
Sando: An Extensible Local Code Search Framework

David Shepherd
ABB, Inc.

Raleigh, NC, USA
david.shepherd@us.abb.com

Kostadin Damevski
Virginia State Universtiy

Petersburg, VA, USA
kdamevski@vsu.edu

Bartosz Ropski
Autodesk, Inc.

Krakow, Poland
bartosz.ropski@autodesk.com

Thomas Fritz
University of Zurich
Zurich, Switzerland
tfritz@ifi.uzh.ch

ABSTRACT
Developers heavily rely on Local Code Search (LCS)—the
execution of a text-based search on a single code base—to
find starting points in software maintenance tasks. While
LCS approaches commonly used by developers are based
on lexical matching and often result in failed searches or
irrelevant results, developers have not yet migrated to the
various research approaches that have made significant ad-
vancements in LCS. We hypothesize that two of the major
reasons for this lack of migration are as follows. First, de-
velopers do not know which approach is the best, due to
a lack of comparative field studies and the discrepancies in
the underlying LCS process that these research approaches
address. Second, developers lack access to a stable imple-
mentation of most of the research approaches. To address
these issues, we studied a number of LCS approaches, dis-
tilled the general component structure underlying these ap-
proaches and, based on this structure, developed a LCS tool
and framework, called Sando. Currently used by develop-
ers at ABB, Inc. and elsewhere, Sando also supports the
flexible extension of its components to rapidly disseminate
research advancements, and allows for user-based evaluation
of competing approaches.

Categories and Subject Descriptors: D.2.3 [Software
Engineering]: Coding, Tools and Techniques

General Terms: Design, Experimentation, Languages

Keywords: Code search, feature location

1. INTRODUCTION
Developers often rely on local code search tools to deter-

mine a starting point, or seed, in the code for software main-
tenance tasks [2]. In a recent study, 40 out of 48 instances
of a developer performing a maintenance task began with
the developer performing code search [3]. Due to the lexi-
cal matching approach that underlies the code search tools
most commonly used by developers, these searches return
an overwhelming amount of irrelevant results or no results
at all, in most cases, and thus lead to failed searches [10].

While recent research on Local Code Search (LCS) has
made significant advances, most developers still use failure-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT’12/FSE-20, November 11–16, 2012, Cary, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1614-9/12/11 ...$15.00.

prone search tools based on lexical matching. We hypoth-
esize that two of the major reasons for developers ignoring
recent LCS research is, first, the lack of clear comparisons
between approaches and, second, the unavailability of usable
implementations. The difficulty in comparing research ap-
proaches on code search lies in the underlying differences of
the approaches’ internal process models. Even approaches
that address the same part of the LCS process vary widely
in aspects that are not essential to the research. For in-
stance, two recent techniques, Promesir [4] and Shao et al.’s
approach [9], address the reordering of the search results
but are difficult to compare due to the differences in their
splitting and word recommending algorithms, which are not
the focus of the research work. In addition to the difficulty
in comparing approaches, almost none of the research ap-
proaches for LCS provide a publicly available implementa-
tion [1] or are not necessarily usable by practitioners.

In this paper, we introduce the Sando code search tool
and framework that embodies a general and extensible LCS
model. This LCS process model, (1) illustrates the differ-
ences between LCS approaches; (2) facilitates non-confound-
ed comparisons of different approaches or the effect of a sin-
gle component’s improvement on the overall code search pro-
cess; and, (3) allows for the integration of various approaches
focusing on different aspects of the LCS process. Sando is a
standalone LCS tool implemented as a stable, open source
Visual Studio extension. At the same time, Sando serves
as a framework that can easily be extended to quickly dis-
seminate advances in research. Sando complements existing
lab-based LCS evaluation approaches (e.g., [1]) by enabling
realistic, developer-based evaluations. Since Sando’s intro-
duction on May 12, 2012, it has experienced a significant
number of downloads 1 (> 400) and site visits (> 1000).

2. THE SANDO FRAMEWORK AND TOOL
At its core, Sando uses a generic process model that we

distilled by examining existing LCS approaches. To maxi-
mize the model’s generality and provide best extensibility,
we abstracted it from the three major categories of LCS
approaches: information retrieval (e.g., [6, 5]), natural lan-
guage (e.g., [10, 2]) and program analysis refined (e.g., [4,
9]) search based approaches. The resulting process model,
shown in Figure 1, is composed of two major workflows, In-
dexing and Querying, consisting of eight major components.

Process Model for Local Code Search.
The Indexing workflow begins with the File Monitor

component, which forwards modified or newly added ap-

1see http://visualstudiogallery.msdn.microsoft.com/
06f39a31-20ce-408c-afee-8a02b484db1c for current
statistics

1

Parser Indexer

Index

Indexing

Querying
query

File
Monitor

file
program
elements documents

Searcher
weighted

query

MarshallerReordererUI
documents

program
elements

program
elements

list

 Splitter

Figure 1: The general LCS workflow underlying
Sando, consisting of two distinct phases: indexing
and querying.

plication files, the raw data, to the Parser component. In
turn, the Parser decomposes each file into a set of program
elements, such as methods, fields, and classes, that are then
translated into documents by the Indexer. Documents are
entirely text-based representations of program elements, ap-
propriate for text-based indexing. Internally, the Indexer

uses the Splitter sub-component to ensure that the text,
in particular the identifiers, is properly split into individual
words (e.g., “openFile” → “open”,“file”).

The Querying workflow contains the interactive part of
the LCS process. The user’s query is sent to the Searcher

component, where it is rewritten according to a set of rules.
This includes the addition of synonyms and/or weights to
the query in order to, for example, prefer matches in method
names over matches in method bodies. The rewritten query
is then forwarded to the Index database, which returns a
ranked list of documents that match it. The Marshaller

processes these documents, reverting them into program el-
ements, and the Reorderer can then be used to reorder the
final search results according to any scheme specified (e.g., a
call-graph-based page rank score). Finally, the ranked pro-
gram elements are displayed to the user in the UI component.

Extension Points.
While the described process model is shared by many of

the LCS approaches, the behavior of individual components
can vary significantly between approaches. For instance,
approaches vary in the splitting of identifiers, by taking into
account camel-case [2] or not [6], or in the program elements
that are accepted by the parser, e.g., C++ [2] or C, C++
and Java [6]. To support the most common variations, the
Sando framework provides a set of extension points, one
for each of the following five components: the Parser, the
Splitter, the Indexer, the Searcher and the Reorderer.

The Sando Search Tool.
Besides being an extensible framework for building new

code search tools, Sando is also a standalone LCS tool, im-
plemented using the above process model. Sando provides
default implementations for each extension point, namely, a
Parser that handles C#, C++, and C at the granularity
of method, field, class, comment, and property elements; an
Indexer that separates elements into name and body fields;
a Splitter that splits identifiers on camel-case, underscore,

and numbers; an Index based on a vector space model us-
ing TF/IDF scoring; a Searcher that weighs element names
more highly than element bodies; a Reorderer that does no
reordering for now; and a UI that displays the results list.

Sando’s extension point mechanism facilitates the quick
creation of working LCS tools or the integration of new re-
search ideas into a stable, open source tool that then also
supports comparative field studies. The default implementa-
tion for each of the extension points can easily be replaced
by providing another implementation of the provided ex-
tension point interface and updating a single configuration
file. Thus, a researcher could use the Sando framework
with its extension point mechanism to evaluate different
types of word-splitters or a new LCS approach that reorders
search results using, for example, execution trace informa-
tion. Sando’s documentation2 details the extension process
and describes default extension points.

Related Work.
As a standalone tool, Sando is most similar to informa-

tion retrieval-based approaches (e.g., [6, 5, 7]), but differs by
providing an extension point mechanism to support the inte-
gration of several approaches and the quick experimentation
of new ideas in a stable and working tool.

Sando shares motivation with TraceLab [1], a very re-
cently published framework for evaluation and comparison
of feature location techniques. TraceLab provides an exper-
imentation framework, including test data sets, to evaluate
the precision and recall of different feature location tech-
niques. Sando’s framework is complementary in that it en-
ables research approaches to be validated via realistic user
studies or A/B testing. In addition, Sando contributes a
vehicle to disseminate successful research approaches to de-
velopers via a working tool.

3. REFERENCES
[1] B. Dit, E. Moritz, and D. Poshyvanyk. A tracelab-based

solution for creating, conducting, and sharing feature location
experiments. In Int. Conf. on Prog. Comp, 2011.

[2] E. Hill, L. Pollock, and K. Vijay-Shanker. Automatically
capturing source code context of nl-queries for software
maintenance and reuse. In Int. Conf. on Soft. Eng., 2009.

[3] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung. An
exploratory study of how developers seek, relate, and collect
relevant information during software maintenance tasks. IEEE
Trans. on Soft. Eng., 2006.

[4] D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich. Feature
location via information retrieval based filtering of a single
scenario execution trace. In Int. Conf. on Automated Soft.
Eng., 2007.

[5] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn. Source code
retrieval for bug localization using latent dirichlet allocation. In
Working Conf. on Reverse Eng., 2008.

[6] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic. An
information retrieval approach to concept location in source
code. In Working Conf. on Rev. Eng., 2004.

[7] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu.
Portfolio: finding relevant functions and their usage. In Int.
Conf. on Soft. Eng., 2011.

[8] D. Poshyvanyk, M. Gethers, and A. Marcus. Concept location
using formal concept analysis and information retrieval. In
Trans. on Soft. Eng. and Meth., 2010.

[9] P. Shao and R. K. Smith. Feature location by IR modules and
call graph. In SE Regional Conf., 2009.

[10] D. Shepherd, Z. P. Fry, E. Hill, L. Pollock, and K. V. Shanker.
Using natural language program analysis to locate and
understand action-oriented concerns. In Int. Conf. on
Aspect-Oriented Soft. Dev., 2007.

2sando.codeplex.com/wikipage?title=Custom%20Sando%
20Extensions

2

APPENDIX

A. DEMONSTRATION SCRIPT
Here we demonstrate Sando’s utility as both a standalone

code search tool as well as a research-enabling framework.
First, we use a realistic maintenance scenario to show the
advantage that Sando provides over a state-of-the-practice
tool to find relevant code. We then pose a sample research
question and show how Sando’s extension point framework
can be leveraged to quickly implement a tool that would
allow researchers to investigate this question. Finally, we
briefly describe an implementation of an approach from a
recent research paper in Sando.

A.1 The Sando Search Tool

A.1.1 Maintenance Scenario
The Notepad++ 3 program is an open source, C++ project

that consists of approximately 350 source files and 18KLOC.
It is described as a “source code editor and Notepad replace-
ment that supports several languages.” As such, it contains
many familiar document editing functions, such as printing
files, highlighting code syntax and displaying line numbers.

Notepad++ has been under development for several years
and thus has a backlog of open bugs. In one of them, a user
has reported that Notepad++ will cut off its line numbers,
which are displayed in the left margin of an open file, under
certain circumstances4. In this demonstration we will focus
on finding the code relevant to fixing this bug.

A.1.2 Using Lexical Search
When beginning to fix a bug developers often use code

search tools to locate a starting point in the project for
this task. Unfortunately, when using state-of-the-practice
tools it is very difficult to craft an effective search query
and retrieve a good starting point. Consider a developer us-
ing Find in Files, a regular expression-based code search
tool commonly used in Visual Studio in the beginning of
fixing the Notepad++ bug. If this developer searches for
linenumber, 322 results are returned. Because these results
are unranked, the developer is very unlikely to review them
manually, as relevant results may not appear until near the
end of the list. Developers faced with this scenario will most
likely refine their initial query to reduce the number of re-
sults. A common way of reducing the number of regular
expression search results is to add terms to the query. If the
developer expands his query to linenumber*update no result
set is returned because regular expression searches are sensi-
tive to word ordering. However, if the developer switches his
term ordering and searches for update*linenumber then the
correct result, method updateLineNumberWidth, is returned
as second result. Unfortunately, the developer had to put
considerable mental effort and time into crafting an effective
search query.

A.1.3 Using Sando Search
If the developer uses Sando to find a starting point to fix

this bug he or she can create an effective search query with

3http://notepad-plus-plus.org/
4http://sourceforge.net/tracker/?func=detail&aid=
3513126&group_id=95717&atid=612382

Figure 2: Using Sando, a higher percentage of
queries are successful. The presented search for line
width update returns the most relevant method as
first result.

much less effort (see Figure 2). For instance, each of the
queries: linenumber update, update linenumber, line number
update, line number width, or even line width would result
in the retrieval of relevant code. These queries would find
the relevant method ranked as result number 1, 1, 2, 1, and
2 respectively. In contrast, using the same queries (with
spaces replaced by asterisks) in Find in Files results in
an empty set, a set of three, an empty set, a set of eight,
and a set of 72 unranked results respectively. Thus, for this
set of queries Sando always returns the correct result in the
top two ranked slots whereas Find in Files essentially fails
to provide a small set of relevant code for three of the five
queries 5.

5A large set of unordered search results are often considered
a failure by users, who will try to refine their query instead
of inspecting results [8]

3

A.2 Sando Extensions

A.2.1 Extension Scenario
While Sando users can create search queries with much

less effort, developers still have to be careful to spell query
terms correctly. If a developer searches using a misspelled
word, such as find curent Sando will fail to return any re-
sults in Notepad++, as the misspelled term curent does not
exist in this code base. Therefore, researchers may want to
investigate the following sample research question:

ExRQ: Would the auto-correction of query term
spelling increase the effectiveness of code search?

While this ExRQ may seem to have an obvious answer
(i.e., auto-correction should improve performance), the par-
ticularities of source code may confound common sense. For
instance, in many projects abbreviations or intentional mis-
spellings are used, such as calc for calculate. In this case,
automatically correcting calc would likely fail to retrieve the
relevant results.

A.2.2 Creating an Extension
To investigate this sample research question on actual

code with real users as a lab study or as a field study, re-
searchers can use Sando’s extension point mechanism to eas-
ily implement an auto-correcting version of Sando. This ver-
sion of Sando would automatically correct misspelled search
terms prior to executing the search. In order to do so, re-
searchers can use the Searcher extension point, specifically,
by implementing the IQueryRewriter class. Below, we pro-
vide a listing of RewriteQuery, the only method that must
be implemented (apart from initializing the data structures)
to enable the auto-correction extension. This method takes
a query as input (line 1), splits it into words (line 4), checks
if the word is misspelled (line 6), and then replaces the word
with the first suggestion in case it is misspelled (line 9).

1 public string RewriteQuery(string query)
2 {
3 Initialize ();
4 var queryWords = query.Split(’ ’);
5 foreach (var queryWord in queryWords) {
6 if(! engine["en"].Spell(queryWord)) {
7 var suggestions = engine["en"]. Suggest(

queryWord);
8 if(suggestions.Count >0) {
9 query = query.Replace(queryWord , suggestions.

First());
10 }
11 }
12 }
13 return query;
14 }

In addition to implementing the IQueryRewriter inter-
face, a researcher must also update the extension point con-
figuration file. The necessary steps consist of adding an
entry in the configuration file (line 1), specifying the new
query rewriter class (line 2) and the relevant library (line
3), and then copying the .dll file into the extension directory.

1 <QueryRewriterConfiguration >
2 <FullClassName >Sando.ExperimentalExtensions.

SpellChecking.SpellCheckingQueryRewriter </
FullClassName >

3 <LibraryFileRelativePath >ExperimentalExtensions.
dll </ LibraryFileRelativePath >

4 </QueryRewriterConfiguration >

Once Visual Studio is restarted Sando will appear to work
as per usual. However, performing the same search as be-
fore, for “find curent”, results in the activation of the auto-
correction extension, which corrects the query and returns
the relevant results. Assuming a reasonable implementation
of the extension, Sando will continue to be a robust im-
plementation of code search, suitable for lab and even field
studies.

A.3 Implementation of Existing Research
In the previous example we replaced a Sando component

to investigate a somewhat trivial approach, which was not
previously studied. However, because Sando offers a number
of extension points, many different LCS approaches can po-
tentially be implemented (and thus investigated). To demon-
strate Sando’s capacity to implement existing research sce-
narios, we implemented an approach similar to Shao et al. [9]
in Sando. This approach combines information retrieval
scores with call graph information to reorder the search re-
sults. In the case study conducted by the authors, this ap-
proach works well, although several threats to the generality
of the results are noted.

To implement the approach presented by Shao et al., we
used the Reorderer extension point. For the implementation,
we only had to write a total of 73 LOC and immediately had
a working LCS tool which we used to search Notepad++. In
our preliminary investigation, this approach seemed promis-
ing, effectively boosting search results that were highly con-
nected to other search results. However, after further inves-
tigation we also noticed that getters and setters, which are
called by many methods, were often boosted too high in the
search results and that special rules for getters and setters
might improve the performance of the research approach.
The short time between research idea and fully working
code search tool allowed us to quickly gather feedback in
a realistic setting, and can ultimately result in an improved
approach.

As seen in this example, Sando allows us to quickly im-
plement and investigate existing research approaches. To
further extend the number of such approaches that can be
implemented, we intend to add additional extension points
to Sando in the future. One such extension point that we
plan to add in the near future will allow for the replace-
ment of the Index component, enabling the use of different
indexing algorithms.

A.4 Tool Availability
Sando’s latest release is available on Visual Studio Gallery

(http://visualstudiogallery.msdn.microsoft.com/) as a
VSIX file. Opening this file on a Windows machine will au-
tomatically install Sando into Visual Studio 2010. Once Vi-
sual Studio has been launched the Sando Search View can
be found under View > Other Windows > Sando Search.
Sando’s source code is also available as open source on Code-
Plex (http://sando.codeplex.com).

4

