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ABSTRACT
The natural distributed character of software ecosystems calls for
a shared conceptualization and language to describe their architec-
ture and their evolution. In this regards, ontologies play a central
role. In this paper: we argue in favor of such an approach by show-
ing that there is succesful experience applying ontologies to the
fields of software engineering and software architecture; show the
issues arising in ecosystem evolution and the needs for higher lev-
els of formalization of the description of such processes; finally, we
present a roadmap to develop an ontology for this area.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement; D.2.11 [Software Engineering]: Software Archi-
tectures; I.2.4 [Artificial Intelligence]: Semantic Networks

General Terms
Standardization

Keywords
Software Ecosystems, Software Architecture, Software Evolution,
Ontologies

1. INTRODUCTION
Software ecosystems are defined by Lungu [25] as “a collec-

tion of software systems, which are developed and co-evolve in
the same environment”. The environment can be organizational (a
company), social (an open-source community), or technical (the
Ruby ecosystem).

The natural scaling implicit in the notion of software ecosystems
calls for a shared conceptualization to describe the architectures of
such systems, which naturally are composed of smaller and dis-
tributed systems with their own architectural descriptions and lan-
guages).

As shown later in this paper, the literature and practice shows
there are scattered efforts in developing ontologies for software
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specification, description, evolution and architecture. Thus, there
is experience in the field, and second, there is need for a common
understanding between them in order to transform these scattered
efforts in a concerted one.

Hence, following the experiences of the W3C (World Wide Web
Consortium), we argue that developing a Working Group to delin-
eate a shared conceptualization of the basics of WEON, a softWare
Ecosystems ONtology 1, would be a mean to transform these scat-
tered efforts into a stable and standardized ontology.

In this position paper, we:

1. present the evidence that there is enough background and ex-
periences in the community to address such collaborative ef-
fort;

2. present a brief and preliminary review of the main works on
this topic to highlight the work done;

3. detail some of the issues affecting software ecosystems and
their evolution;

4. and provide a roadmap that enumerates the main challenges
behind such an effort.

2. ONTOLOGIES IN SOFTWARE
ENGINEERING, ARCHITECTURE,
AND EVOLUTION

The interplay between the fields of software engineering, soft-
ware architecture and ontologies has been receiving increasing at-
tention lately. Indeed, the applications of ontological conceptual
frameworks and techniques to the area of software engineering and
software architecture is not new. In this section, we will briefly re-
view the most important developments of these mutual influences.
(For background on ontologies and its engineering see the books of
Goméz-Pérez et al. [10], and Staab and Studer [33]).

2.1 Ontologies in Software Engineering
There is good experience developing and using ontologies in the

area of software engineering. The W3C established in 2001 a work-
ing group to work on the benefits of applying knowledge represen-
tation languages common to the Semantic Web, such as RDF and
OWL, in Systems and Software Engineering practices. Their goal
was to motivate software engineering practitioners, outline the ben-
efits of these techniques, and to encourage collaboration between
the Semantic Web and the Systems and Software Engineering com-
munities [35].
1so as to avoid name clashes with SEON, the Software Evolution
ONtology pyramid by Würch et al. [38]
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Wouters et al. [37] proposed a semi-formal approach based on
the notion of ontolgogies to cope with the problem of managing
large sets of use cases. Their ontology is based on three categories
of information: labels, concepts and relations. It is not difficult to
see that it could be specified in standard ontological languages such
as RDFS and OWL.

Realizing that metamodels and ontologies have been developed
in parallel and in isolation, Henderson-Sellers [14] investigates forms
to establish bridges between these two worlds. Happel and Seedorf
[13] provide a good overview of the applications of ontologies in
the area of software engineering. They mention the relevance of on-
tologies in the following areas: (1) Analysis and Design (Require-
ments engineering Component reuse). (2) Implementation (Inte-
gration with Software modelling languages; ontologies as domain
object model, Coding support, Code documentation). (3) Deploy-
ment and Runtime (Semantic Middleware, Bussiness rules, Seman-
tic Web Services) and (4) Maintenance (Project Support, Updating,
Testing).

Würsch et al. [39] showed that ontologies provide a very good
support for day-to-day tasks performed by developers. In particu-
lar, they showed that most queries that developers need on a daily
basis, as identified by Sillito et al. [32], were implementable in a
framework allowing natural language queries, using Semantic Web
technologies and ontologies as their foundations.

Finally, let us record that Calero et al. [2] compile research
done towards sharing knowledge of the problem domain and us-
ing a common terminology among all stakeholders.

2.2 Ontologies in Software Architecture
Additionally to the developments mentioned above, there are

several experiences developing and using ontologies in the area of
software architecture. One of the most explicit effort is that of SOA
Ontology of the Open Group [11], whose goal is to develop com-
mon understanding of Service-Oriented Architecture in order to aid
understanding, and potentially be a basis a for model-driven imple-
mentation. It is directed to Business people, Architects and System
and software designers. There are, though, several other develop-
ments that implicitly use the notions behind the one of “ontology”,
that is, the standardization of language, of relationships between
concepts, and logical formalization of informal knowledge. With
respect to software architecture, there are four important directions
for our purposes.

2.2.1 Documentation of Software Architectures
Jansen et al. [18] claim that current documentation approaches

have severe shortcomings in capturing the knowledge of large and
complex systems. The main challenges are: understandability; lo-
cating relevant architectural knowledge; traceability; change im-
pact analysis; design maturity assesment; trust. They propose to
enchance traditional software architecture using formal architec-
ture knowledge. We also note that all these problems are amplified
when one deals with software ecosystems, instead of single sys-
tems.

2.2.2 Representing design dependencies
In most design activities, the analysis of the different alternatives

is not stored. Thus, after a system is developed, the design ratio-
nale is not anymore available to further developers. This is more
relevant when the system is undergoing future changes not known
at design time. As reported by Lubars, several approaches have
been proposed to overcome this problem [24], and one thing that is
transversal to all is the need to a standard common language which
is able to capture the network of design dependencies.

2.2.3 Architectural knowledege
Different organizations maintain and store in different forms the

information of their software architectures. The book by Boer et al.
[5] defines a “core model”, i.e. a minimal semantic networks (a ba-
sic ontology) based on four perspectives: sharing, compliance, dis-
covery and traceability, to attempt to cover the architectural knowl-
edge domain.

2.2.4 Ontologies and Software Architecture
Based on the previous three directions, work has been performed

towards using ontologies to fulfill this purposes:
Kruchten [22] emphasizes the need to leverage architectural de-

cision design to become a first class citizen in the process of de-
veloping complex software systems. He proposes a classification
model for the organization, attributes and relationships (internal
and with external artifacts) of design decisions. From here he de-
velops a taxonomy (a simple ontology) from which networks of
such interrelated decisions could help the reasoning about them.

Garzas and Piattini [9] address the problem of microarchitectural
design knowledge. They present an ontology that organizes and
formalizes this knowledge, which comprises in separately declara-
tive and operative knowledge, and encompasses rules, patterns, and
refactoring.

Based on the effective reusability of software architecture knowl-
edge, Erfanian et al. [8] propose two ontologies to address the prob-
lem of evaluation of some types of architectures. The use of on-
tologies allows to express the vocabularies and the semantics of
the domain in a formal and explicit way, thus allowing reuse and
semi-automation of such knowledge.

2.3 Ontology Evolution
One of the main characteristic of the field of Software Engineer-

ing is that of Software Evolution, as encompassed by Lehman’s
laws of Software Evolution [23]. As we will discuss below, Soft-
ware ecosystems are no exception to the rule. In this context, the
research about ontology evolution becomes crucial. The dynamics
and changes of the software gives rise to changes in the application
requirements. In turns, if they are formally specified, this amounts
to changes in the underlying ontologies.

Stojanovic [34] surveys methods and tools of this process. She
defines the requirements for ontology evolution and presents a pro-
cess model that fulfils them.

In this area an important issue to highlight are the notions of ver-
sioning and evolution. As Noy and Klein [26] point out, ontology
evolution is not the same a schema evolution (e.g. in databases).
They mention the difference between usage paradigms, the pres-
ence of explicit semantics and different knowledge models. These
issues play an important role when considering the evolution of
software.

Finally, the SEON pyramid of ontologies defined by Würch et al.
[38] shows that ontologies have been applied in the context of soft-
ware evolution, including concepts such as changes to a software
system over time, defects affecting the system, and the history of
the software system’s artefacts. A subset of SEON was used in the
previously mentioned work of Würsch et al. [39].

3. ISSUES IN ECOSYSTEM EVOLUTION
The problem of ecosystem evolution has attracted intense re-

search interest in recent years, suggesting this is a practical prob-
lem. The main issues we detail below are the ones of the indepen-
dent evolution of software systems a particular depends on, outside
of the control of the developers of said system, and issues related to
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the porting of changes from one branch to another in case of paral-
lel evolution of branches, which is made more complex by the large
amount of duplication. In addition to this, all the problems encoun-
tered in the evolution of a software system and its architecture are
compounded by the size of the software ecosystems, and logistical
issues due to the potential distribution of the data accross multiple
repositories.

3.1 Evolution of Frameworks and Librairies
When a client depends on a library or a framework, any change

in the library or framework may break the client’s code, who may
need to be updated in reaction to the change. There have been sev-
eral empirical studies of the phenomenon: Dig and Johnson studied
5 open-source frameworks, and found that 80% of API-breaking
changes were refactorings [6]. Kapur et al. did a similar study on 3
additional systems, with a finer granularity between the successive
versions of the source code [20]: they found that the average num-
ber of API changes between versions was between 13 and 28 for all
the systems. Finally, Robbes et al. performed a large-scale study
of how developers reacted to deprecation in an software ecosystem
featuring several thousands of projects [29]; among other findings,
they found that some of the deprecations had an impact on a large
amount of developers, that clients took time to notice their code
base was outdated, and that not all clients updated their code.

As a consequence, there has been several approaches to react to
changes in evolving frameworks and libraries. Henkel and Diwan
proposed to record refactorings performed in the library code to re-
play them in the client code [15], a functionality that is now present
in Eclipse. Dig et al. proposed a refactoring-aware versioning sys-
tem to achieve similar goals [7]. Dagenais and Robillard analyze
how the framework adapts to its changes in order to provide recom-
mendations to API changes [4], while Shaefer et al. analyze adap-
tions from previous clients to issue similar recommendations [30].
Rather than issuing recommendations on how to update the code
base, Holmes and Walker recommend changes event that may need
a reaction from the developer [17]. Finally, Cossette and Walker
compared several change recommendation techniques on a set of
evolving APIs, and found that each technique gave a correct rec-
ommendation in around 20% of the cases, and that the recommen-
dations given by the techniques were complementary [3].

3.2 Porting of Changes and Code Duplication
Similar issues happen when a system or ecosystem is forked

from another: Some changes done in one system (such as impor-
tant bug fixes or new functionality) need to be ported to the other
branches. The study by Ray and Kim of FreeBSD, NetBSD, and
OpenBSD shows that 11 to 16% of the changes happening in one
of the systems are changes ported from another branch, and that
13 to 33% of the active developers were involved in porting these
changes [28]. This shows that code duplication is a significant issue
in software ecosystems. In the same vein, the study of Schwartz
et al. showed that the Squeaksource ecosystem had 15% of its
methods being clones of other methods [31]. Also heterogeneity
in languages and infrastructures, and raw size of the ecosystem are
issues.

3.3 Size issues
Software Ecosystems, being composed of individual systems,

are characterized by their massive size. For instance the dataset of
the Ruby on Rails ecosystem provided by Wagstrom et al. weights
more than 8 gigabytes [36]. The Squeaksource ecosystem analyzed
in [29] and [31] weights 24 gigabytes. Other software ecosystems
are larger, such as the Maven ecosystem of Java librairies dataset

presented by Raemaekers et al., that contains nearly 150,000 dis-
tinct applications and libraries, and is measured in hundreds of gi-
gabytes [27].

To address these issues requires special care as performance be-
comes a concern. For instance, standard code clone detection tools
do not scale well to large sizes of data, hence specialized techniques
were designed to ensure such a task scales to large datasets, such as
the work of Koschke [21]. We note that issues of scale are also ad-
dressed in ontology research, an example of this kind of work is the
one by Hogan et al. [16] on making OWL scale to large amounts
of data.

3.4 Logistical issues
Another issue is due to logistics. It is common that a software

ecosystem is spread out in several different locations, making ac-
cess to the data non-trivial. For instance, if one were to study the
ecosystem of all open-source programs written in Java, one would
need to access a very large number of different repositories in or-
der to arrive to a reasonable approximation of said ecosystem. The
studies performed so far have been usually limited to more central-
ized ecosystems, for which the data is confined to a small set of
locations.

4. ROADMAP
Our literature reviews shows that there has been continuous, his-

torical interest in using software ontologies in software engineer-
ing. We argue that the specific challenges with regard to soft-
ware ecosystems, coupled with the challenges of software evolu-
tion magnified by the size of ecosystems, makes this natural fit of
ontologies with software ecosystems all the more important. In ad-
dition, the distributed nature of software ecosystems makes this fit
even more natural, as it closely mirrors the distribution of the data
in the Semantic Web.

The development of an ontology to describe the architecture of
a software ecosystem, and the description of the changes to such
architectures, would provide important support for the comprehen-
sion of the architectures of large-scale software ecosystems, would
increase awareness of the changes that are happening in the ecosys-
tem, and would ensure the timely and adequate reaction to changes
in systems a particular system is depending on. This is in line with
challenges in software architecture of understandability, traceabil-
ity, and change impact analysis, for which an ontology has already
been proposed [18].

Another critical aspects we wish to underline is the need for con-
certation and cooperation. The multiplicity of works that were per-
formed calls for a joint effort of standardization, instead of keeping
the status quo where individual research groups lead their individ-
ual efforts. Traditionally, the way to do so has been in the Semantic
Web community to define a Working Group.

We envision the following roadmap to arrive to such a vision.
It is important to recall that this is not a linear, but an interative
process.

1. Survey and State of the Art.

Perform a systematic survey and evaluation of the work done
in ontologies for software engineering and software archi-
tecture description languages. We presented in this paper a
preliminary state of the art of these aspects that shows that
there is enough ground from where to start such a task.
In particular, regarding software ecosystem evolution abstrac-
tions, compare and contrast them with the extensive research
done in ontology evolution in order to identify opportunities
for reuse and adaptation of existing ideas.
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2. Scope and Goals.

One of the most relevant aspects when building an ontology
is to delimit its scope and depth (size) and the level of in-
teroperability with similar or related projects. On the basis
of the experiences and use cases obtained in (1), it is impor-
tant to define stages of coverage and development, hopefully
starting with a simple core which could serve as basis to ex-
tensions in different directions. In this stage it is important
to make committments to the degree of formalization and so-
phistication of tools that are expected to foster its use.

3. Development.

We see three well delimited stages in the process of develop-
ment of the ontology:

a) Extract the relevant concepts that belong to an ontology
of software ecosystems. Important in this regard are the ad-
vances in architectural description languages, on which work
will need to be done to translate the concepts from the level
of a single software system to the level of software ecosys-
tems.

b) Retrofit these notions to existing ecosystems in order to
ensure the ontology correctly describes reality. Doing so re-
quires the construction of a set of “benchmark” systems and
use cases. Discuss and validate them with communities using
different languages and practices.

c) Formalize the evolution of ecosystems and the concepts
therein, arriving to a first version of WEON, the softWare
Ecosystem ONtology. Choose a formalism which balances
user experience and current standards (RDFS, OWL, etc.) to
describe WEON.

4. Deployment/Instantiation.

Revise and formalize the ontology. Develop semi-automated
techniques in order to apply the ontology to the large quanti-
ties of data characterizing software ecosystems.

Develop tools to support developers when they face the is-
sues described above. The work of Würsch et al. at the level
of individual systems shows that this goal is achievable.

Scale these tools to large specifications. This final step of our
tentative roadmap could also benefit from the active research
in scaling semantic web technologies to large-scale data.

5. CONCLUSION
We showed in this paper that the time is ripe to address the devel-

opment of an ontology for software ecosystems: software ecosys-
tems face challenges for which ontologies seem to be a natural fit.
The large amount of research performed in developing and using
ontologies in software engineering gives us further confidence that
such a fit is possible and will give fruitful results.

We sketched a roadmap to achieve this goal of defining an ontol-
ogy for software ecosystems, and to develop additional supporting
tools. However, the fragmented nature of the work we surveyed
made us aware that this roadmap needs cooperation beyond the
boundaries of a single research group. Such an effort is not pos-
sible without the composition of a working group that will perform
these duties.

Finally, one should note that there are several definitions of ecosys-
tems besides Lungu’s. The work by Hanssen and Dybå [12] refer-
ences three additional definitions:

• “A networked community of organizations or actors, which
base their relations to each other on a common interest in the
development and use of a central software technology" [12].

• “A set of businesses functioning as a unit and interacting with
a shared market for software and services, together with the
relationships among them” [19].

• “The set of software solutions that enable, support and au-
tomate the activities and transactions by the actors in the as-
sociated social or business ecosystem and the organizations
that provide these solutions” [1].

If these definitions focus more on the organization and business
aspects than on the software artifacts and their architecture, they
certainly should be considered in the development of the ontology.
This multiciplicity of definitions further stresses out the need for
a working group as a discussion medium to arrive to a common
understanding.
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