
N-version Programming in WCET Analysis:
Revisiting a Discredited Idea∗

Trevor Harmon
NASA Ames Research Center

Mail Stop 269-1
Bldg. N269, Rm. 260, P.O. Box 1

Moffett Field, CA 94035, United States
Trevor.W.Harmon@nasa.gov

Michael R. Lowry
NASA Ames Research Center

Mail Stop 269-2
Bldg. N269, Rm. 236, P.O. Box 1

Moffett Field, CA 94035, United States
Michael.R.Lowry@nasa.gov

ABSTRACT
Worst-case execution time (WCET) analysis is safe in the-
ory, but it may not truly be safe in practice. Even if a par-
ticular analysis algorithm is sound, its implementation may
contain bugs that result in unsafe WCET estimation. This
potential for error is serious, given that the usual purpose of
WCET analysis is to verify the correctness of hard real-time
systems—software on which entire missions and even human
lives may depend.

A possible solution lies in N-version programming, where
N teams of developers work independently on N unique but
equivalent implementations. Although this fault-tolerance
technique has been criticized for its statistical assumptions
and high cost, it may be perfectly suited to address the
inherent risks in implementing WCET analysis tools. This
paper argues that N-version programming still has merit and
cites an example of how the technique improved the quality
of two WCET analysis tools at relatively low cost.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—validation; C.3 [Special-Purpose and Applica-
tion-Based Systems]: Real-time and embedded systems;
B.2.2 [Arithmetic and Logic Structures]: Performance
Analysis and Design Aids—worst-case analysis

General Terms
Verification, Reliability

Keywords
N-version programming, worst-case execution time, WCET,
real-time systems, safety-critical systems, static analysis,
Java, WCET annotations

∗This research was supported by an appointment to the
NASA Postdoctoral Program at the Ames Research Center,
administered by Oak Ridge Associated Universities through
a contract with NASA.

Copyright 2010 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
FoSER 2010, November 7–8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11 ...$10.00.

1. INTRODUCTION
Reinventing the wheel is not always a bad thing. Iterating

over the same problem offers an opportunity for continuous
refinement. After all, no design or implementation is ever
correct the first time, but perhaps after the third or fourth
generation, most of the challenges have been overcome.

In the field of real-time systems, however, the question
has not been “Why reinvent the wheel?” but rather “When
will the wheel be invented?” Certainly there have been im-
portant advances in scheduling theory, but in practice, the
tools and techniques for verifying the timing behavior of a
program are limited, and even non-existent for some hard-
ware platforms, due to technical difficulties and market real-
ities. As a result, real-time software engineers typically fall
back on coarse external observations and empirical evidence
to make arguments about predictability. In other words,
they perform a sufficient number of tests until they reach
some degree of confidence that the system will perform as
intended.

This ad hoc approach to timing validation is unfortunate,
especially considering the role that real-time systems play
in our everyday lives. No longer restricted to esoteric space
and military applications, they are now responsible for keep-
ing us alive. When we drive, they regulate the engine and
brakes. When we fly, they help the pilot take off and land.
Yet the status quo is yielding ominous failure statistics. In
the automotive industry, for instance, 30% of electronics sys-
tem breakdowns can be traced back to software timing prob-
lems [9]. Both the research community and industry prac-
titioners have a responsibility to make building real-time
systems less like an art and more like a science.

Unlike other science-based fields, however, the tools for
analyzing the behavior of a real-time system are immature.
While doctors have at their disposal remarkable instruments
for peering into the inner workings of a patient—X-ray ma-
chines, CAT scans, electrocardiograms—software engineers
must rely on more rudimentary techniques to diagnose tim-
ing symptoms. A common tactic in the safety-critical aero-
space industry, for instance, is to over-design systems so
that processor utilization is extremely low. The goal is to
prevent any unexpected behavior from exceeding the 100%
threshold, which would lead to missed deadlines and critical
failure.

This tactic is wasteful and potentially unsafe. In space-
craft, for example, CPUs can demand a significant fraction
of power resources, and thus an over-provisioned processor
may conflict with the limits of the design. The existence

157

of such a tactic also unmasks a more fundamental problem:
Despite decades of research, practitioners still cannot trust
modern tools and techniques to produce a real-time system
that performs as expected. Even with substantial measure-
ment, there is no certainty in response time and not enough
confidence in the predictability of software. For hard real-
time systems, a deeper, stronger guarantee is necessary.

2. WHAT IS WCET?
In 1986, while developing a real-time variant of the pro-

gramming language Euclid, Kligerman and Stoyenko pro-
posed a new way of providing this guarantee [6]. Now known
as worst-case execution time, or WCET [8, 3, 13], it places
an upper bound on the execution time of a given software
task, where “execution time” is simply the time a particular
processor takes to execute that task. The idea is to make
timeliness a property that can be formally analyzed rather
than simply measured. It yields a provably correct bound
rather than an educated guess. Without it, no guarantee
can be made that a system will meet its deadlines.

Given the importance of WCET, the natural question is
how to obtain it. The most dependable and systematic ap-
proach involves a static analysis, in which the program is
never executed, but instead evaluated based on a model of
the target processor. This analysis begins with the pro-
gram’s control flow graph, where each node represents a
basic block in the original program (that is, a sequence of
non-branching CPU instructions). Finding the WCET then
becomes a matter of finding the longest path through the
graph. The “length” of each path is the execution time of its
corresponding basic block.

Although a complete discussion of this computation is be-
yond the scope of this paper, the key point is that mea-
surement can imply predictability, but only WCET analysis
guarantees it. It ensures that the system will never react
more slowly in the field than was measured during testing,
as illustrated in Figure 1. Just as a doctor can only verify
the true nature of a disease with a microscope, a software
engineer can only reveal the true timing properties of a pro-
gram with the aid of a WCET tool.

3. N-VERSION PROGRAMMING FOR WCET
While static WCET analysis is safe in theory, it may

not truly be safe in practice. Even if a particular analysis
algorithm is sound, the implementation of that algorithm
may contain bugs that result in unsafe WCET estimation.
The soundness of the CPU model is also a source of error.
A modern, out-of-order, heavily pipelined processor, with
multi-level caching and complicated shared buses, makes a
cycle-accurate model seemingly infeasible. These potentials
for error are a serious issue, given that the usual purpose of
WCET analysis is to verify the correctness of hard real-time
systems—software on which entire missions and even human
lives may depend.

One might think to apply some formal verification tech-
nique to prove the analyzer’s correctness, but this only shifts
the problem, as the question then becomes how to verify the
analysis verifier, and then perhaps how to verify the verifier
that verified the analyzer, and so on, ad infinitum. What
checks the checker? Who watches the watcher?

This conundrum is, of course, nothing new. Verifying cor-
rectness has been a major concern for the aviation and space

N
u

m
b

e
r

o
f

m
e

as
u

re
m

e
n

ts

Execution time

Unmeasured
execution
times True maximum

execution time

Maximum
execution
time as

measured

Measurement distribution

Figure 1: This histogram of execution time for a
fictional real-time task illustrates the weakness of
measurement when making claims of predictability.
Performance testing may produce a data distribu-
tion like the shown one here, leading the developer
to underestimate the maximum latency of the task.

industries, where a single failure can cause a catastrophe of
fire and twisted metal. One approach that has been applied
in these fields is known as N-version programming [1]. This
software engineering practice involves N teams of developers
working independently on N unique but equivalent imple-
mentations of the same program. In the deployed system,
all implementations run concurrently, and when their com-
putations are complete, a separate program examines the
results and decides which answer to accept (see Figure 2).
For instance, if two implementations of an algorithm agree
on a result, but the third one differs, a voting procedure
would reject it as incorrect. The approach results in a de-
gree of tolerance to software defects—increasing with the
size of N—because each version of the program checks the
other N–1 versions.

For some researchers, however, N-version programming is
a discredited idea. They argue that the assumption of in-
dependent failures among the N versions is statistically in-
valid [2, 11]. In other words, different programming teams
can make similar mistakes. The approach may also be re-
jected because in many cases it is simply too expensive to
be practical. An organization must create a second or third
team for the extra implementations, which may double or
triple the cost. For these reasons, the widely used DO-178B
standard for safety-critical systems discourages N-version
programming as a primary tool in the quest for software
reliability [11].

Yet in many instances, N-version programming is a sen-
sible solution. Even researchers outside the realm of safety-
critical and fault-tolerant systems have found it useful. A
book preservation project, for example, relied on a kind of
N-version programming to digitize old texts using two sep-
arate character recognition programs [12]. If the programs
disagreed, the discrepancy was reported and a human took
over. The approach was effective in this case because the in-
dependent “teams” were commercial off-the-shelf products,
so the cost of creating the redundant implementations was,
essentially, already paid.

A similar approach could be applied to WCET analysis.

158

Lane A
Computation

Lane B
Computation

Lane C
Computation

Command
Monitor A

Command
Monitor B

Command
Monitor C

Servo
Control

Figure 2: This simplified sketch of a three-lane
flight simulator [7] illustrates a real-world example
of N-version programming. The three control sig-
nals from the autopilot lane computations—each of
which was developed by independent programming
teams—are fed into a separate servo logic function
that decides which, if any, are faulty.

Instead of voting, however, as in a conventional N-version
programming scenario, the single “worst” result must be
taken. For instance, if one tool indicates that the WCET of
a task is 10 milliseconds, while another says 12 milliseconds,
and a third reports 15 milliseconds, the user should reject
the first two results.

In addition to providing more reliable WCET analysis,
this tactic would also help detect bugs in new analysis tools
that are still undergoing development. This very approach
was applied successfully to the development of Clepsydra,
a WCET analyzer for Java [4]. Every line of code in this
tool was new and untested, and the sheer difficulty of com-
puting WCET by hand meant that verification of the tool’s
correctness was limited. Fortunately, a similar WCET anal-
ysis tool for Java had recently been published [10], allowing
direct comparison of the two tools across a variety of test
cases. In some instances, discrepancies between the results
were traced to bugs in Clepsydra (usually related to cache
analysis), while other discrepancies were caused by the sec-
ond tool’s handling of array variables. In both cases, the
bugs were logged and eventually fixed, leading to an im-
provement in quality of both tools.

Even when there is no second or third tool for compari-
son, N-version programming can still provide benefits. This
counter-intuitive observation comes from the fact that a sin-
gle tool may incorporate different versions of the same algo-
rithm. The Clepsydra tool, for example, initially provided
a longest-path search algorithm based on integer linear pro-
gramming (ILP), but it was found to be impractically slow
in some cases due to the NP-hard complexity of ILP. A sim-
pler, faster alternative based on recursion of the control flow
tree was thought to produce identical results, at least in the-
ory [4]. Testing this theory was simply a matter of apply-
ing N-version programming: A battery of test cases was run
against the faster but untested tree-based algorithm and the
slower but known-good ILP implementation, and the results
were compared. Discrepancies were indeed found and traced

back to implementation mistakes, but eventually both algo-
rithms yielded the same answers for all tests.

4. TOWARD A WCET ECOSYSTEM
Eventually, the proliferation of WCET analysis tools could

become a large-scale instance of N-version programming.
Teams of programmers around the globe, working indepen-
dently to create the same type of tool, would implicitly pro-
vide a check for the other, ensuring that WCET analysis is
safe. Importantly, the work of creating these redundant im-
plementations would be distributed across all customers of
the tools, making the cost of N-version programming negli-
gible.

At the moment, this scenario is only a dream. It assumes
that a sufficient number of WCET analysis tools is readily
available, but for now there exist only a handful of such tools
from academia and industry. What is needed is an ecosys-
tem: a healthy population of a variety of interchangeable
tools from a variety of independent vendors.

The advent of such an ecosystem is currently blocked,
however, largely due to technical limitations. For example,
some tools target just one or two specific processors, and
all of them place certain restrictions on the kind of source
code that they can analyze. Some allow recursion, while
others do not; some support C++, while others do not. Be-
cause each tool handles a slightly different set of processor
models and source code features, they cannot act as drop-in
replacements for each other. For the goal of N-version pro-
gramming, which demands interoperability, these are major
obstacles.

Yet even small obstacles, put in place by the arbitrary de-
cisions of WCET tool implementors, remain unsolved. Con-
sider loop bound annotations, which allow the tool’s user to
specify the maximum number of iterations of a loop. Such
annotations are necessary in cases where the tool cannot au-
tomatically determine the loop bound. Inexplicably, every
tool insists on its own proprietary syntax for expressing this
bound, as shown in Table 1. Each row of the table provides
an example of how a loop bound of ten would be annotated
for a particular tool. Observe that not one of these fourteen
tools shares a common syntax.

This compatibility issue—merely an artificial boundary—
is therefore a sign of immaturity in the field. There is no
technical reason why WCET tools cannot share the same
syntax for loop annotations. Tool implementors simply have
not agreed on a common standard [5]. There are clearly
opportunities for practitioners and researchers to work to-
gether more closely and more often, for the benefit of the
field as a whole. Until this happens, source code for hard
real-time systems will remain locked to the flavor of a partic-
ular analysis tool, and the potential of N-version program-
ming cannot be realized.

5. CONCLUSION
Software faults may not be strictly independent, as re-

quired by N-version programming. If, for example, software
derives from the same specification or requirements docu-
ment, different teams of developers creating that software
may make the same mistakes when interpreting the docu-
ment. WCET analysis tools, however, are not built from a
spec. Approaches to cache analysis, in particular, rely on
creative strategies and innovative algorithms, rather than

159

Table 1: A sample of WCET loop annotation styles

Tool Example Syntax

aiT /* ai: loop here max 10; */

Bound-T loop repeats 10 times;

calc wcet 167 WCET LOOP BOUND (10)

Chronos line45 <= 10

Clepsydra @LoopBound(max=10)

Heptane for (i = 0; i < N; i++) [10] {...}

OTAWA loop 0x0005013c 10;

RapiTime #pragma RPT loop max iter (10);

Sk̊anerost /*$ loop-bound 10 */

TuBound #pragma wcet trusted loopbound(10)

WCA //@WCA loop=10

WCC Pragma(”loopbound min 10 max 10”)

WCETAn WCETAn.Loopcount(10);

XRTJ //@ Loopcount(10)

simply implementing a set of use cases. The inherent com-
plexity of the analysis makes independent faults more likely.

Whatever the explanation, it is clear that N-version pro-
gramming, given the proper context, can lead to faster bug
discovery and correction. In fact, some of Clepsydra’s bugs
may never have been found otherwise. This anecdotal ev-
idence shows that N-version programming has merit and,
though not the only means of ensuring software correctness,
should never be rejected outright.

Of course, more research is needed. Experiments like Bril-
liant et al.’s large-scale study [2], which would involve mul-
tiple WCET analysis tools tested against dozens of indepen-
dent real-time software programs, could show the viability
of N-version programming. If successful, the results would
apply to other situations, as well. Defect finders and model
checkers, for instance, are likely to exhibit the same inde-
pendence of faults, allowing them to check each other for
correctness.

Even if such an experiment sparks a renewed interest in N-
version programming, it cannot be applied to WCET anal-
ysis tools on a larger scale until certain compatibility prob-
lems, such as annotation syntax, are overcome. With suffi-
cient effort and cooperation, however, a healthy ecosystem
of interoperable tools will one day thrive.

6. REFERENCES
[1] A. A. Avižienis. The Methodology of N-Version

Programming, chapter 2. John Wiley and Sons, 1995.

[2] S. S. Brilliant, J. C. Knight, and N. G. Leveson.
Analysis of faults in an N-version software experiment.
IEEE Transactions on Software Engineering,
16(2):238–247, February 1990.

[3] J. Engblom, A. Ermedahl, M. Sjoedin, J. Gustafsson,
and H. Hansson. Worst-case execution-time analysis
for embedded real-time systems. International Journal
on Software Tools for Technology Transfer,
4(4):437–455, August 2003.

[4] T. Harmon, R. Kirner, M. Schoeberl, and R. Klefstad.
A modular worst-case execution time analysis tool for
Java processors. In Proceedings of the Fourteenth IEEE
Real-Time and Embedded Technology and Applications
Symposium (RTAS 2008), pages 47–57, April 2008.

[5] T. Harmon and R. Klefstad. Toward a unified
standard for worst-case execution time annotations in
real-time Java. In Proceedings of the Fifteenth
International Workshop on Parallel and Distributed
Real-Time Systems (WPDRTS 2007). IEEE Computer
Society, March 2007.

[6] E. Kligerman and A. D. Stoyenko. Real-time Euclid: a
language for reliable real-time systems. IEEE
Transactions on Software Engineering, 12(9):941–949,
September 1986.

[7] M. R. Lyu and Y.-T. He. Improving the N-version
programming process through the evolution of a
design paradigm. IEEE Transactions on Reliability,
42(2):179–189, June 1993.

[8] P. Puschner and A. Burns. Guest editorial: A review
of worst-case execution-time analysis. Real-Time
Systems, 18(2-3):115–128, May 2000.

[9] B. Rieder, I. Wenzel, K. Steinhammer, and
P. Puschner. Using a runtime measurement device
with measurement-based WCET analysis. In
Proceedings of the 2007 International Embedded
Systems Symposium (IESS 2007), pages 15–26, June
2007.

[10] M. Schoeberl, W. Puffitsch, R. U. Pedersen, and
B. Huber. Worst-case execution time analysis for a
Java processor. Software: Practice and Experience,
2010.

[11] L. Sha. Using simplicity to control complexity. IEEE
Software, 18(4):20–28, July/August 2001.

[12] L. von Ahn, B. Maurer, C. McMillen, D. Abraham,
and M. Blum. reCAPTCHA: Human-based character
recognition via web security measures. Science,
August 2008.

[13] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti,
S. Thesing, D. Whalley, G. Bernat, C. Ferdinand,
R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenström. The
worst-case execution time problem—Overview of
methods and survey of tools. ACM Transactions on
Embedded Computing Systems, 7(3):1–53, April 2008.

160

