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ABSTRACT
The ability to create and analyze abstract models is an im-
portant step in conquering software complexity. In this pa-
per, we show that it is practical to verify dynamic proper-
ties of infinite state models expressed in a subset of CTL
directly using an SMT solver without iteration, abstraction,
or human intervention. We call this subset CTL-Live and it
consists of the operators of CTL expressible using the least
fixed point operator of the mu-calculus, which are commonly
considered liveness properties (e.g., AF, AU). We show
that using this method the verification of an infinite state
model can sometimes complete more quickly than verifying
a finite version of the model. We also examine modelling
techniques to represent abstract models in first-order logic
that facilitate this form of model checking.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Veri-
fication—Formal methods, Model checking ; F.3.1 [Logics
and Meanings of Programs]: Specifying and Verifying
and Reasoning about Programs—Mechanical verification;
F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—Temporal logic

General Terms
Verification

Keywords
CTL-Live, First-order logic, Infinite state model, Model check-
ing, SMT solver

1. INTRODUCTION
Abstraction is a key element to conquering complexity in

the development of software [21,24]. We need tools that sup-
port reasoning about abstract models of systems in order to
better understand our models and to detect errors earlier
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in the development process. Abstract models are often ex-
pressed using infinite or complex data structures. Temporal
logic model checking [14] of the dynamic behaviour of mod-
els with infinite state spaces without the use of abstraction
is usually considered beyond the realm of first-order logic
(FOL) reasoners because of the iterative nature of the fixed
point (or transitive closure) computation. However, with
the recent advances in SMT (satisfiability modulo theories)
solvers that have turned first-order reasoners into powerful,
efficient verification tools, it is worth taking another look
at the problem of how to express the temporal logic model
checking problem in FOL. Some results use an SMT solver it-
eratively to analyze invariants of infinite state systems (e.g.,
[9,10]). These methods are guaranteed to terminate without
approximation only if the property is not satisfied.

In recent work [30], we showed that the validity of proper-
ties within a subset of the temporal logic CTL (Computation
Tree Logic) can be expressed in FOL directly without the
use of iteration. We called this subset CTL-Live, and it con-
sists of operators that are commonly used to describe live-
ness properties, i.e., those expressible using the least-fixed
point operator of the mu-calculus (e.g., AF, AU). We also
showed that CTL-Live is maximal with respect to FOL in
the sense that CTL operators that are not within CTL-Live
(e.g., invariants) are not expressible in FOL [31].

Our FOL theory for CTL-Live creates the possibility of
the following practical use: model the system as a (poten-
tially infinite) Kripke structure in FOL, add automatically
generated constraints based on the CTL-Live property, and
give the problem to an SMT solver to solve by itself. If
the property is valid, theoretically with enough resources,
the SMT solver can complete the analysis because FOL is
recursively enumerable. This method is elegant in its sim-
plicity: no iteration or abstraction is required, and no user
intervention is needed to determine reachability constraints
(inductive invariants).

We evaluate the practical application of this theory through
a set of case studies. We address three open questions:

1. Will this method work in practice? In other words, are
state-of-the-art SMT solvers efficient enough to ana-
lyze properties of the dynamic behaviour of infinite
state systems?

2. How efficient is the model checking of an infinite state
model in comparison to the analysis of a finite version
of the same model?

3. Are there modelling techniques that facilitate the use
of SMT solvers for model checking?
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c : Integer

Initial condition:

c := 0;

P1: P2:

c := c + 2; c := c + 3;

Figure 1: A simple counter

c = 0initial

c = 2

c = 3

c = 4 ...

c = 5 ...

c = 6 ...

Figure 2: The Kripke structure represented by the
system in Figure 1

We have chosen a varied collection of four case studies drawn
from different sources. Each has an infinite state space
through the use of integers or more complex data types.
Our results show that our approach does work in practice
and can verify liveness properties of infinite state models
quickly using the SMT solvers Z3 [17] and CVC4 [5]. In fact,
for some of the case studies, we show that the verification
of the infinite state system completes more quickly than the
verification of the same problem with limited ranges in finite
solvers such as Alloy [20] and Cadence SMV [26]. Through-
out the paper, we consider questions regarding modelling
techniques to facilitate this form of dynamic analysis.

Finally, we address the verification of safety properties
(which are not part of CTL-Live). We show that the induc-
tive invariant approach to verifying invariants is not com-
plete for infinite state systems: an inductive invariant for a
safety property does not always exist.

We believe our results regarding the model checking of
infinite state systems automatically are an exciting step for-
ward in the quest to provide automatic reasoning tools for
abstract models of dynamic systems.

The rest of this paper is organized as follows: Section 2
provides the background material needed to understand our
results. Section 3 describes the process and the chain of tools
that we use to verify our case studies. The case studies are
presented in Section 4. Section 5 discusses modelling choices
that have an effect on the performance of the tools we use.
Section 6 presents our theoretical result on the method of
finding inductive invariants for model checking safety prop-
erties. Section 7 describes related work, and Section 8 con-
cludes the paper.

2. BACKGROUND
In this section, we briefly present the background concepts

needed to understand our results. A Kripke structure is a
basic way of modelling the dynamic behaviour of a system.
A Kripke structure K = 〈S,S0,N ,P〉 is a four tuple, where
S is a set of states, S0 is a non-empty subset of S called

the initial states, N is a total binary relation over S called
the transition relation, and P is a set of labelling predicates,
where each labelling predicate is a subset of S. A Kripke
structure is infinite if and only if its set of states is infi-
nite. Kripke structures are used to define the semantics of
temporal logics.

Computation tree logic (CTL) is a temporal logic that
allows us to describe properties over possible computation
paths of a system [15]. CTL contains all the logical connec-
tives of propositional logic and a set temporal connectives.
Each temporal connective consists of two parts, a path quan-
tifier and a state quantifier. The path quantifiers are A (for
all) and E (exists). The state quantifiers are X (next state),
F (eventually), G (globally), and U (strong until). The syn-
tax of CTL is defined for a given set of labelling predicates
P:

ϕ ::= P | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 where P ∈ P
::= EXϕ | AXϕ | EFϕ | AFϕ | EGϕ | AGϕ

::= ϕ1AUϕ2 | ϕ1EUϕ2 (1)

A Kripke structure defines a set of computation paths, where
each path represents a trace of execution. A computation
path starting at state s ∈ S is an infinite sequence of states,
s0 7→ s1 7→ . . . such that s = s0 and for every i ≥ 0,
N (si, si+1). The satisfiability relation for CTL, 
c, is used
to give meaning to CTL formulae. The notation K, s 
c ϕ
denotes that the state s of the Kripke structure K satisfies
the CTL formula ϕ and K, s 6
c ϕ is used when K, s 
c ϕ
does not hold. The satisfiability relation for CTL, 
c, is
defined by structural induction on ϕ:

K, s 
c P ⇐⇒ P (s) holds, where P ∈ P
K, s 
c ¬ϕ ⇐⇒ K, s 6
c ϕ
K, s 
c ϕ1 ∧ ϕ2 ⇐⇒ K, s 
c ϕ1 and K, s 
c ϕ2

K, s 
c EXϕ ⇐⇒ ∃s′ ∈ S : N (s, s′) ∧ K, s′ 
c ϕ
K, s 
c AFϕ ⇐⇒ for all paths s0 7→ s1 7→ . . .

such that s0 = s there exists an
i such that K, si 
c ϕ.

K, s 
c ϕ1EUϕ2 ⇐⇒ there exists a j and a path,
s0 7→ s1 7→ . . . , such that
s = s0, K, sj 
c ϕ2, and
for all i < j K, si 
c ϕ1.

The connectives above form a complete fragment of CTL,
e.g., EGϕ is equivalent to ¬AF¬ϕ. A Kripke structure K
satisfies the CTL formula ϕ, denoted by K 
c ϕ, iff for all
s ∈ S0 we have K, s 
c ϕ.

Example 1. Figure 1 represents a simple asynchronous
counter system. There are two processes in this system, P1
and P2. They both have access to a shared variable of type
integer, c. At each moment in time, one of the processes
changes the value of c: P1 increments c by 2 units and P2

by 3 units. In this asynchronous system, the order in which
the processes are executed is not known; as a result, when
c=100, in the next step c=102 or c=103 depending on which
process has been executed. The initial value of c in this
system is 0. We want to use CTL to study the behaviour
of this system. Figure 2 represents a part of the Kripke
structure of the counter system in Figure 1. The set of
states of this Kripke structure K is the set of all positive
integers, S = Integer. This Kripke structure has only one
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1) (declare-fun Init (Int) Bool)

2) (declare-fun Next (Int Int) Bool)

3) (define-fun P1 ((c Int) (cn Int)) Bool (= cn (+ c 2)))

4) (define-fun P2 ((c Int) (cn Int)) Bool (= cn (+ c 3)))

5) (assert (forall ((c Int)) (= (Init c) (= c 0))))

6) (assert (forall ((c Int) (cn Int)) (= (Next c cn) (or (P1 c cn) (P2 c cn)))))

Figure 3: SMT-LIB specification of the model in Figure 1

Table 1: Satisfiability Relations
Notation Description

K 
c ϕ Kripke structure K satisfies
CTL formula ϕ.

symbolic(K) |=c ϕ Symbolic Kripke structure
symbolic(K) satisfies CTL
formula ϕ.

Γ |= Φ FOL formula Φ is valid with re-
spect to the set Γ.

initial state, S0 = {0}, and the transition relation satisfies
the following property:

(c, c′) ∈ N iff c′ = c+ 2 ∨ c′ = c+ 3

This Kripke structure satisfies EF c=5, i.e., K 
c EF c=5,
since there exists a path from the initial state to a state
where c becomes 5; on the other hand K 6
c AF c=5, since
not all paths eventually make c equal to 5. If process P1 is
executed for the first 3 steps, c never becomes 5. Since each
process increases the value of c, we can see thatK 
c AF c>5

holds.

2.1 Kripke Structures in FOL and
SMT Solvers

First-order logic (FOL) provides quantifiers along with
propositional logic connectives to describe properties over
relational and functional symbols [19]. An interpretation de-
termines the content of each relational and functional sym-
bol. A problem in FOL consists of a set of formulae. Ev-
ery interpretation that satisfies all these formulae is called a
satisfying interpretation. Using the concept of satisfiability,
validity is defined as follows:

Definition 1. (Validity) Suppose Γ is a set of FOL for-
mulae and Φ is a FOL formula: Γ entails Φ, denoted by
Γ |= Φ, iff every interpretation that satisfies all the formu-
lae in Γ also satisfies Φ.

From this definition, we can prove that Γ |= Φ iff Γ
⋃
{¬Φ}

is unsatisfiable.
A satisfiability modulo theories (SMT) solver, for short

SMT solver, is an automatic tool to check the satisfiability
of a set of FOL formulae [3]. An SMT solver differs from
a general-purpose FOL satisfiability checker in one major
way: if a built-in type such as Integer is used in a formula,
the SMT solver considers only the “standard” interpretation
for that type and the defined operations over it. SMT-LIB
is a standard notation that state-of-the-art SMT solvers ac-
cept as input [4]. A specification of a problem in SMT-LIB
consists of four parts: 1) declaration of user-defined types,

2) declaration of functional symbols used in the model1, 3)
definitions that are used to simplify the model, and 4) a set
of constraints, where each constraint is a formula. SMT-LIB
does not distinguish between terms and formulae. A formula
is a term of type Bool. To ease the parsing of SMT-LIB spec-
ifications by SMT solvers, each SMT-LIB specification is a
sequence of S-expressions.

Example 2. Figure 3 presents a symbolic representation
of the Kripke structure of Figure 2 as an SMT-LIB specifica-
tion. This specification does not contain user-defined types.
Lines 1 and 2 declare that Init and Next are relational sym-
bols over Int and Int × Int respectively. To increase the
readability of this specification, we have defined P1 and P2

in Lines 3 and 4. A definition is essentially a macro. In
Lines 3-6, c represents the current state and cn the value of
c in the next state. Line 5 is a constraint stating that the
state c is an initial state iff it is equal to zero: (= c 0). The
constraint in Line 6 states that cn is the next value of c iff
either P1 holds between them or P2.

As this example suggests, to symbolically represent a Kripke
structure in FOL, we need at least two relational symbols:
Init representing the set of initial states and Next repre-
senting the transition relation. The types of Init and Next

are S -> Bool and S×S -> Bool respectively. In these dec-
larations, S depends on the types of the variables used in
the specification.

The symbolic representation of a Kripke structureK, which
we denote by symbolic(K), is a set of FOL formulae that de-
fines K. The formula in Line 6 of Figure 3 in infix form using
the classical symbols for FOL connectives is the following:

∀c,cn:Int. Next(c,cn) ⇔ P1(c,cn) ∨ P2(c,cn)

In this case, the transition relation is uniquely defined. How-
ever, in general, a symbolic Kripke structure can represent
a set of Kripke structures, rather than a single one. Under-
specification of the transition relation and the use of user-
defined types and operations that are not fully interpreted
are the main reasons that a symbolic Kripke structure can
represent multiple Kripke structures. In all our case studies,
we uniquely defined the transition relation.

We define symbolic(K) |=c ϕ to mean that every satisfying
interpretation K of symbolic(K) satisfies the CTL formula
ϕ:

symbolic(K) |=c ϕ
iff

every K that satisfies symbolic(K) also K 
c ϕ

If symbolic(K) has only one satisfying interpretation up to
isomorphism, namely K, then symbolic(K) |=c ϕ is equiva-
lent to K 
c ϕ. Table 1 is a summary of the satisfiability
notations used in this paper.
1A relational symbol is a functional symbol of type Bool.
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CTLL2FOL(ϕ):
case ϕ of

1) P -> {} where P is a labelling predicate
2) ¬ψ -> { ∀s : dϕe(s)↔ ¬dψe(s) }

⋃
CTLL2FOL(ψ)

3) ψ1 ∨ ψ2 -> { ∀s : dϕe(s)↔ dψ1e(s) ∨ dψ2e(s) }
⋃

CTLL2FOL(ψ1)
⋃

CTLL2FOL(ψ2)
4) ψ1 ∧ ψ2 -> { ∀s : dϕe(s)↔ dψ1e(s) ∧ dψ2e(s) }

⋃
CTLL2FOL(ψ1)

⋃
CTLL2FOL(ψ2)

5) EXψ -> { ∀s :
(
∃s′ : N(s, s′) ∧ dψe(s′)

)
→ dϕe(s) }

⋃
CTLL2FOL(ψ)

6) AXψ -> { ∀s :
(
∀s′ : N(s, s′)→ dψe(s′)

)
→ dϕe(s) }

⋃
CTLL2FOL(ψ)

7) EFψ -> { dψe ⊆ dϕe , ∀s :
(
∃s′ : N(s, s′) ∧ dϕe(s′)

)
→ dϕe(s) }

⋃
CTLL2FOL(ψ)

8) AFψ -> { dψe ⊆ dϕe , ∀s :
(
∀s′ : N(s, s′)→ dϕe(s′)

)
→ dϕe(s) }

⋃
CTLL2FOL(ψ)

9) ψ1EUψ2 -> { dψ2e ⊆ dϕe , ∀s : dψ1e(s) ∧
(
∃s′ : N(s, s′) ∧ dϕe(s′)

)
→ dϕe(s) }

⋃
CTLL2FOL(ψ1)

⋃
CTLL2FOL(ψ2)

10) ψ1AUψ2 -> { dψ2e ⊆ dϕe , ∀s : dψ1e(s) ∧
(
∀s′ : N(s, s′)→ dϕe(s′)

)
→ dϕe(s) }

⋃
CTLL2FOL(ψ1)

⋃
CTLL2FOL(ψ2)

Figure 4: The definition of CTLL2FOL (from [30]). ϕ is a CTL-Live formula.

Temporal part
ϕ ::= π | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2

::= EXϕ | AXϕ | EFϕ | AFϕ
::= ϕ1EUϕ2 | ϕ1AUϕ2

Propositional part
π ::= P | ¬π | π1 ∨ π2

where P is a labelling predicate.

Figure 5: CTL-Live

2.2 CTL-Live Verification as a FOL Theory
In recent work [30,31], we presented a subset of CTL that

we called CTL-Live and described how to represent the ver-
ification of a CTL-Live property as a validity problem in
FOL. CTL-Live is presented in Figure 5. The grammar of
CTL-Live does not allow a temporal connective to be within
the scope of negation, e.g., the formula AF¬ϕ is part of
CTL-Live, but ¬AFϕ is not.

CTL-Live includes the CTL connectives whose semantics
in the mu-calculus are defined using the least fixed-point
operator. The intuition behind reducing CTL-Live model
checking to FOL validity checking is that model checking is
about verifying whether the set of initial states is included
in the set of states that satisfies a property. If the CTL
property under study is expressible as the smallest set that
satisfies some FOL formulae, then checking whether the set
of initial states is a subset of the smallest one is equivalent
to checking whether the set of initial states is a subset of all
of them:

S0 ⊆
⋂

X∈Θ

X iff S0 ⊆ X for everyX ∈ Θ

In this equation, Θ contains all the sets that satisfy some
property and

⋂
X∈Θ

X is the smallest one. This property has

a higher-order quantifier over sets, which is not available in
FOL, but it is implicitly available in the quantification over
interpretations in the definition of validity in FOL (Defini-
tion 1).

To model check a symbolic Kripke structure symbolic(K),
and a CTL-Live formula ϕ, we use a function called CTLL2FOL,
shown in Figure 4. The function CTLL2FOL recurses over the
structure of ϕ and generates a set of FOL formulae. In Fig-

SMT-LIB spec

CVC4 Z3

Avestan

Avestan Model CTL-Live Formula

Figure 6: Overview of our method

ure 4, dϕe is a new relational symbol that is introduced by
CTLL2FOL for the formula ϕ; for a labelling predicate P , dP e
is equal to P . The complexity of CTLL2FOL is linear with
respect to the size of ϕ.

The following theorem allows us to reduce CTL-Live model
checking to validity checking in FOL:

Theorem 1. (Model checking CTL-Live) Let
symbolic(K) be a set of FOL formulae that specifies a Kripke
structure(s), we have:

symbolic(K) |=c ϕ ⇐⇒

symbolic(K)
⋃

CTLL2FOL(ϕ) |= S0 ⊆ dϕe

where dϕe is a relational symbol generated by CTLL2FOL and
S0 is a predicate describing the initial set of states [30].

3. METHOD
Our theoretical result regarding the ability to express the

verification of CTL-Live properties in FOL makes it possible
to turn a CTL-Live verification problem into a problem that
can be directly solved by an SMT solver without iteration or
human intervention. The approach that we use to implement
our method is described in Figure 6.

A model is created in FOL using a tool that we call Aves-
tan. Our current version of Avestan is a complete reengi-
neering of our earlier tool [29] (also called Avestan), which
was a language and tool to support the creation of models in
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1) (declare-fun af (Int) Bool)

2) (assert (forall ((c Int)) (=> (> c 5) (af c))))

3) (assert (forall ((c Int)) (=> (forall ((cn Int)) (=> (Next c cn) (af cn))) (af c))))

4) (assert (not (forall ((c Int)) (=> (Init c) (af c)))))

Figure 7: Declarations and formulae that are added to Figure 3 to model check AF c>5

SMT-LIB. It was strongly based on Alloy [20], but the tool
translated the model into an SMT-LIB specification. Our
new tool is implemented in Python3 [1] and uses Python as
both the object and meta-language for expressing models in
FOL. It produces specifications in SMT-LIB for analysis by
an SMT solver.

We implemented the function CTLL2FOL of Figure 4 in
Avestan to create the constraints needed for the verification
of a CTL-Live property. Using Avestan, we transform a
model plus these constraints into an SMT-LIB specification
and check the validity problem as a satisfiability problem
using both CVC4 (version 1.3) and Z3 (version 4.3.1). The
following is an example that illustrates the method of ap-
plying the result of Theorem 1 to verify a declarative model
using an SMT solver.

Example 3. Suppose we want to prove that in the Kripke
structure of Figure 2, c eventually becomes larger than 5,
by using an SMT solver. We need to prove that this Kripke
structure satisfies AF c>5. AF is part of CTL-Live, there-
fore, we can use the result of Theorem 1. According to this
theorem, we need to compute CTLL2FOL(AF c>5). Follow-
ing the definition of CTLL2FOL at Line 8, CTLL2FOL(AF c>5)

is a set with two constraints:

1. ∀s : dψe(s)⇒ dϕe(s)

2. ∀s :
(
∀s′ : N(s, s′)⇒ dϕe(s′)

)
⇒ dϕe(s)

where dψe is c>5, N is Next (of Figure 3), and dϕe is a new
relational symbol af of type Int ->Bool. Since the state of
the system is represented by an integer, the quantification
over states becomes quantification over integers. Written in
terms of the model and property, these constraints are:

1. ∀c:Int. c>5 ⇒ af(c)

2. ∀c:Int.
(
∀cn. Next(c, cn) ⇒ af(cn)

)
⇒ af(c)

Now, we need to check whether
symbolic(K)

⋃
CTLL2FOL(AF c>5) entails the following:

∀c:Int. Init(c) ⇒ af(c) (2)

We know that Γ entails Φ iff Γ
⋃
{¬Φ} is unsatisfiable; there-

fore, we add the negation of the formula in Equation 2 to
symbolic(K)

⋃
CTLL2FOL(AF c>5) and run the SMT solver

to check for the satisfiability: if it is unsatisfiable, then we
can conclude that AF c>5 holds. Figure 7 presents the
declaration of af (Line 1), along with the three formulae
(Lines 2-4) in SMT-LIB notation that need to be added to
Figure 3 to model check AF c>5. The output of Z3 on
this model is unsat, which tells us that the original model
satisfies AF c>5.

4. CASE STUDIES
In this section, we present four case studies that test

whether it is possible to use our theory and method to verify

dynamic properties in CTL-Live of abstract models using an
off-the-shelf SMT solver. Our models were chosen from a va-
riety of sources and domains. As we present each case study,
we discuss how it is modelled in FOL and, when possible,
we compare to how it was modelled and verified previously.

All our experiments were run on an Intel R©CoreTMi7-3667U
machine running Ubuntu 12.04 64-bit with up to 7.5GB of
user memory. To analyze the case studies, we used the
solvers in their default mode, without any flags or a cus-
tomized configuration. The SMT-LIB specifications of the
case studies and other models developed for this paper are
available on-line2.

4.1 Case Study 1: Leader Election Protocol
The leader election model is a protocol to “elect” a process

as the leader among a finite set of processes that form a
ring [11]. A finite instance of it was previously verified by
Jackson using the Alloy Analyzer [21]. In the leader election
model, each process in the ring can only communicate with
its successor and predecessor, and there is no centralized
controller. Each process has a unique identifier (ID) and a
value to represent who this process thinks is the leader of
the ring (my_lead). The goal of the protocol is that every
process (including the leader) will eventually recognize that
the process with the greatest ID is the leader. We modelled a
synchronous version of this protocol: at each moment, every
process passes to its predecessor its value for my_lead and
receives from its successor the successor’s value for my_lead.
If the received value is greater than the process’ current
value of my_lead, the process updates its value with the
received one, otherwise, it is left unchanged. In the initial
state, the value passed by a process is its own ID.

We used unbounded integers to model IDs and time. For
each process, we declared a functional symbol my_lead of
type Int -> Int. We have a fixed number of processes. The
ring topology is enforced by an ordering on the processes,
where the successor of the last process is the 0th process and
for any other processes such as i, the successor is i+ 1.

The properties we verified are that every process will even-
tually recognize the leader:

AF (my_lead_i = lead_id)

where lead_id is the largest ID among the current processes,
my_lead_i the value of my_lead for the ith process. Thus,
for i processes, we have i properties, which we conjuncted
together and checked. In this model, the set Int, which is
used to represent time, is also the state space of this system.
The following table shows the performance of Z3 for different
numbers of processes:

12 14 16 18 20
8.48s 44.38s 3m24.64s 50m44.09s 2h37m11.69s

2https://cs.uwaterloo.ca/~nday/models/fse14/
vakili-day-fse14-models.zip
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Figure 8: Leader election model: Z3 vs Alloy

CVC4 with even 2 processes could not finish the verification.
When we modelled this problem with an unbounded num-

ber of processes, the verification in either SMT solver does
not complete. Verification for an unbounded number of pro-
cesses would likely require user intervention to deduce an
invariant that would help the SMT solver verify the prob-
lem.

We also modelled this synchronous version of the algo-
rithm in Alloy [21]. To verify the liveness properties using
Alloy, we needed to finitize all sets, including time. We
set the bounds on time and IDs to be the number of pro-
cesses. Figure 8, which is in logarithmic scale to increase the
readability of the plot, compares the performance of Z3 on
models where there are no bounds on time and IDs to the
performance of the Alloy Analyzer (version 4.2 using min-
isat) where time and IDs are bounded. In the Alloy models,
the properties were conjuncted together and verified (as in
Z3). As this figure shows, our approach to the verification
of this protocol with an infinite state space is much faster
than Alloy where every set needs to be finitized.

While our verification does require a bound on the number
of processes, it is significant that it does not require a bound
on time. When we finitize time (as in the Alloy model), we
are doing bounded model checking (BMC) [7]. When using
BMC to verify a liveness property, spurious counterexam-
ples can result because the bound is insufficient to conclude
liveness. In general, computing a sufficient bound to get a
reliable result is hard, and in some infinite cases it is impos-
sible. In our SMT-LIB models, we use unbounded integers
to represent time. Since SMT solvers check satisfiability
with respect to standard interpretations and this interpre-
tation for integers guaranties that Int has an infinite set
of elements, our technique does not produce spurious coun-
terexamples.

4.2 Case Study 2: Bakery Algorithm
The bakery algorithm ensures mutual exclusion between

two processes that run concurrently and asynchronously [9].
Bultan, Gerber, and Pugh verified that in this algorithm the
two processes cannot get into their critical sections at the

same time [9]. Their method is an iterative approach that
uses a Presburger arithmetic solver.

In the bakery algorithm model, the state of a process is
determined by its control state value and a ticket. The value
of a control state is either Thinking, Waiting, or Critical. A
ticket is a non-negative unbounded integer. Since we have
two processes, the state space of this system, S, is the fol-
lowing:

S = {T, W, C} × Int × {T, W, C} × Int

We modelled the set {T, W, C} as an uninterpreted type,
named ControlState, where T, W, and C are three distinct
constants of type ControlState. The following is a fragment
of the SMT-LIB specification that models ControlState en-
suring that each value is distinct:

1) (declare-sort ControlState 0)

2) (declare-fun T () ControlState)

3) (declare-fun W () ControlState)

4) (declare-fun C () ControlState)

5) (assert (not (= T W)))

6) (assert (not (= T C)))

7) (assert (not (= W C)))

Besides comparing the value of the tickets, this algorithm
also manipulates the value of tickets using the addition op-
eration on integers; as a result, an uninterpreted type with a
total ordering would not be sufficient to express this model.
Each transition in our model is defined as a functional sym-
bol of type S×S -> Bool. By combining these transitions,
we modelled the transition relation.

For this case study, we verified that any process, e.g., pro-
cess 1, that is waiting to get into its critical section, will
eventually succeed:

AG
(
c1 = W ⇒ AF c1 = C

)
(3)

This is an invariant property, therefore to verify this prop-
erty, we needed to show that every reachable state satisfies
c1 = W ⇒ AF c1 = C. AG is not part of CTL-Live, there-
fore we cannot ask the SMT solver to prove this property
directly. Instead, we created a more general property that
implies the formula of Equation 3: we proved that the set of
all states, which includes the reachable states, satisfies the
following property:

c1 = W ⇒ AF (c1 = C ∨ dead_end)

where dead_end is true of a state iff that state does not have
any next state. This model has a non-total transition rela-
tion, however, according to the semantics of CTL, correct
paths of the model must be infinite and only those must be
considered. Rather than making the transition relation to-
tal, we introduced the idea of a “dead-end” state, which is
one from which there are no next states and thus it satisfies
a CTL formula that has a universal path quantifier.

We stated this property by making the set of initial states
be the set of all states. This revised property is part of CTL-
Live. Z3 verified this property in 0.08 seconds and CVC4 in
8.64 seconds.

Another algorithm studied by Bultan, Gerber, and Pugh
is the ticket mutual exclusion algorithm [2, 9]. We tried to
verify an invariant property similar to Equation 3 for this
model using a similar technique to the Bakery algorithm;
however, neither SMT solver terminates within a threshold
of 3 hours. It is likely that this property of this model is only
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Figure 9: Collision Avoidance model in Cadence
SMV (UB: UnBounded)

satisfied within the reachable set of states and therefore it
does not hold for the entire set of states.

4.3 Case Study 3: Collision Avoidance State-
Flow Model

Our third case study is a Stateflow model of a collision
avoidance feature used in a modern vehicle [18, 22]. It was
previously used with other feature models to check for fea-
ture interactions using Cadence SMV.

This case study has control state complexity in a hierar-
chical, non-concurrent state-transition model with 9 basic
states. However, there are two variables manipulated by the
transitions of the model: speed and threshold, which deter-
mine when collision avoidance needs to be engaged. These
variables are used in the triggers of transitions and thus,
affect the control logic of the system and therefore are not
removed by standard cone of influence reductions. In our
model, the speed of a vehicle is modelled as an unbounded
integer, and threshold is a constant positive integer. We
verified that every basic state is reachable without a bound
on speed and threshold. This property is a conjunction of 9
EF formulae. Z3 verifies all these properties together in 0.58
seconds. CVC4 terminates in 0.89 seconds having UNKNOWN

as output. The UNKNOWN means the solver cannot verify nor
refute the property.

Because we had access to the original models, we can com-
pare our results to using Cadence SMV to analyze the State-
flow models for different finite bounds on speed and thresh-
old. Figure 9 presents these results. As this figure shows,
the performance of Cadence SMV degrades as the size of
speed and threshold is increased.

4.4 Case Study 4: File System
Our last case study is a file system that was originally

modelled in Z [32]. Woodcock and Davies use natural de-
duction to prove properties manually about this model.

The state of the file system is represented as a partial
function from Keys to Data named content. There are three
operations that change the state of the file system: adding
a new entry, deleting an existing entry and writing a new
data to an existing key.

The major difference between the file system model and
our other case studies is in its state space: each state is
a function whereas in the other case studies, a state is a
tuple that includes an infinite element. Since quantification
over functions is not allowed in FOL, we cannot directly use
our technique to model check a CTL-Live property of this
model.

Borrowing a technique used in Alloy models [21], in our
model, we explicitly introduced the state space as a new
uninterpreted set State and declared content as follows:

content: State × Key -> Data

where content(s, k) = d is interpreted as the content of
the file system at state s for the key k is d. To model the
fact that content is a partial function from Key to Data,
we declare a constant NULL of type Data: the value of con-

tent(s, k) being equal to NULL means that the content of
the file system at state s for the key k is empty. In Alloy,
this technique manifests itself in the use of a “State” object
to encapsulate the elements of the state.

The disadvantage of explicitly introducing the set State

is that it is uninterpreted, and it may result in spurious
counterexamples. For example, the following property is
not entailed by this model:

content(s, k) 6= NULL ⇒ ∃s′ : delete(k, s, s′)
(4)

This property states that if at state s the content of key k

is not empty, then we can delete k from it and go to some
state s′. The spurious counterexample for this property is a
single state with a non-empty content. We need to ensure
that interpretations that do not include enough states are
eliminated from the analysis. To eliminate these spurious
counterexamples, we need to “interpret” State by adding
some axioms to the model. These axioms are called gener-
ator axioms [21]. For our file system model where only a
performed operation can change the state, a set of standard
generator axioms exist: for every operation we needed to
add a formula stating that if an operation OP is applicable
on a state s1, then there exists another state such as s2

that is the result of performing OP on s1; in other words,
we needed to state that all the operations are total. For
example the generator axiom for delete is same as the for-
mula in Equation 4 except s and k are bounded by universal
quantifiers.

We verified a bisimilarity property that the operation
write can be simulated by some combination of add and
delete for all possible states of the file system. For this
purpose, we created two models with the same state space:
one that includes all operations (model #1) and one that
includes only add and delete (model #2). We assume that
some state s2 is the result of writing something to the file
system at some state s1; then, we check in model #2 that
s2 is reachable from s1:(

write(k, d, s1, s2) ∧ s = s1
)
⇒ EFs = s2

Z3 verified this property in 0.15 seconds and CVC4 in 0.69
seconds.

4.5 Conclusions
Our case studies show that our method is practical for a

variety of different examples. In all our models, we were
able to leave some element of the model state unbounded
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Table 2: Run time of Z3 and CVC4 for each case
study in seconds (DNV: Did Not Verify)

Case study Z3 CVC4

Leader election, 12 processes 8.48 DNV
Leader election, 14 processes 44.38 DNV
Leader election, 16 processes 204.64 DNV
Leader election, 18 processes 3044.09 DNV
Leader election, 20 processes 9431.69 DNV
Bakery algorithm 0.08 8.64
Collision avoidance 0.58 DNV
File system 0.15 0.69
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Figure 10: Z3 on different models for the leader elec-
tion problem

and complete verification of a property in CTL-Live. We
used unbounded integers, user-declared sorts, and a partial
function as part of the state. Table 2 summarizes the run
times of Z3 and CVC4 for all the case studies. Z3 clearly
performs better than CVC4 for the data types used in our
case studies.

5. MODELLING OPTIMIZATIONS
In this section, we provide some insights about factors

that can be used by a modeller to develop models that are
more efficient to analyze in SMT solvers.

First, we consider the trade-off in the number of vari-
ables and the number of constraints. For the leader election
case study, we have two choices for expressing the ID of the
leader:

1. declare a new constant and assert that this constant is
equal to the ID of some process and that it is greater
or equal to all the IDs; or

2. use the if-then-else construct in SMT-LIB and compare
all the IDs with each other to determine the largest.

The first approach adds 2×n constraints and a new variable,
where n is the number of processes. The second approach

does not introduce any new constraints or variables, but
the term that represents the greatest ID is complex. Plot
ITE of Figure 10 shows the sum of the times for verifying
n properties using the ITE modelling approach, where n is
the number of processes. Plot 1-1 shows the same problem
using the first modelling approach. Clearly, the approach
of creating a single more complicated constraint performed
less efficiently that having a number of simple constraints
with more variables in this case.

In addition, we can compare verifying n properties to-
gether (as a conjunction of constraints) to verifying each
property individually. Plot ALL of Figure 10 is the result of
verifying the conjunction of the properties. For larger num-
bers, ALL performs more poorly than plot 1-1, which is the
sum of the times to verify each property individually3. This
result again supports the hypothesis that simple constraints
are better for SMT solvers than complex ones.

Next, we consider the effect of the use of quantifiers in
these problems. Since we use integers to model time in the
leader election case study, rather than using our CTL-Live
CTLL2FOL, the eventuality property can be expressed using
an existential quantifier as in:

∃t:Int. t > 0 ∧ my_lead_i(t) = leader_id

Since Alloy’s input language is as expressive as FOL, we
can use our CTLL2FOL function to model check a CTL-Live
property using the Alloy Analyzer. We set the size of all the
sets in the Alloy model equal to the number of processes.
Figure 11 presents the result of trying these two approaches
both for Alloy and Z3. As this figure shows, the Alloy An-
alyzer is on average 1.27X faster when using the quantifier
method to express the properties compared to our CTL-Live
theory in Alloy. On the other hand, Z3 on the SMT-LIB
models that used our CTL-Live theory was on average 1.98X
faster than using the quantifier method on the model. Our
conclusion from this observation is that the modelling meth-
ods also depend on the analysis tool that is used. However,
Z3 using the CTL-Live theory with unbounded integers was
the most efficient method.

6. INDUCTIVE INVARIANTS
The verification of invariants is often of interest for safety

properties of models. A property P is an invariant iff it
holds in every reachable state of a Kripke structure. Ac-
cording to the semantics of CTL, P being an invariant of a
Kripke structure K is equivalent to K satisfying AG P . AG
is not part of CTL-Live and previously we proved that its
model checking is not reducible to FOL entailment checking:

Theorem 2. (Maximality of CTL-Live) CTL-Live is
the largest fragment of CTL that its model checking is re-
ducible to entailment checking in FOL; in other words, the
temporal part of CTL-Live cannot be extended with EG,
AG, or ¬ for model checking a symbolic Kripke structure
in
FOL [31].

In our proof of this theorem, we showed that the complement
of the halting problem on an empty tape for a determinis-
tic Turing machine (DTM) is reducible to universal model
3Since the Alloy models were analyzed using the ALL ap-
proach, in Section 4.1, we have reported the results of the
ALL approach using Z3 even though the 1-1 approach per-
forms better.

220



7 8 9 10

0

20

40

60

80

Number of Processes

T
im

e
(i

n
se

co
n
d
s)

Alloy

Quantifier method

CTL-Live theory

10 11 12 13 14

0

2

4

6

8

Number of Processes

T
im

e
(i

n
se

co
n
d
s)

Z3

Quantifier method

CTL-Live theory

Figure 11: Alloy and Z3 with different approaches for the leader election case study

checking of EG (AG). The complement of the halting prob-
lem is not recursively enumerable, and as a result, it cannot
be reduced to entailment checking in FOL, which is a re-
cursively enumerable problem. We also know that EGϕ is
equivalent to ¬(AF¬ϕ). Since AF is included in CTL-Live,
¬ cannot be added as well. Therefore, the verification of
an invariant cannot be done by an SMT solver directly and
alternative techniques are needed. A common approach to
this problem is to find an inductive invariant. A property
P is an inductive invariant for a Kripke structure K iff it
satisfies the following two constraints:

1. ∀s : S0(s)⇒ P (s)

2. ∀s, s′ : P (s) ∧N(s, s′)⇒ P (s′)

The first constraint states that every initial state satisfies P ,
and the second one states that if the state s satisfies P and s′

is reachable from s in one step, then s′ satisfies P . It is easy
to see that every inductive invariant is also an invariant of
a Kripke structure, but every invariant is not necessarily an
inductive invariant. Checking if a property is an inductive
invariant is computationally easier than checking if it is an
invariant.

According to Theorem 2, model checking AG is not re-
cursively enumerable, whereas, inductive invariant checking
is. Motivated by this fact, the inductive invariant method to
check if a property P is an invariant has gained popularity
for both finite and infinite Kripke structures. Many results
have found inductive invariants by hand. The method of
IC3 [8] is a way to find automatically inductive invariants
for finite systems, and this approach has been generalized in
nuXmv [10] in an incomplete approach to finding automat-
ically inductive invariants for infinite state systems.

Generally speaking, the goal is to find an inductive invari-
ant that is strong enough to prove the original invariant of
interest. This method is essentially as follows: to prove that
P is an invariant, first check if it is an inductive invariant;
if it is not, then try to compute or guess an R so that P ∧R
is an inductive invariant, and therefore, P is proved to be

an invariant. The formula R tries to eliminate unreachable
states that do not allow P to be an inductive invariant.

A important question is “does an R always exist when P
is an invariant?” For finite Kripke structures, the answer is
“yes” since the number of states is finite, R can enumerate
all reachable states. However, for infinite state systems, we
can now show that R is not guaranteed to exist.

Theorem 3. (Incompleteness of inductive invariant
method) There exists a Kripke structure K and a property
P such that P is an invariant of K and there is no formula
R such that P ∧R is an inductive invariant for K.

Proof. We have shown that proving a DTM does not
halt on an empty tape is reducible to proving that a formula
named ¬halt is an invariant [31]. If an R exists then we
can enumerate all R’s and check if ¬halt∧R is an inductive
invariant in parallel; therefore, a semi-decision procedure for
the complement of the halting problem exists and it is recur-
sively enumerable. This is a contradiction, and as a result,
such an R does not always exist.

7. RELATED WORK
SAT and SMT solvers have been used for bounded model

checking [7, 27]. These methods use a reasoner directly for
model checking by expanding the transition relation for a
finite number of steps.

K-induction is a technique for unbounded model checking
of safety properties [28]. This technique extends bounded
model checking by proving that bounded model checking for
the bound K is sufficient. The number K is dominated by the
diameter of a Kripke structure. The diameter is computed
iteratively using a SAT solver to check the equivalence of
two formulae: the equivalence holds iff no new state can be
reached by taking more than K steps. In [28], termination
is guarantied due to the finiteness of the Kripke structures
under study.

Bultan, Gerber, and Pugh use Presburger formulae to rep-
resent infinite sets of states symbolically [9]. Their model
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checking approach for invariants requires a fix-point calcu-
lation, and termination is achieved by using conservative
approximation. This approach allows false negatives.

Recently, IC3 has been generalized using SMT solvers to
verify safety properties of infinite systems iteratively [12,13].
These approaches also incorporate abstraction techniques to
gain better performance.

Based on the deductive system of Kesten and Pnueli [23],
Beyene, Popeea, and Rybalchenko encoded CTL model
checking of infinite state systems into forall-exists quantified
Horn clauses [6]. The contribution of [6] is to develop a solver
for forall-exists quantified Horn clauses and demonstrate its
use for model checking CTL properties. Their method re-
quires the models and the model checking constraints to be
expressed in forall-exists quantified Horn clauses and to sat-
isfy some well-foundedness conditions, whereas our results
hold for any set of FOL constraints, which may describe
multiple Kripke structures. Termination of their method is
not guaranteed.

In comparison to these approaches, our approach does not
require using an SMT solver iteratively, but it is only appli-
cable to a subset of CTL. Also, our approach is theoretically
guaranteed to terminate when the property is valid, whereas
the other approaches terminate when the property is not
satisfied.

Compositional model checking [25] and abstraction [16]
are techniques that can be applied to model check an infi-
nite state system. Our approach could be used along with
these techniques to verify safety and liveness properties of
an infinite system.

8. CONCLUSION
In this paper, we have shown that it is practical to use

SMT solvers, in particular Z3, to verify CTL-Live proper-
ties of infinite state models without the need for iteration,
abstraction, or human intervention. The system is modelled
as a (potentially infinite) Kripke structure in FOL, a theory
of FOL constraints is automatically generated based on the
property, and the problem is given to an SMT solver to solve
by itself. The decidability of analysis is based on the subset
of FOL used to express the model. Because FOL is recur-
sively enumerable, with enough resources, the analysis will
terminate if the property is valid. We have also shown that
the analysis of infinite state systems using an SMT solver
can be more efficient than the analysis of a finite version
of the model. SMT solvers use deductive analysis (rather
than just state space search) and therefore can take advan-
tage of structures found in abstract models. We discussed
modelling techniques that facilitate efficient model checking
using SMT solvers. Finally, we proved that inductive invari-
ants do not always exist for safety properties of infinite state
systems.

In the future, we plan to investigate the scalability of our
approach for larger models. However, even though the tex-
tual size of our case studies are all fairly small, the modelling
efficiencies gained by representing systems abstractly offset
somewhat concerns with respect to scalability. We are also
exploring less primitive ways to write FOL models, the anal-
ysis of models with richer data types and quantifiers, and
ways to more easily understand counterexamples produced
by SMT solvers for temporal logic properties.
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