
Reproducing Concurrency Failures from Crash Stacks
Francesco A. Bianchi

USI Università della Svizzera italiana,
Switzerland

francesco.bianchi@usi.ch

Mauro Pezzè
USI Università della Svizzera italiana,

Switzerland
University of Milano-Bicocca, Italy

mauro.pezze@usi.ch

Valerio Terragni
USI Università della Svizzera italiana,

Switzerland
valerio.terragni@usi.ch

ABSTRACT

Reproducing field failures is the first essential step for under-
standing, localizing and removing faults. Reproducing concurrency
field failures is hard due to the need of synthesizing a test code
jointly with a thread interleaving that induce the failure in the
presence of limited information from the field. Current techniques
for reproducing concurrency failures focus on identifying failure-
inducing interleavings, leaving largely open the problem of synthe-
sizing the test code that manifests such interleavings.

In this paper, we present ConCrash, a technique to automati-
cally generate test codes that reproduce concurrency failures that
violate thread-safety from crash stacks, which commonly summa-
rize the conditions of field failures. ConCrash efficiently explores
the huge space of possible test codes to identify a failure-inducing
one by using a suitable set of search pruning strategies. Combined
with existing techniques for exploring interleavings, ConCrash
automatically reproduces a given concurrency failure that violates
the thread-safety of a class by identifying both a failure-inducing
test code and corresponding interleaving. In the paper, we define
the ConCrash approach, present a prototype implementation of
ConCrash, and discuss the experimental results that we obtained
on a known set of ten field failures that witness the effectiveness
of the approach.
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1 INTRODUCTION

Concurrent systems are increasingly popular due to the spread
of multi-core architectures. These systems are prone to concurrency
faults, which are extremely hard to avoid due to the complexity
of the thread synchronization and the huge size of the interleav-
ing space. Concurrency faults often remain undetected during the
testing process, and manifest in production runs, leading to failure
that are difficult to reproduce because they often occur only in the
presence of specific thread interleavings [37]. Reproducing failures
is the first essential step towards understanding, localizing and
removing the related faults [4]. Reproducing concurrency failures
from field reports is a non trivial task, since it requires identifying
both a test code and thread interleaving of the test code that induce
the failure from the limited information available in the reports,
where a test code is a runnable piece of code that exercises the
system under test, and an interleaving is a temporal order of a set
of shared memory accesses.

The main techniques to reproduce concurrency failures rely on
information collected at runtime either continuously (Record-and-
replay approaches [1, 21, 23, 29]) or only at the time of the failures
(Post-processing approaches [52, 57]). Both classes of approaches
require information that may be expensive and hard to obtain in
many practical situations, and identify the failure-inducing inter-
leaving but not the failure-inducing test code. Record-and-replay
techniques instrument the program for recording executions, with
a runtime overhead ranging from 10% up to 4,000% in some worst
cases [23], which may be acceptable in testing but not in produc-
tion environments [54]. Post-processing techniques rely onmemory
core-dumps that provide full information of the program state at
the time of the failure [52, 57]. Memory core-dumps are expensive
to collect and not available on all platforms [6]. Moreover, both the
recorded executions and memory core-dumps often contain sen-
sitive information, which introduces privacy concerns [53]. Both
Record-and-replay and Post-processing techniques produce failure-
inducing conditions on the program input and the state [52, 57],
the failure-inducing interleaving [1, 21, 23, 29] or both, but do not
synthesize a fully executable failure-inducing test code, as the one
presented in Figure 3 that we discuss in the next section.

In this paper, we present ConCrash (CONcurrency CRASHes

reproduction), the first automated technique that synthesizes both
failure-inducing test codes and related interleavings with neither
overhead nor privacy issues. ConCrash targets concurrency fail-
ures that violate the thread-safety of a class. Thread-safe classes
encapsulate efficient synchronization mechanisms that guarantee
a correct behavior of the class when invoked concurrently from
multiple threads, and are largely adopted in modern concurrent
systems as they avoid the difficulty of writing such synchronization
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992: void info(String s) {
993:   . . .
996:   log(Level.INFO, msg);
997: }

476: void log(Level l, String s) {
477:   . . .
480:   LogRecord r =
481:     new LogRecord(l, s);
482:   doLog(r);
483: }

451: void doLog(LogRecord r) {
452:   . . .  
458:   log(r);
453: }

414: void log(LogRecord r) {
413:   . . .
418:   synchronized(this) {!
419:     if(filter != null) {
420:     // Filter can be set to null
421:       if(!filter.isLoggable(r)) {
422:          return;
423:       }
424:     }
425:   }
426: }

386: void setFilter(Filter f) {
387:   . . .
391:   this.filter = f;
392: }

Figure 1: Faulty class java.util.logging.Logger of JDK 1.4.1

1 java.lang.NullPointerException
2 at java.util.logging.Logger.log(Logger.java:421) POF
3 at java.util.logging.Logger.doLog(Logger.java:458)
4 at java.util.logging.Logger.log(Logger.java:482)
5 at java.util.logging.Logger.info(Logger.java:996) Crashing Method
6 at test.TestCode$1.runTest(TestCode.java:10)
7 at java.lang.Thread.run(Thread.java:662)

Figure 2: Crash stack of class Logger (Bug ID 4779253)

mechanisms [19]. ConCrash requires in input only the class that
violates thread-safety and the standard crash stack of the failure.
Differently from execution traces and memory core-dumps that are
expensive to produce and hard to obtain, crash stacks are easily ob-
tainable and do not suffer from performance and privacy issues [53].
Recent studies show that 56-70% of concurrency failures lead to
crashes or hangs that usually generate a crash stack [27, 46].

Crash stacks contain only partial information about the state of
the system, thus challenging the reproduction of concurrency fail-
ures [55]. In particular, crash stacks provide only information about
the failing thread and give little data about the state of the objects
and the values of the input parameters of the methods involved in
the failure. To identify a failing execution that reproduces a crash
stack, ConCrash must explore a huge space of possible test codes
and thread interleavings. ConCrash explores efficiently the huge
space by alternately generating test codes and exploring thread
interleavings. It iteratively generates test codes by implementing
pruning strategies that exclude both redundant and irrelevant test
codes to optimize the exploration of the interleaving space. Test
codes are redundant if they induce the same interleaving space of
previously investigated test codes and thus would not reproduce
the failure. Test codes are irrelevant if ConCrash can infer the
impossibility of reproducing the failure from the crash stack and
the single-threaded execution of the call sequences that comprise
the test code. ConCrash pruning strategies are cost-effective as
they analyze single-threaded executions of the call sequences rather
than exploring the full interleaving space of concurrent executions.
ConCrash privileges short test codes to improve the efficiency of
exploring interleavings, localizing, and fixing the fault.

We evaluated ConCrash by experimenting with a prototype im-
plementation for the Java language on ten real-world concurrency
failures. The experiments indicate that ConCrash takes on average
46 seconds to reproduce a concurrency failure (including the time
for both generating test codes and exploring their interleavings).

The contributions of this paper include: (i) the first automatic
technique to synthesize failure-inducing concurrent test codes
from crash stacks to reproduce concurrency failures in thread-safe
classes, (ii) a publicly available implementation of the technique,
ConCrash [49], (iii) an experimental evaluation of ConCrash
showing the effectiveness of the proposed technique.

1 private void runTest() throws Throwable {
2 // Sequential Prefix
3 Logger sout = Logger.getAnonymousLogger();
4 MyFilter myFilter0 = new MyFilter();
5 sout.setFilter((Filter)myFilter0);
6
7 // Suffix 1
8 Thread t1 = new Thread(new Runnable() {
9 public void run() {
10 sout.info(""); // Crashing Method
11 }});
12 // Suffix 2
13 Thread t2 = new Thread(new Runnable() {
14 public void run() {
15 sout.setFilter(null); // Interfering Method
16 }});
17 t1.start();t2.start();
18 }

Figure 3: A concurrent test code that reproduces the crash

stack in Figure 2

2 REPRODUCING CONCURRENCY FAILURES

In this paper, we address the problem of synthesizing concurrent
test codes that reproduce concurrency failures of classes that violate
thread-safety. A class is thread-safe if it encapsulates synchroniza-
tion mechanisms that prevent incorrect accesses to the class from
multiple threads [19]. Incorrect synchronization mechanisms are
concurrency faults that manifest at runtime as concurrency failures,
that is, deviations from the expected behaviour of a concurrent
usage of the class, and expose a thread-safety violation. In this
work, we address the relevant class of concurrency failures that
manifest as runtime exceptions. A key characteristic of concur-
rency failures is that they manifest non-deterministically, due to
the non-determinism of the scheduler that decides the threads or-
der of multi-threaded executions. The order of accesses to shared
memory locations is fixed within one thread, but can vary across
threads. An interleaving is a total order relation of shared memory
accesses among threads [26]. Concurrent executions can manifest
many different interleavings, and only some –usually few– of them
trigger concurrency failures [37].

Motivating example. Figure 1 shows the code snippet of a
known concurrency fault in class java.util.logging.Logger of the
JDK 1.4.1 library. Method log accesses field filter at lines 419 and
421 within a synchronized block that locks the object instance.
The method checks whether the field is initialized (line 419) before
dereferencing it (line 421). Method setFilter (line 386) accesses
and modifies the same field without locking the object instance. As
a result another thread can execute line 391 between the executions
of lines 419 and 421 while a thread is executing method log and
set the reference to null, thus violating the intended atomicity
of method log. If both threads access the same object instance,
this thread interleaving triggers a NullPointerException at line 421
(Figure 2). Figure 3 shows a concurrent test code that can induce
such failure-inducing interleaving.

Crash stack trace. ConCrash generates concurrent tests code
that reproduce concurrency failures from crash stacks. Figure 2
presents an example of crash stack produced when executing the
test code in Figure 3. A crash stack trace (or simply crash stack)
reports the ordered sequences of functions on the call stack at the
time of the failure and terminates the sequence with the exception
that results from the failure (NullPointerException at line 1 in Fig-
ure 2) [25]. Each entry (frame) in the crash stack reports a function
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Figure 4: Logical architecture of ConCrash

and a code location. The code location of each entry identifies ei-
ther the location of the call to the next function or, in the case of
the top entry (e.g., line 2 in Figure 2), the location of the Point Of
Failure (POF), which is the static line of code that triggered the
failure. Given a crash stack, developers can easily identify both the
class responsible for the concurrency failure, which we denote as
Class Under Test (CUT), and the CUT method whose invocation led
to the failure, which we denote as crashing method. Such method
corresponds to the outermost CUTmethod in the crash stack. In our
running example the CUT is the JDK class Logger and the crashing
method is method info of class Logger as inferred from the frame
at line 5 in Figure 2.

Concurrent test code. Concurrency failures of (supposedly)
thread-safe classes can be reproduced with multi-threaded exe-
cutions of concurrent test codes. In this paper, a concurrent test

code is a set of method call sequences that exercise the public in-
terface of the CUT from multiple threads without additional syn-
chronization mechanisms other than the one implemented in the
CUT [32, 38, 45, 47]. A call sequence is an ordered sequence of
method calls δ = ⟨m1, . . . ,mn⟩ that are executed in a single thread.
The methods in the sequence have a possible empty set of input
parameters, which can be either primitive values, for instance of
type floats, integers and booleans, or references to objects created
in previous method calls. We treat the object receiver of an instance
method as the first parameter of the method [35, 47]. The methods
in a call sequence can be either methods of the public interface
of the CUT or methods of auxiliary classes required to instantiate
non-primitive parameters of the CUT methods.

A test code is composed of a sequential prefix and a set of concur-
rent suffixes. The sequential prefix is a call sequence that invokes
(i) a constructor to create an instance of the CUT that we call Shared
Object Under Test (SOUT) and (ii) a sequence of method calls that
modifies the SOUT state in order to enable the execution of the
concurrent suffixes to trigger the concurrency failure. A concurrent
suffix is a call sequence that is executed concurrently with other con-
current suffixes after the sequential prefix. The concurrent suffixes
invoke methods that access the SOUT concurrently. We consider
test codes with exactly two concurrent suffixes, following the results
that show that 96% of concurrency faults manifest by enforcing a
certain partial order between two threads only [27], and in line with
most studies on concurrent test code generation [32, 38, 45, 47].

Intuitively for reproducing the concurrency failure, one suffix
shall invoke the crashingmethod, while the other suffix shall invoke
a method whose execution can lead to an unexpected interleaving
that interferes with the crashing method. We call such method inter-
fering method. The method setFilter is an example of interfering
method of the Logger running example.

Problem definition and challenges. The problem addressed
in this paper can be formulated as follows:

Problem Definition. Given a crash stack trace, the corre-

sponding CUT, a set of auxiliary classes and a time-budget, generate a

concurrent test code that reproduces the crash stack trace in input, an-

notated with a failure-inducing interleaving within the time-budget.

When addressing this problem, we are challenged by (i) the
limited information in the crash stack and (ii) the high cost of
exploring the interleaving space of a test code. The crash stack
only gives limited information about how to construct a failure-
inducing test code. It does not provide enough information to infer
the methods and the input parameter values that comprise the
test code. ConCrash needs to explore the huge space of different
combinations of sequential prefixes, interfering methods and in-
put parameter values to identify a specific combination of method
calls and parameters that comprise a failure-inducing test code.
For instance, to reproduce the concurrency failure of the Logger

example in Figure 3, ConCrash needs to identify the sequen-
tial prefix ⟨Logger sout=Logger.getAnonymousLogger(); MyFilter

myFilter0=new MyFilter(); sout.setFilter((Filter) myFilter0)⟩,
the interferingmethod sout.setFilter(null) and the crashingmeth-
od sout.info(""). With different sequential prefixes, for example
⟨Logger sout=Logger.getAnonymousLogger();sout.setFilter(null)⟩,
the test code does not reproduce the failure for any interleaving,
since the if condition at line 419 would be evaluated to false.

The cost of exploring the interleaving space of a test code is
inflated by the large amount of possible interleavings. With a time
budget that allows to explore the interleaving space of only few test
codes, a random exploration of test codes would not be effective,
since thousands of randomly generated test codes are needed for
triggering a concurrency failure [32, 38]. ConCrash introduces an
effective strategy for exploring the huge space of test codes and
generating few concurrent test codes likely to reproduce the failure.

3 CONCRASH

As depicted in Figure 4, ConCrash iteratively executes twomain
components, the Test Code Generator and the Interleaving Explorer
until generating a failure-inducing test code and interleaving. At
each iteration, the Test Code Generator synthesizes a new test code,
and the Interleaving Explorer looks for a thread interleaving of the
test code that reproduces the concurrency failure.

The Test Code Generator exploits a set of pruning strategies
to steer the test code generation towards test codes that are likely to

reproduce the failure. By pruning test code space before exploring
the interleaving space, ConCrash limits the expensive exploration
of the interleaving space to the interleavings that correspond to
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test codes that are most likely to expose the concurrency failures.
The pruning strategies trim both test codes that are redundant with
respect to previously generated test codes and test codes that are ir-
relevant with respect to the concurrency failure in input. Intuitively,
a test code is redundant if it manifests the same interleavings of
previously explored test codes, and irrelevant if it cannot manifest
a failure-inducing interleaving. Exploring the interleaving space of
such test codes is fruitless.

The pruning strategies rely on runtime information collected by
executing sequentially and in isolation the method call sequences
that comprise a candidate concurrent test code. The sequential exe-
cution of a call sequence can effectively approximate the behavior
of the call sequence when executed concurrently with other method
call sequences [47]. Analyzing sequential executions is less expen-
sive than exploring all the possible interleavings of concurrent
executions. While existing concurrent test code generators lever-
age sequential executions for concurrency testing purposes [41–
43, 45, 47], the key intuition of ConCrash is to use this information
together with crash stacks to effectively synthesize test codes that
reproduce a concurrency failure.

The Interleaving Explorer checks if the interleaving space of
a test code synthesized by the Test Code Generator contains at
least one interleaving that reproduces the failure. The Interleav-
ing Explorer is not a contribution of this paper, but is based on the
approach recently proposed byMachado et al. to determine the exis-
tence of an interleaving of a given test code that violates a program
assertion that encodes the concurrency failure [29]. ConCrash
iteratively executes the Test Code Generator and the Interleav-
ing Explorer until producing a test code and an interleaving that
reproduce the failure or until the time budget expires.

3.1 Test Code Generator

Figure 5 shows the test code generation algorithm. As discussed
in Section 2, a test code is composed of a sequential prefix, denoted
as δp , and two concurrent suffixes δs1 and δs2 that are executed con-
currently after δp . The prefix δp creates a shared object under test
(SOUT) of type CUT, and invokes the methods that bring the SOUT
in a failure-inducing state. The suffixes δs1 and δs2 access the SOUT
concurrently trying to manifest a failure-inducing interleaving.

The algorithm explores a search space modeled with a tree, and
is composed of an initialization step (lines 2-12) and two main steps:
the exploration of a new combination of method call sequences
(lines 13-22) and the elaboration of the new combination, function
PRUNING (lines 23-42), which includes the collection of runtime
information (lines 24-26) and the pruning strategies (lines 27-42).
Belowwe describe in details the Tree model, the minimization of the
test codes, the initialization, the exploration of new combinations,
the collection of runtime information and the pruning strategies.

Tree model. ConCrash finds a combination of δp , δs1 and δs2
that constitutes a failure-inducing test code, by exploring the space
of possible call sequences. Following Terragni’s and Cheung’s ap-
proach [47] we represent the search space as a rooted, directed and
potentially infinite tree whose root node is a call sequence that in-
stantiates the shared object under test SOUT of type CUT. Figure 6
shows an excerpt of a tree model of class Logger. The edges repre-
sent method call sequences. Starting from the root that represents
the initialization sequence, the nodes represent concatenations of

call sequences (edges) that correspond to the ordered sequence
of the method calls along the path from the root to the node. For
instance, the node δO in Figure 6 represents the sequence ⟨ Logger
sout = Logger.getAnanymousLogger(); Filter f = new Filter();

sout.setFilter(f); sout.info(""); ⟩ obtained traversing the tree
from the root to the node (δA,δ5,δ1). ConCrash incrementally
builds the Tree model starting from the root. The basic operator for
building the Tree model is the node traversal operator that creates a
new child node [47]. Given a methodm and a node representing
a sequence δ , the node traversal operator produces a child node
that represents a new sequence obtained from δ by appending a se-
quence of method calls (an edge), withm being the last method call.
The node traversal operator may add other method calls beforem
to create the non-primitive parameters ofm, if any. For instance, in
Figure 6 the edge δ1 corresponds to a single method call, while the
edge δ3 corresponds to two method calls, where the first call creates
the input parameter h of the method removeHandler. ConCrash al-
ways extends nodes with methods of the CUT that have at least
an input parameter (including the method receiver) of type CUT,
and binds exactly one of them to the object SOUT. Therefore by
construction, each edge in the tree accesses the same object SOUT.
Referring always to SOUT is crucial because the suffixes trigger
concurrency failures by accessing the same shared object [32]. The
values of the input parameters that are not bounded to SOUT, if
any, are chosen from a pool of representative values.

Test code minimization. The same concurrency failure can be
triggered with many test codes made of different method calls, some
of which may be irrelevant with respect to the failure. Short test
codes are preferable, because long concurrent suffixes increase the
cost of exploring the interleavings, as the number of interleavings
grows factorially with respect the number of statements executed
in each concurrent thread [26]. Long sequential prefixes increase
the computational costs and are more difficult to understand and
investigate than short ones [18]. Therefore, ConCrash aims at
generating short test codes.

The concurrent suffixes of the test codes correspond to single
edges in the tree. Each edge contains a method call that accesses the
SOUT object. Limiting concurrent suffixes to single edges does not
impact on the failure reproduction capabilities, since interleavings
of shared memory accesses from multiple calls within the same
concurrent suffix do not expose any thread-safety violation that
cannot be exposed with a single method call [19, 20, 47]. ConCrash
reduces the length of sequential prefixes by adopting a Breadth-First
Search exploration strategy: it explores all sequences with n edges
before exploring sequences with n + 1 edges.

Initialization (lines 2-12). ConCrash starts by initializing to
empty the state repository S, the coverage repository C, and the
list of sequences that are pending for being extended pendingSeqs

(lines 2, 3 and 4, respectively). ConCrash then initializes the cur-
rent level of exploration of the tree to zero (line 5). The algorithm
randomly generates the pool of primitive and non-primitive parame-
ters values using Randoop [35] (line 6). Subsequently, it determines
the crashing method (line 7) by parsing the crash stack in input
(see Section 2). It then creates the root nodes of the Trees, one
for each constructor in the class, by instantiating sequences that
invoke the methods with an object of type CUT as return type, for
instance constructors (line 8). ConCrash creates a new root δsout
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input :CUT (class under test), classes (auxiliary classes), CST (crash
stack trace), B (timeBudget)

output : t failure-inducing test code
1 function ConCrash

/* Initialization */
2 S← ∅ // state repository
3 C← ∅ // coverage repository
4 pendingSeqs[...]← ∅ // sequences to be extended
5 level← 0 // current level of sequence exploration

6 pool ← CREATE-PARAMETER-VALUES(classes)
7 cm← EXTRACT-CRASHING-METHOD(CST)
8 for each construcorm (τ1, ...τn ) of CUT do

9 for each value (v1 ...vn ) of type (τ1 ...τn ) in pool do

10 δsout ←m (v1, ...vn )
11 if δsout does not throw an exception then

12 add δsout to end of pendingSeqs[0]

/* Exploration of new combinations δp,δs1,δs2 */

13 while timeBudget is not expired do

14 while pendingSeqs[level] , ∅ do

15 δp ← get and delete the first δ in pendingSeqs[level]

16 for each value (v1 ...vn ) of type cm(τ1 ...τn ) in pool do

17 δs1 ← cm (v1 ...vn )
18 for each public methodm (τ1, ...τn ) of CUT do

19 for each value (v1 ...vn ) of type m(τ1 ...τn ) in
pool do

20 δs2 ←m (v1 ...vn )
21 PRUNING(δp , δs1, δs2)

22 level++

23 function PRUNING(δp , δs1, δs2)
24 δp,s1 ← append δs1 to δp
25 δp,s2 ← append δs2 to δp
26 execute δp,s1 and δp,s2 // Collection of runtime information

27 if δp,s1 and δp,s2 do not throw exceptions (PS-Exception)
28 ∧ ∃ e ∈ M (δcm ) : stack(e)= CST (PS-Stack)
29 ∧ ⟨M (δp,s1),M (δp,s2)⟩ < C (PS-Redundant)
30 ∧ M (δp,s2) interferes withM (δp,s1) (PS-Interfere)
31 ∧ M (δp,s1) | | M (δp,s2) (PS-Interleave) then

32 add ⟨M (δp,s1),M (δp,s2)⟩ to C
33 t ← ASSEMBLE-TEST-CODE(δp , δs1, δs2)
34 isFailure← INTERLEAVING-EXPLORER(t )
35 if isFailure = true then

36 return t // failure-inducing test code

37 if S (δs2) < S and δp,s2 does not throw exception then

38 add S (δs2) to S
39 if M (δp,s1) interferes withM (δp,s2) then
40 add δp,s2 begin of pendingSeqs[level+1]
41 else

42 add δp,s2 end of pendingSeqs[level+1]

Figure 5: The ConCrash algorithm

for each of such methods and for each combination of parameter
values (lines 8, 9, 10). The algorithm checks whether the execution
of δsout throws an exception (line 11) and, if this is not the case,
adds δsout to the list pendingSeqs[0] (line 12). The algorithm does
not further elaborate the sequences δsout that throw an exception
since they do not successfully create the object.

Exploration of new combinations ⟨δp ,δs1,δs2⟩⟨δp ,δs1,δs2⟩⟨δp ,δs1,δs2⟩ (lines 13-22).
ConCrash explores new combinations iteratively until either the
failure is reproduced or the time budget expires (line 13). At each it-
eration, ConCrash removes a sequence δp from pendingSeqs[level]
(line 15), and generates the children of the leaf of the Tree that cor-
responds to δp , starting from the children related to the crashing

method (cm) exploring different values for the input parameters.
We denote each of the edges resulting from the extensions as δs1
(line 17). ConCrash explores all the children of δp , obtained by
extending δp with all public methods in CUT (line 18) with each
combination of the input parameters in the pool (line 19). We de-
note the edges resulting from the extensions as δs2 (line 20). Every
combination of δp , δs1 and δs2 corresponds to a candidate concur-
rent test code. Function PRUNING analyses each combination of δp ,
δs1 and δs2 to determine if it should be pruned or not (line 21).
ConCrash considers all public methods in the CUT to obtain δs2
(line 18) because the crash stack does not contain information about
the interfering method, and thus ConCrash needs to explore all
the possible candidates to identify the right one.

PRUNING (lines 23-42). Function PRUNING prunes the search space
(lines 27-42) relying on the runtime information obtained by exe-
cuting the input call sequences (lines 24-26).

Collecting runtime information (lines 24-26). Let δp,s1 and δp,s2
be the sequences that extend δp with the edges δs1 and δs2, re-
spectively (lines 24 and 25), ConCrash executes δp,s1 and δp,s2
in isolation (single-threaded execution) (line 26), and collects the
following runtime information for each sequence δ ∈ {δp,s1,δp,s2}:
(i) whether δ throws an uncaught exception, (ii) the sequential cov-
erage of the last method call in δ [47], and (iii) the state of the object
SOUT after executing δ , which is obtained by serializing SOUT in
a deep copy semantic.

The sequential coverage is a metric recently presented by Terragni
and Cheung, that is defined on the sequential execution of call
sequences [47], and is used to infer the possibility of a concurrent
test code to induce new interleavings with respect to the previously
generated test codes. ConCrash exploits sequential coverage to
identify and avoid both redundant and irrelevant test codes. Let the
trace E = ⟨e1, . . . , ek ⟩ of a call sequence δ be the ordered sequence
of events exhibited by a sequential (single-threaded) execution of δ .
An event can be one of the following:

• writeW(f) and read R(f) accesses to an object field f ;
• lock acquire ACQ(l) and lock release REL(l) events;
• method enter ENTER(m) and exit EXIT(m) events.

Given a call sequence δ = ⟨m1, . . . ,mn⟩, the trace of a method call

mi ∈ δ is the non-empty segment Ei of E such that Ei contains
only the events triggered directly or indirectly by the invocation
ofmi [47]. Given a call sequence δ , its sequential coverageM (δ ) is
defined as the partition {E1, . . . ,En } of E, that is the unordered set
composed of the n method call traces of E [47].

Since all the test codes generated by ConCrash are composed of
concurrent suffixes with only the last method call accessing SOUT,
we are only interested in the sequential coverage of such method
calls. We denote the last method call trace En inM (δ ) asM (δ ).

Pruning strategies (lines 27-42). ConCrash prunes the combi-
nation ⟨δp , δs1, δs2⟩ according to different strategies. If the code
is neither redundant (line 29) nor irrelevant (lines 27, 28, 30, 31)
ConCrash updates the coverage repository C (line 32), assembles
a new concurrent test code t (line 33) and invokes the Interleaving
Explorer component to determine if the interleaving space of t
contains at least one interleaving that can reproduce the failure
(line 34). If this is the case (line 35), ConCrash outputs t and its
failure-inducing interleaving and terminates (line 36).
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Figure 6: A Tree model of class Logger

If ConCrash does not terminate, it checks if δp,s2 should be
added to the pendingSeqs list for further extensions (line 37), that
is, ConCrash checks whether the state δs2 produced by executing
δp,s2 either throws an exception or has been already explored. If not,
ConCrash adds S (δs2) to S and inserts δp,s2 in the pendingSeqs of
the next level (line 38). Following previous work [35, 38, 47], Con-
Crash does not extend sequences that throw exceptions when exe-
cuted sequentially, as all of their extensions throw the same excep-
tion at the same point [35]1. ConCrash decides to add the current
δp,s2 either at the begging or at the end of pendingSeqs[level + 1]
depending on the priority of the sequence (lines 40 and 42, respec-
tively). Sequences at the beginning of the list have higher priority,
as they will be consumed earlier by ConCrash (line 15).

We now describe in detail the pruning strategies and the decision
procedure that determines whether δp,s2 should be added at the
beginning or at the end of pendingSeqs[level + 1].

ConCrash prunes a combination ⟨δp , δs1, δs2⟩ (lines 27-31) if:
PS-Exception: δp,s1 or δp,s2 throw an exception when executed se-

quentially (line 27), even if the exception matches the crash stack
trace in input. This is because our focus is on failures that can
only be reproduced during concurrent executions. This pruning
strategy is a standard practice for concurrent test code genera-
tion [32, 38, 45, 47].
PS-Stack: ∄ e ∈ M (δp,s1) : stack (e ) = CST (Crash Stack Trace),
where stack (e ) is the call stack trace of e , obtained by analysing
the method entry and exit points inM (δp,s1). A necessary condi-
tion of a test code for reproducing a failure is to reach the point of
failure (POF) with the same calling context of the considered crash
stack [25]. ConCrash prunes the call sequences δs1 that when exe-
cuted sequentially do not reach the POF with the same call stack of
CST. For example in Figure 6, ConCrash prunes the combinations
with δs1 = δB since the sequential execution of δB does not reach
the POF (line 421).
PS-Redundant: ⟨M (δp,s1),M (δp,s2)⟩ ∈ C. ConCrash prunes the
combinations whose concurrent suffixes induce an already observed
pair of sequential coveragesM (δp,s1) andM (δp,s2), as inferred
from the coverage repository C. ConCrash prunes redundant pairs
of sequential coverage since the resulting concurrent test code
would lead to an interleaving space identical to a previously gener-
ated test code [47].
PS-Interfere: ∄ e1, e2 ∈ M (δp,s1)×M (δp,s2) : e1 = R(f) , e2 =W(f).
ConCrash prunes the combination if the two concurrent suffixes
do not access the same variables or the interfering method δp,s2
only reads the variable accessed in common. The intuition behind

1Similarly with previous work we are assuming that 1) sequential executions are
deterministic given the same inputs [38, 47]. Classes whose behaviour depend on
system time or network communication are excluded. 2) the CUT does not spawn new
threads [45, 47], which is generally the case for concurrent libraries [38]

e1: ACQ(l) 
e2: W(f) 
e3: REL(l) 
e4: ACQ(l) 
e5: W(f) 
e6: REL(l) 

e7: ACQ(l) 
e8: W(f) 
e9: REL(l) 

        LS     LH 
e2       {l}      {l}    

e5       {l}      ∅ 

e8       {l}      {l}

M("2)M("1)

Figure 7: Example of Lockset History (LH)

this pruning strategy is that for triggering a concurrency failure the
interfering method has to interfere, by writing a shared variable
that is accessed by the crashing method. For example, in Figure 6,
ConCrash prunes the combination with δs1 = δB and δs2 = δD
because the sequential execution of δD does not write any variable
read by δB . ConCrash considers the object fields not only of the
CUT but also of the auxiliary classes. This is because the object
fields of the non-primitive fields of SOUT are also shared across
threads.
PS-Interleave: ∄ e1, e2 ∈ M (δp,s1) × M (δp,s2) : e1 = RW , e2 =
RW,LH (e1) ∩ LH (e2) = ∅, where LH denotes the lock history of
an event ex ∈ M (δ ), defined as the set of locks that are acquired
but never released in M (δ ) before triggering the event ex , and
RW denotes either a read or write memory access. More formally,
LH (ex )= {l | ∃ej = ACQ (l ) ∈ M (δ ),∄ek = REL(l ) ∈ M (δ ),
w < k < x }, wherew is the index of the first event inM (δ ). Con-
Crash prunes a combination if the two concurrent suffixes cannot
interleave when assembled in a concurrent test code, and thus their
concurrent execution cannot lead to a concurrency failure [19]. Dif-
ferently from the traditional lockset (LS) [44], LH takes into account
the history of the release events. In fact, the traditional lockset can
determine if a pair of events of two threads are protected by the
same lock (e.g., to detect data races [44]), but cannot infer if two
executions can interleave. For instance in the sequential coverage
of the threads reported in Figure 7, the two executions can clearly
interleave when executed concurrently, and in particular, the events
e7, e8 and e9 can interleave between the events e3 and e4. However,
the lockset LS cannot infer such property, since the events e2, e4
and e8 have the same lockset, and lockset cannot determine if the
lock held by e2 and e4 has been released between the two events.
On the contrary, LH can determine that the two executions can
interleave, since the LH (e5) ∩ LH (e8) = ∅.

ConCrash relies on PS-Interfere to decide how to prioritize δp,s2
in the list (lines 40 and 42). IfM (δp,s2) interferes withM (δp,s1)
(see Condition PS-Interfere), ConCrash adds δp,s2 at the beginning
or the list, otherwise at the end, since ifM (δp,s2) writes the same
variables accessed by the crashing method, δp,s2 is more likely to
lead to a program state that could make the crashing method behave
differently if executed in this new state. This is only a prioritization,
not a pruning strategy.

Our pruning strategies could potentially rely on static, rather
than dynamic information. For example, PS-Interfere could identify
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Table 1: Subjects and concurrency failures

Subjects Concurrency Failures

ID Class Under Test (CUT) Version Code Base

Total

SLOC

CUT

SLOC
# Methods

Issue

ID

Fault

Type
Type of Exception

Crash

Depth

1 PerUserPoolDataSource 1.4 Commons DBCP 9,451 719 68 369 Race ConcurrentModificationException 4
2 SharedPoolDataSource 1.4 9,451 546 44 369 Race ConcurrentModificationException 4
3 IntRange 2.4 Commons Math 18,016 278 44 481 Atom. AssertionError 1
4 BufferedInputStream 1.1

Java JDK
3,791 304 12 4225348 Atom. NullPointerException 2

5 Logger 1.4.1 2,193 528 45 4779253 Atom. NullPointerException 4
6 PushbackReader 1.8 11,562 143 13 8143394 Atom. NullPointerException 1
7 NumberAxis 0.9.12 JFreeChart 64,713 1,662 119 806667 Atom. IllegalArgumentException 2
8 XYSeries 0.9.8 51,614 200 28 187 Race ConcurrentModificationException 4
9 Category 1.1 Log4j 10,773 387 43 1507 Atom. NullPointerException 1
10 FileAppender 1.2 10,273 185 13 509 Atom. NullPointerException 2

the candidate interfering methods by statically collecting all the
possible accesses to object fields, without requiring program exe-
cution. However, by relying on dynamic information PS-Interfere
can be more effective since only a subset of accesses could be exe-
cuted under a specific control flow. Moreover, ConCrash already
executes each generated call sequences to identify those that throw
exceptions or lead to redundant states, thus the additional overhead
of collecting dynamic information is minimal.

3.2 Interleaving Explorer

ConCrash explores the interleaving space of a generated test
code to infer if the test code is failure-inducing, i.e., it can manifest
an interleaving that reproduces the concurrency failure in input.

Current techniques to explore the interleaving space of a given
test code examine the space either exhaustively or selectively [5].
Techniques that exhaustively explore all possible interleavings can
be very expensive due to enormous size of interleaving spaces [13,
51]. Techniques that explore interleaving spaces selectively, based
on particular classes of concurrency faults, like data races [31, 33],
atomicity violations [16, 17, 36, 48, 56], order violations [15, 22,
58, 59] and deadlocks [7, 8, 14] can be efficient, but may miss the
failure-inducing interleaving if it does not belong to the particular
class of the concurrency fault considered.

The ConCrash Interleaving Explorer relies on Cortex, a tech-
nique for reproducing concurrency failures proposed by Machado
et al. [29], which is more efficient than exhaustive exploration of
interleavings spaces and does not make any assumptions on the
type of concurrency fault.

The ConCrash Interleaving Explorer executes the given test
code and collects an execution trace in which the shared variables
and the local variables that are data-dependent from shared vari-
ables are treated as symbolic. Starting from the execution trace, the
ConCrash Interleaving Explorer builds a SMT formula [12] whose
solutions (if any) identify the interleavings that violate an assertion
that encodes the concurrency failure. A program failure can be eas-
ily encoded in form of an assertion from a crash stack trace, since it
gives the point of failure (POF) and the type of runtime exception.
For a detailed description of Cortex, the interested readers can
refer to the seminal work [23] and its extensions [28, 29].

4 EVALUATION

To experimentally evaluate ConCrash, we developed a proto-
type implementation, and we experimented with a set of ten known
concurrency failures reported in five popular Java code bases.

We addressed three research questions:

RQ1 How effective is ConCrash in reproducing concurrency fail-

ures?

RQ2 What is the contribution of each pruning strategy in reducing

the search space?

RQ3 Is ConCrash more effective than competing state-of-the-art

testing approaches?

4.1 Experimental Setup

We experimented with a prototype implementation of Con-
Crash that implements the algorithm presented in Figure 5. The
prototype uses AutoConTest [47], a concurrent test code gener-
ator developed by Terragni and Cheung based on the sequential
coverage metric, and Cortex, an interleaving exploration tool de-
veloped by Machado et al. [29], which leverages Java PathFinder
(JPF) [50] for symbolic execution and Z3 [12] as constraint solver.
The ConCrash prototype implements the pruning strategies de-
scribed in Section 3.1. We denote the versions of the ConCrash pro-
toypewith the different pruning strategies as PS-Stack, PS-Redundant,
PS-Interfere, PS-Interleave, respectively, and the version of Con-
Crash without pruning strategies as NO-Pruning. All six ConCrash
prototypes have PS-Exception enabled since is not our contribution.

We compared ConCrash with ConTeGe [38] and AutoCon-
Test [47], two representative state-of-the-art approaches that gen-
erate concurrent test code for testing concurrent programs. Con-
TeGe randomly generates test codes and explores the interleavings
through stress testing. AutoConTest generates test codes guided
by sequential coverage (see Section 3) and explores the interleav-
ing space of each generated test code with a dynamic detector of
atomicity violations. Both ConTeGe and AutoConTest are failure-
oblivious, that is, they are not designed to reproduce a given failure.
In absence of techniques that generate test codes for reproducing
a given failure, we use ConTeGe and AutoConTest as baseline
to assess the ability of ConCrash to drive the generation of test
codes towards a specific failure.

Subjects.We selected a benchmark of ten classes with known
thread safety violations that have been used in the evaluation of
previous work [32, 38, 43, 47]. We considered the subjects used
in the related papers, and selected the subjects that (i) produce a
crash stack, (ii) have been confirmed to be failures, and (iii) can be
analysed with JPF without compatibility issues. For each subject
we obtained a single crash stack either from the bug report, when
available, or by executing a failure-inducing test code documented
in related work [38, 47]. We added the program assertions encoding
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Table 2: Experimental results. The cell background indicates the degrees of speedup with respect to NO-Pruning: low (>1.0x

and <2.0x), medium (≥ 2.0 and < 10.0), or high (≥ 10.0)

RQ1 RQ2

ConCrash NO-Pruning PS-Stack PS-Redundant PS-Interfere PS-Interleave

ID FR FRT (sec.) FTID FTS FR FRT FTID FR FRT FTID FR FRT FTID FR FRT FTID FR FRT FTID

% min max avg min max avg avg % avg avg % avg avg % avg avg % avg avg % avg avg

1 100% 27 99 63 1 4 2 4 20% 15,456 376 100% 526 23 40% 14,749 258 100% 727 18 20% 15,395 430
2 100% 22 85 42 1 4 2 4 80% 9,240 250 100% 362 17 80% 7,294 128 100% 390 10 80% 9,128 195
3 100% 10 16 13 1 1 1 4 100% 204 13 100% 157 13 100% 138 8 100% 17 1 100% 196 13
4 100% 10 21 15 1 2 2 5 100% 77 7 100% 64 7 100% 63 5 100% 43 4 100% 26 2
5 100% 39 84 70 2 4 3 5 100% 6,520 491 100% 2,576 36 100% 3,200 232 100% 543 32 100% 3,369 185
6 100% 7 7 7 1 1 1 4 100% 33 3 100% 20 3 100% 34 3 100% 11 1 100% 31 3
7 100% 27 31 30 1 1 1 3 100% 508 11 100% 294 11 100% 463 9 100% 52 1 100% 491 11
8 100% 26 185 107 1 15 8 6 100% 2,758 269 100% 166 14 100% 2,752 269 100% 1,292 126 100% 2,751 269
9 100% 17 33 25 1 1 1 5 100% 348 28 100% 267 27 100% 336 28 100% 60 3 100% 345 28
10 100% 23 183 92 1 9 5 10 100% 540 22 100% 487 22 100% 342 12 100% 122 5 100% 523 23

AVG 100% 21 74 46 1 4 3 5 90% 3,569 147 100% 492 17 92% 2,937 95 100% 326 20 90% 3,226 116

the failures, as required by the Interleaving Explorer (Cortex [29]).
We easily inserted such assertions relying on the POF and the type
of the thrown exception reported in the crash stack.

Table 1 provides details about the subject programs: column ID

introduces a unique identifier that we use in the paper to identify
the subject program; column Class Under Test (CUT) is the class
under test of the subject program; columns Version and Code Base

report the version and the code base that contains the faulty class,
respectively; columns Total SLOC and CUT SLOC report the total
number of Source Lines of Code of both the code base and of the
CUT, including non-abstract super classes, if any, respectively;
column # Methods indicates the number of public methods of the
CUT; columns Issue ID, Fault Type, Type of Exception and Crash

Depth report the identifier of the issue in the corresponding bug
repository, the type of the known fault, the type of the resulting
exception and the number of frames in the crash stack, respectively.

Setup.We ran each technique on all the subjects. Each experi-
ment terminated either when the technique successfully reproduces
the failure or exhaustes a time budget of five hours. Although Con-
Crash systematically explores method call sequences and input
parameters, the order of exploration is arbitrary, and thus, differ-
ent runs of ConCrash can lead to different results as portions of
the search space containing failure inducing test code could be
explored before or after, depending on such order. Such order is set
pseudo-deterministically with an input random seed. To mitigate
threats that may derive from the non-deterministic choices while
generating test codes, we repeated each experiment five times us-
ing different random seeds. We measure the effectiveness of each
technique with the following metrics:

Failure Reproduction (FR) that is 1 if the failure is reproduced
within the given time budget B, 0 otherwise.

Failure Reproduction Time (FRT) that is the overall elapsed time
in seconds for identifying the first test code and failure induc-
ing interleaving. This time includes the cost of both generat-
ing test codes and exploring their interleavings. If the failure
is not reproduced within B, that is, FR = 0, we optimistically
underapproximate FRT to B.

Failure-inducing Test ID (FTID) that is the ID of the first failure-
inducing test code. The IDs are assigned in ascending order.
FTID = n indicates that ConCrash explored the interleaving
space of n test codes before reproducing the failure. A low

value of FTID indicates that the technique is effective in
generating a failure-inducing test code. If the failure is not
reproduced within B (FR = 0), we underapproximated FTID
to the ID of the last generated test code.

Failure-inducing Test Size (FTS) that is the size of the failure-
inducing test code measured as the total number of outer-
most method calls in δp , δs1, and δs2. The lower the value
of FTS is, the easier localizing and understanding the failure
is. If the failure is not reproduced within B, that is, FR = 0,
we set FTS = N/A.

4.2 RQ1 - Effectiveness

The leftmost columns of Table 2 report the experimental results
about the effectiveness of ConCrash in reproducing concurrency
failures (RQ1). The table reports the aggregated results of the five
runs for each subject. Column FR, Failure Reproduction, indicates
that ConCrash reproduces all the concurrency failures. Columns
FRT, Failure Reproduction Time, indicate a time for reproducing
the failures that ranges from 7 to 185 seconds, with an average of
46 seconds. On average on all fifty runs, ConCrash spends 1% of
the time for generating test codes and 99% of the time for exploring
interleavings. Column FTID, Failure Inducing Test ID, indicates that
ConCrash explored the interleaving space of a minimum of 1 test
codes and a maximum of 15 test codes, with an average of 3 test
codes. Column FTS, Failure-inducing Test Size, reports a size of the
generated test codes from 3 to 10 outermost method calls.

These results witness the effectiveness of ConCrash. The ap-
proach reproduces all the considered failures on all the fifty runs
within a reasonable time, with test codes of reasonable size. The
results also confirm that the cost of reproducing a concurrency
failure mostly depends on the cost of exploring interleavings. The
ability of ConCrash to effectively steer the test code generation
through a failure-inducing test code is the main efficiency factor.
ConCrash generates three test codes on average and at most 15
test codes in the worst cases to identify a failure-inducing test code.

4.3 RQ2 - Pruning Strategies

The rightmost columns of Table 2 report the experimental results
about the effectiveness of the different pruning strategies (RQ2).
The table reports the Failure Reproduction (columns FR), the Failure
Reproduction Time (columns FRT ) and the Failure-inducing Test
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Figure 8: Aggregate comparison of the ConCrash pruning strategies for the ten subjects

ID (columns FTID) for the different pruning strategies. We did not
record significant modifications of the Failure-inducing Test Size
with respect to the experiment discussed above that has been carried
on with the main ConCrash approach.

PS-Stack and PS-Interfere reproduce the concurrency failures
for all runs (columns FR=100%), while No-Pruning, PS-Redundant and
PS-Interleave reproduce the failures only in some runs (rows ID 1
and ID 2), leading to an average failure reproduction rate (columns
FR) of 90%, 92%, and 90%, respectively.

The average failure reproduction time (columns FRT ) ranges
from 326 seconds for PS-Interfere to 3,569 seconds for NO-Pruning,
while the average failure-inducing test ID (columns FTID) ranges
from 1 to 430 test codes. The cell background highlights the contri-
bution of each pruning strategy by indicating the degree of speedup
with respect to NO-Pruning: low (>1.0x and <2.0x), medium (≥
2.0 and < 10.0), or high (≥ 10.0). Both PS-Stack and PS-Interfere

strategies lead to a speedup for all subjects, with an averagemedium
and high speedup, respectively (bottom row AVG). On the contrary,
PS-Redundant and PS-Interleave strategies lead to a speedup for
five and three subjects, respectively, and they both achieve a low
overall average speedup (bottom rowAVG). The results indicate that
the effectiveness of the various pruning strategy can vary across
subjects.

PS-Stack is particularly effective when only few executions reach
the POF under the calling context specified in the crash stack trace
(CST), as it prunes all those test codes that fail to do so. In fact,
PS-Stack is more effective for the subjects with the highest CST
depth (four) (ID 1, 2, 5, and 8), while it is less effective for those
subjects with depth one (ID 3, 6, and 9). Intuitively, the deeper the
CST is, the harder is to reach the POF with the right calling context.
PS-Redundant is particularly effective when the execution space of
the CUT methods is characterized by few execution paths. In such
situation, the invocation of the same method with different param-
eters leads to a redundant sequential coverage, thus increasing the
effectiveness of PS-Redundant.

PS-Interfere is particularly effective when the object fields read
by the crashing method are written by only few methods in the
CUT, as it prunes the test codes in which the interfering methods
do not write such fields. For instance, in the subject IntRange the
crashing method reads object fields that are written by only one of
the 18methods in the CUT, and PS-Interfere drastically reduces the
search space to only one pair of crashing and interfering methods.

PS-Interleave is particularly effectivewhen aCUT largely adopts
synchronization mechanisms to access its object fields. This is the

case, for instance, of a Java class that declares most of its methods
as synchronized. In such case, PS-Interleave prunes many irrele-
vant test codes. For instance, PS-Interleave is very effective with
BufferedInputStream (ID 4), as the crashing methods and the ma-
jority of the CUT methods are declared as synchronized.

The results indicate that PS-Interfere is in general the most
effective pruning strategy, followed by PS-Stack, PS-Redundant and
PS-Interleave. However, PS-Interfere does not achive the highest
speedup for every subjects. For instance, PS-Stack and PS-Interleave
are more effective than PS-Interfere for two subjects (ID 4 and ID 8,
respectively). This result suggests that ConCrash effectiveness is
given by the synergetic combination of all pruning strategies. The
diagrams in Figure 8 show that ConCrash outperforms each prun-
ing strategy in isolation. The diagram in Figure 8 (a) plots the
average FR of all the ten subjects for ConCrash and for the differ-
ent pruning strategies with respect to the time (in log scale), and
indicates that ConCrash achieves a failure rate of 100%much faster
than any individual pruning strategy. The diagram in Figure 8 (b)
plots the success rate of the first TOP-N test codes generated with
ConCrash and with the different pruning strategies. ConCrash
achieves more than 90% of failure success rate with only 10 test
codes, and 100% within the first 25 ones. PS-Stack achieves 100%
of failure success rate within the first 100 test codes, while all the
other pruning strategies never achieves 100% within 100 test codes.

4.4 RQ3 - Comparison with Testing

Approaches

Table 3 reports the failure reproduction (columns FR), the average
values for the failure reproduction time (columns FRT ), the failure-
inducing test ID (columns FTID), and the failure-inducing test size
(columns FTS) for ConTeGe and AutoConTest. The results are
directly comparable with the corresponding columns RQ1 of Table 2
that report the data for ConCrash on the same benchmark. The
results indicate that ConCrash outperforms both ConTeGe and
AutoConTest. ConTeGe presents an average failure reproduction
rate of 18%, since it reproduces the crash stacks in 9 out of 50 runs,
while generating more than 20,000 test codes, on average. Auto-
ConTest also achieves a low average failure reproduction rate, with
an average of 28%. AutoConTest focuses on atomicity violations
only, is ineffective in the presence of data race failures (subjects
ID 1, 2, 8), suffers from compatibility problems with subjects ID
6, 9, and 10 ("-" in the table), and does not reproduce the failure
of class Logger, since it covers the failure-inducing interleaving

713



ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany Francesco A. Bianchi, Mauro Pezzè, and Valerio Terragni

Table 3: Comparison with test code generators

ID

ConTeGe [38] AutoConTest [47]

FR FRT FTID FTS FR FRT FTID FTS

% avg avg avg % avg avg avg

1 0% 18,000 14,177 N/A 0% 18,000 N/A N/A
2 0% 18,000 7,736 N/A 0% 18,000 N/A N/A
3 0% 18,000 25,712 N/A 100% 23 1 56
4 80% 4,487 7,465 12 0% 18,000 6 N/A
5 0% 18,000 1,491 N/A 0% 18,000 6 N/A
6 20% 14,510 5,796 10 - - - -
7 0% 18,000 34,960 N/A 100% 93 1 124
8 40% 12,387 25,215 10 0% 18,000 N/A N/A
9 40% 14,410 41,461 15 - - - -
10 0% 18,000 39,912 N/A - - - -

AVG 18% 15,379 20,392 12 28% 12,874 4 90

(atomicity violation) with inputs that do not trigger the failure. The
effectiveness of AutoConTest is comparable with ConCrash in
the cases it succeeds, but AutoConTest generates much larger test
codes than ConCrash.

Our results suggest that testing techniques that are designed as
failure-oblivious are not effective in reproducing a given concur-
rency failure, as they generate many test codes that are irrelevant
for the given failure. While ConCrash that leverages crash stacks
and novel pruning strategies effectively drives the test code gener-
ation towards a failure-inducing test code.

5 RELATEDWORK

Reproducing sequential failures. There are two classes of
approaches for reproducing failures in sequential programs. Record-
replay approaches [2, 3, 25, 34] rely on information collected be-

fore the failure occurred, for example, execution traces, while Post-
processing approaches [9, 10, 30, 39] rely on information collected
after the failure occurred, for example, crash stacks and memory
core-dumps. Differently from ConCrash, these techniques do not
explicitly target concurrency failures and do not address the chal-
lenges introduced by multi-threaded executions and concurrency,
which are addressed by ConCrash.

Reproducing concurrency failures. To reproduce failure-in-
ducing thread interleavings, Record-replay approaches for concur-
rency failures record thread-sensitive information during multi-
threaded executions. ODR [1] requires to record the input of the
program, the total ordering of lock instructions, and a sampling
of the executed instructions; LEAP [21] dynamically records all
the accesses to shared variables; STRIDE [60] and CARE [24] im-
prove LEAP by reducing the runtime overhead and the amount
of recorded information; CLAP [23] uses a lightweight instrumen-
tation which records only the local control-flow choices of each
thread; Symbiosis [28] and Cortex [29] extend CLAP by isolating
the root cause of the failure [28] and by reproducing failures that
are control-flow dependent [29]. Post-processing approaches for
reproducing concurrency failures rely on core-dump information.
ESD [57] combines core-dump information analysis and symbolic
execution to determine the failure-inducing inputs and interleav-
ings. Weeratunge et al. [52] present a technique that generates a
failure inducing interleaving by comparing the failing core-dump
with the core-dump of passing runs. The main limitation of all these
techniques is that they require either a trace of a failing execution

or the core-dump of the failure, which may be hard to obtain [6]. In-
stead, ConCrash only requires the crash stack of the failure, which
is easily obtainable. Furthermore, all of these techniques, differently
from ConCrash, do not aim at generating failure-inducing con-
current test codes. ConCrash complements existing approaches,
as the test codes generated by ConCrash can be given in input to
each of these techniques. In fact, ConCrash relies on Cortex to
identify the failure-inducing interleavings.

Generating concurrent test codes. Recent techniques that
generate concurrent test codes for exposing thread-safety viola-
tions [11, 32, 38, 40–42, 45, 47] do not aim to reproduce a given
concurrency failure but rather to test the many concurrent be-
haviors of a class under test. As such, in the context of failure
reproduction, they generate many test codes that are irrelevant for
the given failure (RQ3). Instead, ConCrash effectively drives the
test code generation towards test codes that are likely to reproduce
the failure in input.

6 CONCLUSION AND FUTUREWORK

This paper presented ConCrash, the first technique to gener-
ate concurrent test codes for reproducing concurrency failures of
classes that violate thread-safety from crash stacks. The key contri-
bution of ConCrash is a set of pruning strategies that analyze the
executions of call sequences, and infer whether the test code ob-
tained by combing such sequences can reproduce the concurrency
failure. Our experimental results demonstrated the effectiveness
of ConCrash. Both ConCrash and the benchmark are publicly
available to ease future work in this area [49].

For efficiency reasons, the pruning strategies analyze the sequen-
tial executions of call sequences, which only approximate their
behaviors in a concurrent execution. Due to this approximation,
our pruning strategies cannot guarantee to never discard test codes
that can reproduce the failure. For example, even if a call sequence
δ does not reach the POF when executed sequentially, it is unsafe
to prune it away (PS-Stack) because δ could reach the POF due to
the interference of a concurrent thread [58]. However, in the sub-
jects considered such situation never occurred. Future studies are
needed to evaluate how safe the pruning strategies are in practice.
ConCrash is the first attempt to address the problem of generating
test codes for reproducing concurrency failures.

There are several opportunities for future work, and we now
discuss the two most promising. First, ConCrash can be extended
to reproduce failures caused by deadlocks, by leveraging dedicated
runtime monitors to produce the crash stacks that ConCrash re-
quires, adopting an interleaving explorer specific for deadlocks, for
instance MagicFuzzer [7], and disabling the PS-Interfere pruning
strategy, which is inadequate for deadlocks. Second, ConCrash
explores the space of possible method call sequences by considering
a set of fixed primitive values. As a result, ConCrash can miss fail-
ures which depend on values not contained in this set. Combining
ConCrash with symbolic execution could mitigate such limitation.
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