provide a detailed description of this
self-assessing query execution protocol. We assume the use
of a reliable message delivery mechanism (research on relia-
bility continues to advance, e.g., [18], [14]). Also, we assume
that each host can detect connection and disconnection of its
neighbors using one of the mentioned scoping approaches.

4.2 Protocol Description
The state variables for each host are shown in Figure 3.

Only the state for a single query execution is shown; each
query execution has a duplicate set of variables. To de-
fine the protocol’s behavior, we use I/O Automata nota-
tion [10]. We show the behaviors of a single host, A, in-
dicated by the subscript A on each behavior. Each action
(e.g., ParticipationRequestReceived A(r) in Figure 4) has an
effect guarded by a precondition. Actions without precon-
ditions are input actions triggered by another host. Each
action executes in a single atomic step. We abuse notation
slightly by using, for example, “send ParticipationRequest(r)
to Neighbors” to indicate a sequence of actions that triggers
ParticipationRequestReceived on each neighbor.

id – A’s unique host identifier
neighbors – A’s logically connected neighbors
results – set of (id, data value) pairs

provided by A and its descendants.
membership – boolean, indicates A is in the query;

used in first phase
monitoring – boolean, indicates A is preparing

result; used in second phase
request – the request currently being processed
parent – A’s parent in the tree
replies-waiting – neighbors still to respond
participants – A’s descendants that are participating
results – set of (id, data value) pairs

provided by A and its descendants.
departed-count – a pessimistic bound on the number

of hosts departed below A in the tree
added-count – a pessimistic bound on the number

of hosts added below A in the tree

Figure 3: State Variables for Protocol

4.2.1 Establishing the Query Initiation Bound
The first flooding phase of the protocol constructs a span-

ning tree that consists of all hosts that are initial partici-
pants in the query’s execution. In terms of the query model
presented in Section 2, the first flood defines the initial
configuration members and establishes the query initiation
bound. Two waves are used within this first flood: one to
disseminate the participation request, and one to return the
responses of participating hosts. The reference host is re-
sponsible for initiating the first wave to receive acknowledg-
ments of participation. Figure 4 shows the action that oc-
curs when a host receives this query participation request in
the first wave. The host sets its membership flag and records
its parent in the tree. The host then sends the request to
its neighboring hosts and records them. The host must wait
for all of its children to reply before it can send its own re-
ply. Once the initial wave of the first flood reaches a host
on the boundary of the network, the boundary host initiates
the reply process, i.e., the second wave in the first flood. If
a host receives the same participation request (i.e., along a

249

second communication path), it cancels this request. When
this message is processed at the parent, the parent removes
the host from its replies-waiting variable (since another host
is the parent). This action is omitted for brevity.

Since the network is open and hosts may be mobile, the
set of hosts that participate in the query’s execution may
change over time. These changes can impact the consistency
semantic achieved. Some changes to the set of participating
hosts can be tolerated and the strongest form of consistency,
atomic, can still be achieved. For instance, we can tolerate
additions to and deletions from the set until the members
of the set are officially established at the query issuer. The
actions NeighborAdded and NeighborDeparted in Figure 5
describe how our protocol handles these changes.

ParticipationRequestReceivedA(r)
Effect:

if ¬membership then
membership := true
parent := r .sender
request := r
if (neighbors − r.sender) �= ∅ then

for each B ∈ (neighbors − r .sender)
send ParticipationRequest(r) to B
replies-waiting := neighbors − r .sender

end
else

send ParticipationReply to parent
end

else
send CancelParticipationRequest to r.sender

end

Figure 4: The ParticipationRequestReceived action

In both actions in Figure 5, the first if condition han-
dles the neighbor change event between the first and second
waves of the first flood. In both cases, we can handle the
neighbor change; we must simply ensure that the request
propagation is handled correctly. In the case of an added
neighbor, the new host is added to the participation request
and becomes this host’s child. For a departed neighbor, this
host no longer waits for the host’s reply. We will revisit the
other cases in Figure 5 as we move through the flood phases.

Once the initial wave of the first flood reaches a host on
the boundary of the network, the boundary host initiates
the reply process, i.e., the second wave in the first flood, by
sending a ParticipationReply to its parent. Figure 6 shows
the action handling the reception of this message.

When a host receives all of the participation replies it is
waiting on, it replies to its parent. When it does, it aggre-
gates the participant information it has received and passes
its parent a list of all participants in its subtree.

The first phase of the protocol is complete when the refer-
ence host has collected all replies from its children, and the
query initiation bound is established. The reference host’s
participants variable contains the query’s established partic-
ipants. Any changes in connectivity that result in change
of membership after the completion of this phase will result
in a semantic weaker than atomic. At the end of the first
phase, the reference host sends a Query to its participating
neighbors to initiate the second flooding phase.

4.2.2 Establishing and Reporting Query Results
The protocol’s second flood requests query results from

hosts in the tree constructed in the first phase. Once again,

NeighborAddedA(B)
Precondition:

connected(A, B) ∧ B �∈ neighbors
Effect:

neighbors := neighbors ∪ {B}
if membership then

if ¬monitoring ∧ (replies-waiting �= ∅) then
send request to B
replies-waiting := replies-waiting ∪{B}

else
added-count := added-count+1

end
end

NeighborDepartedA(B)
Precondition:

¬connected(A, B) ∧ B ∈ neighbors
Effect:

neighbors := neighbors − {B}
if membership then

if B = parent then
[reset state]

else if ¬monitoring ∧ (replies-waiting �= ∅) then
replies-waiting := replies-waiting −{B}

else if ¬monitoring then
departed-count := departed-count+1
participants := participants − {B}

else if (replies-waiting �= ∅) then
departed-count := departed-count+1
replies-waiting := replies-waiting−{B}

end
end

Figure 5: Actions for handling neighbor changes

ParticipationReplyReceivedA(r)
Effect:

replies-waiting := replies-waiting−r.sender
participants := participants ∪ {r.participants}
if replies-waiting = ∅ then

if r.requester �= id
send ParticipationReply to parent

else
send Query to neighbors ∩ participants

end
end

Figure 6: The ParticipationReplyReceived action

two waves are used: one to disseminate the query and one to
propagate results. The action performed by a host receiving
a query is shown in Figure 7. Each host receiving the query
sets its monitoring flag. As before, each parent in the tree
must wait for responses from its children before sending its
own query results. Boundary hosts initiate the second wave
of the second flood to deliver query results. In constructing
a query result, a boundary node includes its own data value
and its departed-count and added-count variables. As these
replies propagate up the tree, parents aggregate the results
and counts of their children, add their own information, and
send a summary further along. This allows the reference
host to assess the query consistency. In this flooding phase,
the setting of the monitoring flag and checking for changes
in data during query execution is analogous to the use of
locks in traditional protocols, but is less restrictive.

Changes in the environment that occur “in front of” the
second flood’s second wave may impact the set of hosts
participating in the query as well as the available data,
which will impact what consistency semantic the protocol

250

QueryReceived(q)
Effect:

if membership ∧ ¬monitoring
∧q .sender = parent then
monitoring := true
if participants �= ∅ then

replies-waiting := participants)
send Query to neighbors ∩ participants

else
send QueryReply to parent
[reset state]

end
end

Figure 7: The QueryReceived action

can achieve. As shown in Figure 5, in this phase of the pro-
tocol, if a parent host detects the disconnection of a child,
the parent alters its protocol-related flags to reflect that
change. Specifically, the parent increments the departed-
count variable. Similarly, if a new host becomes connected
“in front of” the second wave, the parent increments its
added-count variable. Recording this information allows the
protocol to determine what guarantee can be provided to
the query issuer. For example, when a neighbor departs “in
front of” the second wave of the second flood, the proto-
col can provide the atomic subset guarantee by discounting
the departed host and reporting the remainder of the re-
sults. QueryReply messages propagate back to the query
issuer in a manner similar to ParticipationReply messages.
The action QueryReplyReceived is shown in Figure 8. In this
protocol, changes that occur behind the second wave of the
first flood (i.e., after the query’s participants are set) and
before the second wave of the second flood (i.e., before the
query’s results are returned) can impact the query’s seman-
tics. Specifically, the following changes during this period
result in the following semantics:
No changes: the atomic semantic can be provided.
Only departing participants: the atomic subset seman-
tic can be provided. If the number of departing participants
can be determined (e.g., using departed-count), the quali-
fied subset semantic can be provided.
Departing and adding participants: the weak semantic
can be provided. If the number of departing participants
and the number of added participants can be determined
(e.g., using departed-count and added-count), then the weak
qualified semantic can be provided.
Data value changes: data value changes can be modeled
as departing participants; thus, the atomic subset seman-
tic can be provided. If the number of data value changes is
known, the qualified subset semantic can be provided.

When the last QueryReply message that the query issuer
is waiting on arrives, the host extracts the departed-count
and added-count values from the messages it has received. It
aggregates these values and determines the query semantic
that was achieved. For example, if the values of departed-
count and added-count are both 0, then the query issuer can
determine that the query was executed with atomic seman-
tics. After making this determination, the host returns the
query results and the achieved semantic to the application.

5. A REFERENCE IMPLEMENTATION
We have implemented a prototype of the self-assessing

protocol described in Section 4 using the open source OM-

QueryReplyReceivedA(r)
Effect:

replies-waiting := replies-waiting−r.sender
results := results ∪ {r.results}
added-count := added-count + r.added-count
departed-count := departed-count + r.departed-count
if replies-waiting = ∅ then

if r.requester �= id
send QueryReply to parent
[reset state]

else
[assess query consistency]
[deliver result to application]

end
end

Figure 8: The QueryReplyReceived action

NeT++ discrete event simulator [16] and its mobility frame-
work extension [8]. Here, we demonstrate the semantics that
our protocol can achieve in different situations and provide
a performance characterization for the protocol’s behavior.
The source code and settings details we used to generate
these results are available at http://mpc.ece.utexas.edu/
consistency/consistency.html.

5.1 Simulation Settings
The results below were obtained from running our query

execution protocol 50 times on varying numbers of nodes
within a 1000x900m2 rectangular area. Since the area size
is constant, varying the number of nodes in the network
(discussed below) effectively changes the network’s density.
The nodes move according to the random waypoint mobility
model [2], in which each node is initially placed randomly in
the space, chooses a random destination within that space,
and moves in the direction of the destination at a given
speed. Once a node reaches the destination, it pauses for a
specified interval (the pause time) then repeats the process.
Our simulations use a pause time of 0 seconds to provide
more dynamicity. We used the 802.11 MAC protocol. When
possible, 95% confidence intervals are shown on the graphs.

Variables. To demonstrate our protocol under different
environmental and application conditions, we varied three
parameters. First, the number of nodes in the network
varied from 5 to 100 in multiples of 5. Second, the aver-
age speed of nodes varied from 0m/s (completely static) to
30m/s (the speed of a fast moving vehicle on a highway).
Finally, we varied a time-to-live (TTL) parameter that re-
stricts the scope of a query in terms of the number of hops
it can travel. A TTL value of 1 indicates that a query only
contacts directly connected hosts. We varied the TTL from
1 to 3; with a TTL of 3, the queried nodes were between
85-100% of the total nodes in the network. Due to space
limitations, we report results only for TTL values of 3.

Metrics. We report results for several metrics. The first
two categories (reported in Sections 5.2 and 5.3) demon-
strate the protocol’s capability of assessing a query’s consis-
tency after it has completed execution. These results show
which semantics from Section 3 can be achieved under which
operating conditions. The results in Section 5.3 pertain to
the qualified semantics (i.e., qualified subset and weak
qualified), and show what percentage of the nodes con-
tributed to the subsets when those semantics were achieved.
The final metrics, reported in Section 5.4, evaluate trends
in the protocol’s performance with respect to overhead (the

251

Query Semantic vs. Number of Nodes (ttl3, 0m/s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 15 25 35 45 55 65 75 85 95

Number of Nodes

Pe
rc

en
ta

ge
 o

f Q
ue

rie
s

Weak
Atomic Subset
Atomic

Figure 9: Achieved query semantic vs. number of
nodes in a static network.

number of bytes transmitted to evaluate a query) and la-
tency (the time between when a query is issued and when
its result is returned). These results serve as a sanity check
to ensure that our protocol does not incur significant over-
heads or delays in reporting the semantics with the result.

5.2 Reporting Query Consistency
Because the goal of our protocol is to execute a query

and deliver the results along with a report of the consis-
tency with which the results match the execution environ-
ment, the most important aspect of our evaluation demon-
strates which query semantics can be achieved under differ-
ent conditions. In this section, we look at instances in which
atomic, atomic subset, and weak semantics can be pro-
vided. The next section looks at the qualified semantics:
qualified subset and weak qualified.

Figure 9 shows the query semantics achievable in a com-
pletely static network as the number of nodes participat-
ing in the query varies from 5 to 100. Two things are no-
table about this result. First, even if no mobility occurs, the
atomic guarantee is not achievable in all situations, espe-
cially as the number of nodes in the network grows. This
is a result of increasing network density and the fact that
nodes must compete to access the shared (wireless) medium.
Second, in all cases, if the atomic consistency cannot be
achieved, at least the atomic subset consistency can be.
This means that nodes only seem to have lost neighbors,
not added any new neighbors after the query began. In
fact, nodes have neither added nor lost neighbors (there is
no mobility). Instead, the higher density networks suffer
because nodes are competing to return their query results,
making it appear as though some did not respond at all.

Figure 10 shows the same metric for a high degree of mo-
bility (20 m/s). Here, the percentage of time in which the
atomic semantic can be achieved is even further reduced.
However, in comparison to other approaches that simply
fail they cannot achieve the atomic semantic, our approach
can often (around 10% of the time in the 20 m/s case) still
achieve some degree of atomicity and report a formal de-
scription of that degree of atomicity.

Figure 11 shows the effect of changing speed on the achiev-
able query semantic. In this case, we plotted the achievable
semantic as the speed varied from 5 to 30 m/s in a 30 node
network. Again, the key observation is that, even in highly
dynamic situations, our protocol can provide a query seman-

Query Semantic vs. Number of Nodes (ttl3, 20m/s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 15 25 35 45 55 65 75 85 95

Number of Nodes

Pe
rc

en
ta

ge
 o

f Q
ue

rie
s

Weak
Atomic Subset
Atomic

Figure 10: Achieved query semantic vs. number of
nodes in a highly dynamic network.

Query Semantic vs. Speed (ttl3, 30nodes)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

Speed (m/s)

Pe
rc

en
ta

ge
 o

f Q
ue

rie
s

Weak
Atomic Subset
Atomic

Figure 11: Achieved query semantic vs. speed for a
network of 30 nodes.

tic better than best-effort more than 10% of the time. If an
application developer were choosing from existing protocols,
in these instances he may be forced to choose one with best-
effort semantics. Using our self-assessing protocol, roughly
10% of the time, he can achieve a better guarantee.

5.3 Qualifying Query Results
The previous section shows results only for the atomic,

atomic subset, and weak semantics. The two additional
semantics presented in Section 3 qualified the atomic sub-
set and weak semantics to further communicate to the ap-
plication the degree with which the results match the exe-
cution environment. That is, qualified subset and weak
qualified both communicate the percentage of the poten-
tial responders that successfully replied to the query. Be-
cause of its design, any time our protocol can report the
atomic subset semantic, it also has enough information to
report the qualification that is part of the qualified subset
semantic. The same is true for the pair weak and weak
qualified. Therefore, Figures 12 and 13 should be looked
at in conjunction with Figures 10 and 11, respectively.

Figure 12 shows that, as the number of nodes increases,
the percentage successfully responding to a query decreases.
In combination with Figure 10, when the query result re-
ported has the weak semantic (the dark gray space in Fig-
ure 10), Figure 12 shows what percentage of the nodes it
was possible to contact actually responded. For example, in

252

Percentage of Replies vs. Number of Nodes (ttl3, 20m/s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Number of Nodes

Pe
rc

en
ta

ge
 o

f R
ep

lie
s

Figure 12: Percentage of nodes replying vs. number
of queried nodes for a highly dynamic network.

Percentage of Replies vs. Speed (ttl3, 30nodes)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

Speed (m/s)

Pe
rc

en
ta

ge
 o

f R
ep

lie
s

Figure 13: Percentage of nodes replying vs. speed
for a 30 node network.

a network of 85 nodes, every query had the weak semantic,
and, on average, the results represented approximately 30%
of the results that were available over all of the effective ac-
tive configurations. Figure 13 shows a similar result: as the
speed of the nodes increases, the percentage of results re-
turned drops. The same exercise as above can be performed
with the combination of Figures 11 and 13.

While the qualified semantics do not provide consistency
results that are strictly stronger than the atomic subset
and weak semantics, the ability to communicate the per-
centage of the potential query responders from which results
were received provides extra beneficial information to the
application, as discussed in Section 3.

5.4 Protocol Performance
Figures 14 and 15 show the performance of our self-assessing

protocol as it varies with both increasing numbers of nodes
and speed, respectively. We measured both the query la-
tency (i.e., the amount of time that elapses between the ap-
plication issuing the query and the results being returned to
the application) and the overhead (i.e., the number of bytes
sent as part of issuing the query and in control packets to
maintain the network). Both the latency and overhead re-
sults show that our protocol scales well with both increasing
network density (number of nodes) and average node speed.
The leveling off experienced by the latency values for in-
creased numbers of network nodes is due to the fact that, at

Overhead and Latency vs. Number of Nodes (ttl3, 20m/s)

0

2000

4000

6000

8000

10000

12000

5 15 25 35 45 55 65 75 85 95

Number of Nodes

O
ve

rh
ea

d
(b

yt
es

)

0

0.2

0.4

0.6

0.8

1

1.2

La
te

nc
y

(s
ec

on
ds

)

Overhead
Latency

Figure 14: Performance vs. number of nodes for a
highly dynamic network.

Overhead and Latency vs. Speed

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30

Speed (m/s)

O
ve

rh
ea

d
(b

yt
es

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

La
te

nc
y

(s
ec

on
ds

)

Overhead
Latency

Figure 15: Performance vs. speed for a network of
30 nodes.

these increased densities nodes begin to have many differ-
ent paths from the query issuer, and, on average, the paths
become shorter, reducing the latency to complete the query.

A next step would be to compare our protocol’s perfor-
mance to one that provides strong consistency semantics and
to one that provides best-effort semantics. As the focus of
this paper is on the ability of the protocol to self-assess its
behavior, we have omitted these results due to space and
time considerations. We also plan to apply our approach to
one or more specific application domains in the future.

6. RELATED WORK
Distributed databases have traditionally focused on wired,

strongly connected environments. As devices become in-
creasingly mobile, the research community has responded
by investigating the deployment of databases in mobile and
peer-to-peer network settings [1]. Several of these strate-
gies focus on issues related to dynamic cache allocation [15]
or optimistic replication [7], while others allow applications
to explicitly issue weak operations that are allowed to op-
erate over potentially inconsistent data [12]. Our approach
differs in that we avoid caching data locally, instead desir-
ing to acquire it on-demand from a dynamic environment.
We also postpone the decision of how weak of an operation
to perform until run time, providing applications with the
strongest semantic achievable in a given operational context.

253

In a similar vein, researchers have looked within mobile
database systems at transactional semantics. This work has
begun to address the need for a new view of consistency se-
mantics by proposing new transaction models for mobile set-
tings. Many of these models relax the constraints imposed
by the ACID properties and execute queries using transac-
tions which adhere to a weaker set of properties, though the
approaches tend to differ significantly. A few [4, 19] use the
concept of split transactions to handle intermittent discon-
nections and reconnections. Others focus on maintaining or
relaxing a particular ACID semantic; isolation-only transac-
tions [9] ensure only that committed transactions appear as
though executed independently; toggle transactions [3] en-
able extended execution, relaxing both atomicity and isola-
tion; and the pre-write transaction model [11] focuses almost
exclusively on data-availability. These models are generally
limited to use in nomadic networks. Because of their reliance
on powerful and fixed nodes on the fringe of the network,
these weakened transactional models cannot be applied to
ad hoc networks. Moreover, the frequent disconnections and
reconnections in a mobile ad hoc network could result in sig-
nificant overhead when employing similar approaches.

Closely related to our work is a study of query semantics
for sensor networks [17]. The authors define a new class of
semantics based on the “single site validity” principle, in
which a query result appears to be equivalent to an atomic
execution from the query issuer’s perspective. While the
themes are similar, the work differs in scope. Their study
defines a particular class of semantics, while we attempt to
provide a model that can define classes of semantics.

7. CONCLUSIONS
This work offers a new perspective on query execution in

pervasive computing environments. The novelty of our ap-
proach lies in the ability to formally express varying degrees
of consistency semantics in a dynamic ad hoc network. We
have introduced several new notions of consistency and cap-
tured them using our formal model. To realize these query
semantics, we have developed a self-assessing protocol that
can determine the achievable consistency during query ex-
ecution and report the assessment. Our initial evaluation
suggests that this protocol can indeed be useful in dynamic
ad hoc networks to deliver a richer, more flexible alternative
to traditional transactional query processing. Future work
will address the specific needs of sensor networks; we plan to
refine the model to express semantics of long-lived queries.

Acknowledgments
This research was supported in part by ONR-MURI research
contract N00014-02-1-0715. C. Julien thanks the Center for
Excellence in Distributed Global Environments for provid-
ing research facilities and a collaborative environment. The
conclusions herein are those of the authors and do not nec-
essarily reflect the views of supporting parties.

8. REFERENCES
[1] D. Barbara. Mobile computing and databases: A

survey. IEEE Trans. on Knowledge and Data
Engineering, 11(1):108–117, January/February 1999.

[2] J. Broch, D. Maltz, D. Johnson, Y.-C. Hu, and
J. Jetcheva. A performance comparison of multi-hop

wireless ad hoc network routing protocols. In Proc. of
the ACM/IEEE MobiCom, pages 85–97, October 1998.

[3] R. Dirckze and L. Gruenwald. A toggle transaction
management technique for mobile multidatabases. In
Proc. of the 7th Int’l. Conf. on Information and
Knowledge Management, pages 371–377, 1998.

[4] M. Dunham, A. Helal, and S. Balakrishnan. A mobile
transaction model that captures both the data and
movement behavior. ACM-Baltzer Journal on Mobile
Networks and Apps., 2(2):149–161, October 1997.

[5] C. Julien and G.-C. Roman. Egocentric context-aware
programming in ad hoc mobile environments. In Proc.
of 10th Int’l Symp. on the Foundations of Software
Engineering, pages 21–30, Nov. 2002.

[6] S. Kabadayi and C. Julien. A local data abstraction
and communication paradigm for pervasive
computing. In Proc. of the 5th IEEE Int’l. Conf. on
Pervasive Computing and Comm., pages 57–66, March
2007.

[7] J. Kistler and M. Satyanarayanan. Disconnected
operation in the Coda file system. ACM Trans. on
Computer Sys., 10(1):3–25, February 1992.

[8] M. Loebbers, D. Willkomm, and A. Koepke. The
Mobility Framework for OMNeT++.
http://mobility-fw.sourceforge.net.

[9] Q. Lu and M. Satyanarayanan. Isolation-only
transactions for mobile computing. Operating Systems
Review, 28(2):81–87, April 1994.

[10] N. Lynch and M. Tuttle. An introduction to I/O
automata. CWI-Quarterly, 2(3):219–246, 1989.

[11] S. Madria and B. Bhargava. A transaction model for
mobile computing. In Proc. of the Int’l. Database Eng.
and Apps. Symp., pages 92–102, July 1998.

[12] E. Pitoura and B. Bhargava. Maintaining consistency
of data in mobile distributed environments. In Proc. of
the 15th Int’l. Conf. on Dist. Computing Sys., 1995.

[13] G.-C. Roman, C. Julien, and Q. Huang. Network
abstractions for context-aware mobile computing. In
Proc. of 24th Int’l Conf. on Software Engineering,
pages 363–373, 2002.

[14] W. Si and C. Li. RMAC: A reliable multicast MAC
protocol for wireless ad hoc networks. In Proc. of the
Int’l Conf. on Parallel Processing, pages 494–501,
Aug. 2004.

[15] A. Sistla, O. Wolfson, and Y. Huang. Minimization of
communication cost through caching in mobile
environments. IEEE Trans. on Parallel and Dist. Sys.,
9(4):378–390, April 1998.

[16] A. Vargas. OMNeT++. http://www.omnetpp.org.

[17] M. Vawa, A. Gionis, H. Garcia-Molina, and
R. Motwani. The price of validity in dynamic
networks. In Proc. of ACM SIGMOD 2004, pages
515–526, June 2004.

[18] B. Vellambi, R. Subramanian, F. Fekri, and
M. Ammar. Reliable and efficient message delivery in
delay tolerant networks using rateless codes. In Proc.
of the 1st Int’l MobiSys Wkshp. on Mobile
Opportunistic Networking, pages 91–98, June 2007.

[19] G. Walborn and P. Chrysanthis. Transaction
processing in PRO-MOTION. In Proc. of the ACM
Symp. on Applied Computing, pages 389–398, 1999.

254

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

