
ENNA: Software Effort Estimation Using Ensemble of
Neural Networks with Associative Memory

Yigit Kultur
Bogazici University

Computer Engineering
34342, Bebek, Istanbul, Turkey

+90 542 660 19 56

yigit.kultur@boun.edu.tr

Burak Turhan
Bogazici University

Computer Engineering
34342, Bebek, Istanbul, Turkey

+90 212 359 72 27

turhanb@boun.edu.tr

Ayse Basar Bener
Bogazici University

Computer Engineering
34342 Bebek, Istanbul, Turkey

+90 212 359 72 26

bener@boun.edu.tr

ABSTRACT

Companies usually have limited amount of data for effort

estimation. Machine learning methods have been preferred over

parametric models due to their flexibility to calibrate the model

for the available data. On the other hand, as machine learning

methods become more complex they need more data to learn

from. Therefore the challenge is to increase the performance of

the algorithm when there is limited data. In this research we used

a relatively complex machine learning algorithm, neural networks,

and showed that stable and accurate estimations are achievable

with an ensemble using associative memory. Our experimental

results revealed that our proposed algorithm (ENNA) achieves on

the average PRED(25) = 36.4 which is a significant increase

compared to Neural Network (NN) PRED(25) = 8.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management – cost estimation

General Terms
Management, Economics, Theory.

Keywords
Effort Estimation, Cost Estimation, Neural Network, Multilayer

Perceptron, Ensemble, Associative Memory, Bootstrap, Adaptive

Resonance Theory, K nearest neighbors.

1. INTRODUCTION
Effort estimation in software project management has become an

important task for companies. Over and under estimating the

effort cause either waste of resources or they result in

compromising the product quality. The critical success factors in

a software development project are the budget, schedule and

defect rate. Accurate effort estimation helps managers to optimize

all three pillars.

Companies usually have small number of completed projects and

consequently limited amount of effort data for estimating the

effort of new projects. It is hard to make accurate estimations with

scarce data because as the problem and estimation methods

become more complex, it becomes harder to learn effort function

with small datasets.

In this paper we investigate the use of neural networks for effort

estimation. Neural Networks (NN) have been widely used in

previous research [1, 2, 3, 4]. However, NN are complex models

with too many parameters to estimate. Hence, relatively large

datasets are required for accurate and stable estimates.

Furthermore, NN are sensitive to training data, prone to get stuck

in local minimums and they do not explicitly use analogies in

training data.

In order to overcome these drawbacks, we propose the Ensemble

of Neural Networks with Associative Memory (ENNA), where we

benefit from bootstrapping and look-up tables. We compare our

ENNA model with standard NN and another widely used method

in effort estimation, regression trees, on publicly available

datasets. The results of our experiments show that ENNA not only

improves the effort estimation performance in terms of MMRE,

MdMRE and PRED(25), but also achieves robust and stable

results with lower variances. As a proof of stability we will show

that PRED(25) results of ENNA are at least 4 times better than

standard NN. ENNA also achieves the minimum relative error

rates compared to other models.

In practice, ENNA allows project managers to make accurate and

stable effort estimations even with limited amount of data and it

does not require any local calibration. Thus, it provides a way of

efficient allocation of project resources with minimum manual

labor.

The remaining of this paper is structured as follows: In Section 2,

background information about the effort estimation literature is

given. In Section 3, multiple neural networks are combined to

propose ensemble of neural networks (ENN) model. Furthermore,

associative memory is combined with ENN to form the final

model, ensemble of neural networks with associative memory

(ENNA). In Section 4, datasets, evaluation criteria, validation

methods are explained. Additionally, experimental results are

analyzed and threats to validity are discussed, In Section 5, the

concluding remarks are stated and the future work is discussed.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SIGSOFT 2008/FSE-16, November 9--15, Atlanta, Georgia, USA

Copyright 2008 ACM 978-1-59593-995-1 ...$5.00.

330

2. BACKGROUND
Many researchers proposed parametric models for effort

estimation [5, 6, 7, 8, 9, 10, 11]. These models define effort as a

function of variables such as lines of code, function points,

personnel capabilities and process maturity. COCOMO,

COCOMO II and Function Points Analysis are the most popular

parametric models [12].

Despite their popularity, parametric models have important

drawbacks [13]. Parametric models are unable to deal with

exceptional conditions such as personnel, teamwork and match

between skill-levels and tasks. In addition to that, parametric

models can only be calibrated manually. Machine learning

methods are good alternatives to address these drawbacks. So far,

many researchers have used machine learning methods in effort

estimation [1, 2, 3, 4, 14, 15, 16]. These methods focus on

learning from past projects to provide estimations for future

projects. Case-based reasoning, regression trees, artificial neural

networks and genetic algorithms are some of the most popular

machine learning methods in effort estimation domain [12].

Case-based reasoning is the process of estimating the effort of a

current project by using the actual efforts of similar past projects.

Estimation by analogy is a form of case-based reasoning. The

steps of this method are identification of the project as a new case,

retrieval of similar projects from the repository and effort

estimation by using knowledge of similar projects. Similarity of

projects can be assessed via various approaches including nearest

neighbor algorithms, manual human expert guidance and goal

directed preference [14].

Regression tree is a hierarchical model where a local region is

identified in a sequence of recursive splits in a small number of

steps [17]. Software project attributes are used to split projects

into smaller groups and this process is recursively repeated to

form a regression tree [1, 2].

Genetic algorithms treat software effort equations as

chromosomes. Instantly, a number of random effort equations are

generated. Thereafter, a new population of effort equations is

created from previous effort equations by applying genetic

operations to the most accurate equations until an accurate enough

effort equation is derived [15, 16].

Neural networks are universal approximators [18]. In other words,

a neural network can learn any function. Since software effort can

be defined as a function of several project characteristics, neural

networks have the ability of learning this function and estimating

the efforts of new software projects. Previously, neural networks

have been used popularly for software effort estimation [1, 2, 3,

4].

Despite their popularity in software effort estimation, neural

networks have several drawbacks. Firstly, neural networks are

unstable structures. In other words, small changes in the training

set cause large difference in the trained neural network [19].

Secondly, overtraining of neural networks has a negative impact

on prediction accuracy. These drawbacks may be eliminated by

combining multiple neural networks. Therefore, we look for the

answer of the following question. Can we improve software effort

estimation accuracy by using an ensemble of neural networks

rather than a single one? Using an ensemble of neural networks

and combining their estimations in a robust way provide the

answer. Previously, ensemble of learners has been used in defect

prediction [20].

Neural networks are memoryless structures. They store project

information as weights during training and once they are trained,

they do not need those projects any more. Naturally, the following

question appeared. Can we use past projects for further accuracy

improvement? To find an answer, we used past projects to

decrease the bias of the ensemble. Since the “associated” past

projects are retrieved and used, we use the term associative

memory.

3. ENSEMBLE OF NEURAL NETWORKS

WITH ASSOCIATIVE MEMORY (ENNA)
In the first subsection, the mechanism of ensemble of neural

networks (ENN) is explained. Afterwards, the concept of

associative memory is combined with ENN to form ensemble of

neural networks with associative memory (ENNA).

3.1 Ensemble of Neural Networks (ENN)
Neuroscientists have discovered that individual neural networks

are very noisy and are unable to perform a certain task alone [21].

The neural networks in the visual cortex, which provide the ability

of sight, can be given as an example. Examining the activity of a

single visual neural network is not enough to reconstruct the

visual scene that the owner of the brain is looking at. Therefore, a

population of visual neural networks provides the visual scene .

There is a similar issue for multilayer perceptrons (MLP). If the

function is complex, a MLP may not learn the function perfectly

in all regions of the input space. Therefore, significant bias may

appear for regions of the input space in which the function is not

perfectly trained. In addition to this, small changes in the training

set of a MLP causes large difference in the trained MLP. In other

words, learning algorithm has high variance, which affects the

learning performance negatively [19, 22]. Another problem is

overtraining. Initially all weights in MLP are close to zero and

consequently have little effect. As the training continues, the most

important weights start moving away from zero and they become

utilized. However, if the training continues further, “all” weights,

including the less important ones, move away from zero and

become utilized. This increases complexity and leads to poor

generalization. Using a validation set solves the problem of

overtraining. When the error on the validation set starts to

increase beyond a certain point, the training is stopped [22].

However, this method is not applicable for software effort

estimation domain in which data sets are very small. All instances

are essential for training and they should be used for training.

Using an ensemble of MLP’s and combining the results of

individual MLP’s may provide a solution to the problems which

331

Figure 1. ENN training

are stated above. The main idea of the ensemble is training each

MLP with a specific training set. Each training set is generated by

randomly choosing training projects from the original training set,

which contains all past projects. After each project is chosen, it is

replaced back to the original set. Therefore, a project may appear

more than once in the generated specific training set. The number

of projects in each training set is equal to the number of projects

in the original training set. This method is called bootstrapping

and it is considered as the best way of forming specific training

sets for domains with very small datasets such as software effort

estimation [22].

In this research, each MLP has one hidden layer with 8 hidden

nodes and it is trained with Levenberg-Marquardt algorithm [23,

24]. Levenberg-Marquardt algorithm is a type of backpropagation

algorithm and is very efficient in training moderate sized neural

networks, which have up to several hundred weights [25]. The

hidden nodes and the output node apply hyperbolic tangent

sigmoid function to the weighted sum of its inputs. The ensemble

consists of 20 MLP’s that have these attributes.

The training process is shown in Figure 1. Original training set is

the set of past projects whose features and actual effort values are

known. Training sets are generated by bootstrapping and each

MLP is trained with the corresponding training set.

Now, ENN is ready for estimating the effort of new projects.

When a new project is given as input, each MLP in the ensemble

returns its own result as in Equation 1:

=

20

2

1

PM

.

.

PM

PM

PM

(1)

where PMi is the person-month value estimated by ith MLP.

The estimations made by some MLP’s may deviate much from the

largest group of nearby estimations, because some MLP’s would

have fallen into local minimum and some others would have been

inaccurately trained because of the random individual training set.

Therefore, a simple average of all estimations would not be an

accurate result. Instead, it would be good practice to detect the

largest group of nearby results and return the average of this

group. In other words, the results that are not a member of this

group should be ignored, i.e. treated as outliers. For this purpose,

clustering is used. At that moment, the number of result groups is

not known. Therefore, the clustering algorithm should start with

one single cluster, add new clusters as they are needed and delete

the empty clusters. Adaptive Resonance Theory

ρ ρρ ρ ρ ρ ρ ρ

Figure 2. ART algorithm

332

Figure 3. ENN simulation

(ART) algorithm, which follows such an incremental approach,

is used in this research [26]. To enhance clarity, ART algorithm

is simulated in Figure 2. The ensemble consists of 20 MLP’s

and provides 20 estimations for the given new project. Each

MLP gives a result that is a scalar effort value in person-months.

ART algorithm divides these results into four clusters. The

largest cluster is C3. Therefore, average of the results in C3 is

taken to provide the result of the ensemble. ρ, namely vigilance,

indicates the distance between the center and the border of the

cluster.

By using ART algorithm the largest group of results is detected.

The average of the results in the largest group is taken as in

Equation 2 to provide the effort estimated by the ensemble.

C

i

Ensemble
N

PM
PM

∑=

(2)

where C is the largest cluster, NC is the number of results in C

and ∀ PMi ∈C.

The overall process of ensemble effort estimation is shown in

Figure 3. A new project, namely Production Instance, is fed to

ENN. Each MLP evaluates the given project and provides an

estimated effort value. PMi is the estimated effort value of MLPi.

At this moment, there are 20 estimated values. These values are

clustered by using ART algorithm and the average of the largest

cluster is calculated as in Equation 2 to provide the estimated

value by the ensemble, namely PMEnsemble.

3.2 Associative Memory
Using an ensemble rather than a single MLP and combining the

results of MLP’s by using a robust method provide a model for

accurate software effort estimation. However, there may still be

considerable bias of this model. Therefore, the concept of

associative memory is used for estimating and correcting the

bias.

An associative memory is a system, which stores mappings of

specific input representations to specific output representations.

The word “associative” comes from the fact that this system

“associates” two patterns such that when one is encountered

subsequently, the other can be reliably recalled [27]. In software

effort estimation domain, the effort database of past projects

corresponds to the associative memory.

When a new project is given to the ensemble, the estimated

effort is returned as in Equation 2. In order to correct bias, the

bias of the model for the new project must be estimated.

The key idea here is that the model bias is similar for similar

projects. Therefore, similar past projects in the effort database

are used for estimating the bias of the model for the new project.

These projects are retrieved from the database using k nearest

neighbours algorithm [22]. These nearest neighbors are given to

the ensemble to get estimated effort values as in Equation 2. The

difference between the actual and the estimated values gives the

bias of the ensemble for those projects. The average of biases for

nearest neighbors is taken to get the estimated bias for the new

project as in Equation 3.

∑
∈

−=

kNi

(i)PM(i)PM
k

1
Bias EnsembleActualEstimated (3)

where Nk is the collection of k nearest neighbors, PMActual(i) is

the actual person-month value for project i and PMEnsemble(i) is

the estimated person-month value for project i. Lastly, estimated

bias value is added to the estimated effort of the ensemble to get

the final estimated effort as in Equation 4.

EstimatedEnsembleFinal BiasPMPM +=

(4)

The steps of ENNA effort estimation can be seen in Figure 4. In

step 1, new project is given to the ensemble to get the estimated

value, namely PMEnsemble. In step 2, projects that are similar to

the new project are retrieved from the effort database and given

to the ensemble to get estimated values,

333

Figure 4. ENNA simulation

PMEnsemble(i). Actual efforts for the projects, PMActual(i), are

already known since they are past projects. Therefore, Equation

3 gives the estimated bias for the new project, BiasEstimated.

Finally, BiasEstimated is added to PMEnsemble to provide PMFinal as

in Equation 4.

4. EXPERIMENTAL RESULTS

4.1 Datasets
In this research, five datasets are used for evaluating the

performance of the proposed model. Three of them are

COCOMO based, one of them is COCOMO II based and the

remaining one is Function Points based.

COCOMO based datasets are NASA dataset, NASA 93 dataset

and USC dataset [28]. In these datasets, each project is

described with 15 effort multipliers, lines of code value and

actual effort value. Effort multipliers can be grouped into four

categories as product attributes, hardware attributes, personnel

attributes and project attributes. Actual effort is the goal value

and is measured in person-months. NASA dataset includes 60

NASA projects from the 1980’s and 1990’s. These projects are

sequencing, avionics and mission planning projects. NASA 93

dataset consists of 93 NASA projects. These projects are from

1970’s and 1980’s. USC dataset contains 63 projects, which

were analyzed by Barry Boehm to introduce COCOMO [28].

Softlab Data Repository (SDR) is collected at Bogazici

University Software Engineering Research Laboratory (SoftLab)

from software development organizations in Turkey [29]. SDR

is a COCOMO II based dataset and it consists of 24 projects.

For each project in this dataset, there are 17 cost drivers, 5 scale

drivers, lines of code value and actual effort value. Cost drivers

can be grouped into four categories as product factors, platform

factors, personnel factors and project factors. Scaling factors

define organizational behavior such as process maturity and

team cohesion. Actual effort is the goal value and is measured in

person-months. SDR dataset consists of projects, which were

implemented in 2000’s. Therefore, effects of new methodologies

in software engineering are more visible in this data set.

Desharnais dataset consists of 77 projects from the late 1980’s

[28, 30]. These projects are commercial projects that were

implemented in a Canadian software house. Each project is

defined with team experience, manager experience, year that the

project ended, basic logical transactions in the system, number

of entities in the data model, non adjusted function points,

adjustment factor, adjusted function points, programming

language and actual effort value. Actual effort is the goal value

and is measured in person-hours.

4.2 Evaluation Criteria
Evaluating the effort estimation accuracy of a model is based on

comparing the actual effort with the estimated effort. Therefore,

we used such criteria that have become standards for model

evaluation. These criteria are MMRE, MdMRE and PRED(L)

[31].

MMRE is the mean magnitude of relative error and represents

the average of the absolute values of relative errors. The

equation of MMRE is in Equation 5 below:

334

∑
−

=
N

Actual

ActualFinal

PM

PMPM

N

1
MMRE (5)

where N is the total number of estimations PMFinal is the

estimated effort value and PMActual is the actual effort value.

MMRE is very sensitive to large deviations in the estimation.

Therefore, the median of the absolute values of relative errors

(MdMRE) is also used.

PRED(L) reports the percentage of the estimates that fall within

±L% of the actual value. The equation for PRED(L) is in

Equation 6 as below:

N

k
PRED(L) = (6)

where k is the number of estimations that fall within ±L% of the

actual value and N is the total number of estimations.

It is suggested that an acceptable value of L is 25 or less [31].

Therefore, PRED(25) is used in these experiments.

4.3 Validation Method
For evaluating the performance of models, holdout method with

random sub sampling is used [32]. A number of test instances

are chosen randomly from the original set and the remaining

instances form the training set. A model is trained and tested

with mutually exclusive training set and test set respectively.

This process is repeated 25 times and the best case, the worst

case, average and standard deviation of the evaluation criteria

are reported. Observing extreme points provides additional

information about the limits of a model.

In order to check for statistical significance of results, t-tests

with 95% confidence interval are conducted.

4.4 Experiment Analysis
In this research, multiple neural networks are used to form

ensemble of neural networks (ENN). For this purpose, each

MLP is trained on different training sets obtained by

bootstrapping method and their estimations are filtered by ART

algorithm. Thereafter, associative memory is combined with

ENN to form ensemble of neural networks with associative

memory (ENNA). K nearest neighbors algorithm is used to

implement associative memory concept. The basic building

block of the proposed model is single neural network (NN).

Therefore, NN is also evaluated so that the reader may observe

whether the proposed ideas provide accuracy improvement.

Comparing the proposed models, namely ENN and ENNA, with

only NN does not provide enough objectivity. Therefore,

regression tree (RT), which is a popular [12] and efficient [33]

machine learning method, is also evaluated.

In these experiments, we keep the training set as large as

possible for better training. For a dataset of size N, about N/6 of

the projects are used for testing whereas the remaining projects

are used for training. K nearest neighbours algorithm seeks for

the projects that are most similar to the new project. However,

effort estimation datasets are small by nature and consequently

there exist a few similar projects. Therefore, k is kept small

because large k may decrease the accuracy. K nearest neighbors

algorithm is run with k = N/10. These parameters are listed in

Table 1.

Table 1. Experiment parameters

Dataset Training Test Total k

NASA 50 10 60 6

NASA 93 78 15 93 9

USC 53 10 63 6

SDR 20 4 24 2

Desharnais 64 13 77 8

Five datasets are used for evaluating the performances of RT,

NN, ENN and ENNA. Evaluation results are listed in Table 2.

For all datasets, NN has the worst estimation accuracy. On the

other hand, ENN achieves a considerable improvement in

accuracy. This shows that an ensemble of inaccurate models can

make accurate estimations. Furthermore, ENNA outperforms

ENN, which shows the positive effect of associative memory.

Both ENN and ENNA are better than RT, which is one of the

most accurate machine learning methods [33]. Additionally, the

worst case performances of ENN and ENNA are always better

than the best case performance of NN. In addition to these,

standard deviation of ENN and ENNA are small and this fact

implies that they are stable models.

T-test results support the evaluation results. For the majority of

cross comparisons between these models, ENN outperforms RT

and NN. Furthermore, ENNA is better than RT, NN and ENN.

4.5 Threats to Validity
In this research, five datasets are used for evaluating the

accuracy of models. Two of them consist of projects that are

implemented in NASA software development centers. Although

NASA datasets are considered to be relevant to the general

software engineering industry [34], we used three other datasets

to ensure external validity. These datasets are USC, SDR and

Desharnais datasets. The projects in these datasets were

implemented via methods that are organizationally and

culturally different from NASA datasets. Attitudes toward

hierarchy and sense of time are the most important cultural

differences, which have direct impact on the software

development effort [35].

The proposed model provided similar results for all datasets.

This fact shows that the proposed models can be applied to a

wide range of software projects from different countries.

5. CONCLUSION AND FUTURE WORK
Accurate estimation of software effort is essential in the software

development industry. However, it is hard due to the scarcity of

project data. Parametric models such as Cocomo and FPA have

been used in the industry. Since these models needed local

calibration effort, learning based models such as machine

learning models have become popular.

335

Table 2. Evaluation results

MMRE (%) MdMRE (%) PRED(25) (%)

 Best Worst

Average

(Std Dev) Best Worst

Average

(Std Dev) Best Worst

Average

(Std Dev)

RT 48.03 82.47

66.02

(11.64) 37.76 64.34

46.14

(7.99) 30.00 10.00

24.00

(8.43)

NN 122.14 385.29

184.46

(82.22) 89.63 118.75

97.97

(8.00) 20.00 0.00

5.00

(8.50)

ENN 49.23 66.13

55.71

(5.11) 32.50 47.39

41.82

(4.40) 40.00 30.00

32.00

(4.22)

N
A
S
A

ENNA 36.04 55.66

47.66

(6.62) 26.07 41.10

33.17

(4.34) 50.00 30.00

38.00

(6.33)

RT 334.97 532.68

394.34

(65.11) 51.71 67.10

58.94

(5.83) 26.67 6.67

20.67

(6.63)

NN 232.13 1,925.40

527.69

(502.77) 94.19 197.69

107.76

(31.86) 13.33 0.00

6.00

(4.92)

ENN 50.49 72.76

62.28

(7.56) 39.10 59.64

49.54

(8.31) 40.00 26.67

30.67

(4.66)

N
A
S
A
 9
3

ENNA 46.43 64.86

54.35

(7.03) 27.05 41.44

36.91

(4.19) 40.00 26.67

32.67

(3.78)

RT 176.02 918.37

323.23

(217.49) 76.02 311.88

135.72

(75.20) 10.00 0.00

1.00

(3.16)

NN 1,934.80 14,829.00

5584.90

(4848.40) 96.71 2,717.20

657.39

(914.76) 0.00 0.00

0.00

(0.00)

ENN 73.42 127.16

105.52

(20.46) 54.10 78.71

67.83

(8.80) 20.00 10.00

18.00

(4.22)

U
S
C

ENNA 56.99 129.06

85.44

(25.83) 49.25 71.61

61.42

(7.12) 40.00 20.00

24.00

(6.99)

RT 120.07 882.45

434.77

(241.59) 56.61 796.51

205.64

(266.72) 25.00 0.00

10.00

(12.91)

NN 315.17 12,774.00

2274.10

(3791.30) 87.67 17,000.00

1892.00

(5309.60) 25.00 0.00

15.00

(12.91)

ENN 36.25 83.40

49.85

(13.47) 30.41 49.82

38.60

(6.27) 50.00 25.00

47.50

(7.91)

S
D
R

ENNA 22.23 53.45

39.88

(10.95) 10.90 44.42

29.10

(11.92) 75.00 25.00

55.00

(15.81)

RT 68.07 251.80

119.36

(58.74) 39.74 62.73

47.67

(7.64) 30.77 15.39

23.85

(5.68)

NN 83.28 291.93

154.20

(69.00) 66.01 140.20

84.91

(23.57) 23.08 0.00

14.62

(8.47)

ENN 52.52 64.36

57.85

(3.42) 47.40 53.64

50.06

(2.21) 30.77 15.39

23.08

(5.13)

D
E
S
H
A
R
N
A
IS

ENNA 42.05 55.76

49.82

(5.05) 35.59 49.03

44.13

(4.57) 46.15 23.08

33.08

(7.30)

336

In this research, a new machine learning method for software

effort estimation is proposed and evaluated. In this model an

ensemble is used rather than a single MLP. When a new project

is given to the model for estimation, each MLP provides its own

result. These results are divided into clusters and the average of

the largest cluster is returned. Additionally, variance is

decreased because the result of the ensemble is the average of

the results in the largest cluster. In addition to the use of

ensemble approach in this model, associative memory is used for

bias correction. The bias of the ensemble for similar projects is

calculated and added to the result of the ensemble to provide the

final result.

The proposed models, ENN and ENNA are shown to be

accurate effort estimators. Furthermore, their accuracies stay in a

narrow region as observed from the best case and the worst case

values. This fact shows that the proposed models are stable and

reliable. We have also checked the external validity to examine

whether the proposed models can be used for a wide range of

software projects from different countries.

We have focused on a practical problem, which is the difficulty

of learning effort estimators from limited amount of data. We

aimed at increasing the performance of machine learning models

that allow automatic calibration, which have to be carried out

manually in parametric models. We have empirically shown that

our proposed models are both more accurate and stable than

standard NN. Since we focused on learning oriented models,

parametric models are out of the scope of this research.

Therefore, we did not compare the proposed approach with

parametric models such as COCOMO and COCOMO II. In a

previous research, we have already proved that learning oriented

models make similar or better estimations than parametric

models do [33]. The practical impact of ENNA is to allow

project managers to make both accurate and stable effort

estimations, which leads to better project planning and efficient

allocation of scarce resources. We do not claim that the

proposed model is unrivalled. However, our empirical results

show that it may guide the practitioners to estimate project effort

as a secondary tool for decision making.

Understandability is an important criterion to judge a model,

because the user of the model may want to focus on the facts

that affect the result. However, a NN stores the experience of

past projects internally and it is impossible to induce rules from

a NN. Going forward RT’s instead of NN’s may be used as

Ensemble of Regression Tress with Associative Memory

(ERTA) to address the issue of understandability.

In this research, we used many datasets each consisting of less

than 100 projects. Another future direction would be to analyze

the sensitivity of our model to the size of the dataset.

6. ACKNOWLEDGEMENTS
This research is supported in part by Bogazici University

Research Fund under grant number BAP-06HA104.

7. REFERENCES
[1] Srinivasan, K. and Fisher, D., 1995. Machine

Learning Approaches to Estimating Software

Development Effort, IEEE Transactions on Software

Engineering, Vol. 21, No. 2 (February 1995), Pages:

126-137

[2] Younghee, K. and Keumsuk L., 2005. A Comparison

of Techniques for Software Development Effort

Estimating, System Integration

[3] Venkatachalam, A. R., 1993. Software Cost

Estimation Using Artificial Neural Networks,

Proceedings of 1993 International Joint Conference on

Neural Networks, Vol. 1, (October 1993), Pages: 987-

990

[4] Finnie, G. R. and Wittig, G. E., 1996. AI Tools for

Software Development Effort Estimation, Proceedings

of International Conference on Software Engineering:

Education and Practice (SE:EP '96), Pages: 346

[5] Ahn, Y., Suh, J., Kim, S. and Kim, H., 2003. The

Software Maintenance Project Effort Estimation

Model Based on Function Points, Journal of Software

Maintenance and Evolution: Research and Practice,

Vol. 15, Issue 2 (April 2003), Pages: 71-85

[6] Adrangi, B. and Harrison, W., 1987. Effort Estimation

in a System Development Project, Journal of Systems

Management, Vol. 36, Issue 8, Pages: 21-23

[7] Banker, R. D., Chang, H. and Kemerer, C. F., 1994.

Evidence on Economies of Scale in Software

Development, Information and Software Technology,

Vol. 36, Issue 5, Pages: 275-282.

[8] Benediktsson, O., Dalcher, D. and Reed, K., 2003.

COCOMO-Based Effort Estimation for Iterative and

Incremental Software Development, Software Quality

Journal, Vol. 11, Issue 4, Pages: 265-281

[9] Harrison, W. and Adrangi, B., 1987. The Role of

Programming Language in Estimating Software

Development Costs, Journal of Management

Information Systems, Vol. 3, Issue 3, Pages: 101-110

[10] Bielak, J., Improving Size Estimates Using Historical

Data, 2000. IEEE Software, Vol. 17, Issue 6

(November-December 2000), Pages: 27-35

[11] Kaplan, H. T., 1991. The Ada COCOMO Cost

Estimating Model and VASTT Development

Estimates vs. Actuals, Vitro Technical Journal, Vol. 9,

Issue 1, Pages: 48-60

[12] Jorgensen, M., and Shepperd, M., 2007. A Systematic

Review of Software Development Cost Estimation

Studies, IEEE Transactions on Software Engineering,

Vol. 33, No. 1 (January 2007), Pages: 33-53

[13] Kemerer, C. F., 1987. An Empirical Validation of

Software Cost Estimation Models, Communications of

the ACM, Vol. 30, Issue 5 (May 1987), Pages: 416-

429

[14] Shepperd, M. and Schofield, C., 1997. Estimating

Software Project Effort Using Analogies, IEEE

Transactions on Software Engineering, Vol. 23, No.

12 (November 1997), Pages: 736-743

[15] Burgess, C. J. and Lefley, M., 2001. Can genetic

programming improve software effort estimation? A

337

comparative evaluation”, Information and Software

Technology 43, Pages: 863-873

[16] Shan, Y., McKay, R. I., Lokan, C. J. and Essam, D. L.,

2002. Software Project Effort Estimation Using

Genetic Programming, International Conference on

Communications, Circuits and Systems and West Sino

Expositions, Vol. 2, Pages: 1108-1112

[17] Breiman, L., Friedman J., Olshen, R. A. and Stone C.

J., 1984. Classification and regression trees,

Wadsworth

[18] Hornik, K., Stinchcombe, M. and White, H., 1989.

Multilayer Feedforward Networks are Universal

Approximators, Neural Networks, Vol. 2, Issue 5,

Pages: 359-366

[19] German, S., Bienenstock, E. and Doursat R., 1992.

Neural Networks and the Bias/Variance Dilemma,

Neural Computation, Vol. 4, Issue 1 (January 1992),

Pages: 1-58

[20] Oral, A. D. and Bener, A., 2007. Defect Prediction for

Embedded Software, ISCIS 2007, Ankara, Turkey,

November 7-9 2007

[21] Abeles, M., 1991. Corticotronics: Neural circuits of

the cerebral cortex, Cambridge University Press, New

York

[22] Alpaydın, E., 2004. Introduction to Machine Learning,

MIT Press, 2004

[23] Levenberg, K., 1944. A Method for the Solution of

Certain Non-Linear Problems in Least Squares, The

Quarterly of Applied Mathematics 2, Pages: 164-168

[24] Marquardt, D., 1963. An Algorithm for Least-Squares

Estimation of Nonlinear Parameters, SIAM Journal on

Applied Mathematics 11, Pages: 431–441.

[25] Hagan, M. T. and Menhaj, M. B., 1994. Training

Feedforward Networks with the Marquardt Algorithm,

IEEE Transactions on Neural Networks, Vol. 5, Issue

6 (November 1994), Pages: 989-993

[26] Carpenter, G. A. and Grossberg, S., 1988. The ART of

Adaptive Pattern Recognition by a Self-Organizing

Neural Network, IEEE Computer, Vol. 21, Issue 3

(March 1988), Pages: 77-88

[27] Kohonen, T., 1984. Self-Organization and Associative

Memory, Springer Series In Information Sciences,

Vol. 8.

[28] Boetticher, G., Menzies, T. and Ostrand T., 2007.

PROMISE Repository of empirical software

engineering data http://promisedata.org/ repository,

West Virginia University, Department of Computer

Science

[29] Software Research Laboratory, Bogazici University,

SDR Dataset for Cost Estimation,

http://softlab.boun.edu.tr/?q=resources

[30] Desharnais, J. M., 1989. Analyse statistique de la

productivitie des projets informatique a partie de la

technique des point des function, University of

Montreal, Masters Thesis

[31] Conte, S. D., Dunsmore, H. E. and Shen, V. Y., 1986.

Software Engineering Metrics and Models, Benjamin-

Cummings Publishing, Menlo Park CA

[32] Kohavi, R., 1995. A Study of Cross-Validation and

Bootstrap for Accuracy Estimation and Model

Selection, Proceedings of the Fourteenth International

Joint Conference on Artificial Intelligence, Pages:

1137-1143.

[33] Baskeles, B., Turhan, B. and Bener A., 2007. Software

Effort Estimation Using Machine Learning Methods,

ISCIS 2007, Ankara, Turkey, November 7-9 2007

[34] Basili, V. R., McGarry, F. E., Pajerski, R. and

Zelkowitz, M. V., 2002. Lessons Learned from 25

years of process improvement: The Rise and Fall of

the NASA Software Engineering Laboratory,

Proceedings of the 24th International Conference on

Software Engineering, Pages: 69-79

[35] Hersleb, J. D. and Moitra, D., 2001. Global software

development, IEEE Software, Vol. 18, Issue 2,

(March-April 2001), Pages: 16-20

338

