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ABSTRACT
Can the methods of empirical software engineering give us an­
swers to the truly important open questions in the field?
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1. PANEL PRESENTATION 
(BERTRAND MEYER)
For all the books on software engineering, and the articles,  and 
the conferences, a remarkable number of fundamental questions,  
so fundamental  that  just  about every software project runs into 
them, remain open. At best we have folksy rules, some possibly 
true, others doubtful, and others — such as “adding people to a 
software project delays it further”1 — wrong to the point of ab­
surdity. Researchers in software engineering should, as their duty 
to the community of practicing software practitioners, try to help 
provide credible answers to such essential everyday questions. 

The purpose of this panel discussion is to assess  what answers  
are already known through empirical  software engineering, and 
to define what should be done to get more.

“Empirical software engineering” applies the quantitative meth­
ods of the natural sciences to the study of software phenomena. 
One  of its  tasks  is  to  subject  new methods  — whose  authors 
sometimes make extravagant  and unsupported claims — to ob­
jective  scrutiny.  But  the  benefits  are  more  general:  empirical 
software engineering helps  us understand  software construction 
better.

1  From Brooks’s Mythical Man-Month.

There  are  two  kinds  of  target  for  empirical  software  studies: 
products  and  processes.  Product studies  assess  actual  software 
artifacts, as found in code repositories, bug databases and docu­
mentation,  to infer general  insights.  Project studies  assess  how 
software projects proceed and how their participants work; as a 
consequence,  they  can  share  some  properties  with  studies  in 
other fields that involve human behavior, such as sociology and 
psychology. (It is a common attitude among computer scientists  
to express doubts: “Do you really want to bring us down to the  
standards of psychology and sociology?” Such arrogance is not 
justified. These sciences have obtained many results that are both 
useful and sound.)

Empirical  software engineering has been on a roll  for the past  
decade,  thanks  to  the  availability  of large  repositories,  mostly 
from open­source projects,  which hold information  about  long­
running software projects  and can be subjected  to data  mining 
techniques to identify important properties and trends. Such stud­
ies  have  already yielded  considerable  and  often  surprising  in­
sights about such fundamental matters as the typology of program 
faults (bugs),  the effectiveness of tests  and the value of certain 
programming language features.

Most of the uncontested successes, however, have been from the 
product variant of empirical software engineering. This situation 
is understandable: when analyzing a software repository, an em­
pirical study is dealing with a tangible and well­defined artifact; 
if any of the results seems doubtful, it is possible and sometimes  
even easy for others to reproduce the study, a key condition of 
empirical  science.  With processes,  the  object  of study is  more 
elusive.  If I follow a software project working with Scrum and 
another using a more traditional lifecycle, and find that one does 
better than the other, how do I know what other factors may have 
influenced the outcome; and even if I bring external factors under 
control how do I compare my results  with those of another  re­
searcher following other teams in other companies? Worse, in a 
more realistic scenario I do not always have the luxury of track­
ing actual industry projects since few companies are enlightened  
enough to let researchers into their developments; how do I know 
that I can generalize to industry the conclusions of experiments 
made with student groups?

Such obstacles  do not imply that  sound results  are  impossible;  
studies  involving human behavior  in  psychology and  sociology 
face many of the same difficulties and yet do occasionally yield  
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important and credible insights. But these obstacles explain why 
there are still  few incontrovertible  results on process aspects of 
software engineering. This situation is regrettable since it means  
that projects large and small  embark on specific methods, tools 
and languages on the basis  of hearsay, opinions and sometimes 
hype rather than solid knowledge.

No empirical study is going to give us all­encompassing results  
of the form “Agile methods yield better products” or “Object­ori­
ented programming is better than functional programming”. We 
are entitled to expect,  however, that  they help practitioners  as­
sess some of the issues that await every project. They should also 
provide a perspective on the conventional  wisdom,  justified  or 
not, that pervades the culture of software engineering. Here are 
some examples  of general  statements  and  questions  on which 
many people in the field have opinions, often reinforced by the 
literature, but crying for empirical backing:

• The  effect  of  requirements  faults:  the  famous  curve  by 
Boehm is buttressed by very old studies on special kinds of 
software  (large  mission­critical  defense  projects).  What  do 
we really lose by not finding an error early enough?

• The cone of uncertainty: is that idea just folklore?

• What  are  the  successful  techniques  for shortening  delivery 
time by adding manpower?

• The  maximum  compressibility  factor:  is  there  a  nominal 
project delivery time, and how much can a project decrease it 
by throwing in money and people?

• Pair programming: when does it help, when does it hurt? If it 
has any benefits, are there in quality or in productivity (deliv­
ery time)?

• In iterative approaches, what is the ideal time for a sprint un­
der various circumstances?

• How much requirements  analysis should be done at the be­
ginning of a project, and how much deferred to the rest of the  
cycle?

• What predictors of size correlate best with observed develop­
ment effort?

• What predictors of quality correlate best with observed qual­
ity?

• What is the maximum team size, if any, beyond which a team 
should be split?

• Is it better to use built­in contracts or just to code assertions  
in tests?

When asking these and other similar  questions relating to core 
aspects  of  practical  software  development,  I  sometimes  hear  
“Oh, but we know the answer conclusively, thanks to so-and-so’s  
study”. This may be true in some cases, but in many others one 
finds, in looking closer, that the study is just one particular ex­
periment, fraught with the same limitations as any other.

The principal aim of the present panel is to find out, through the  
contributions of the panelists — who are top contributors to em­
pirical engineering, having helped to bring up the field to its cur­
rent level of success and respect —, which questions have useful 
and credible empirical answers already available, whether or not  
widely known. The answers must indeed be:

• Empirical: obtained  through objective  quantitative  studies  of 
projects.

• Useful: providing answers to questions of interest to practition­
ers.

• Credible:  while  not  necessarily  absolute  (a  goal  difficult  to 
reach in any matter  involving human behavior),  they must be 
backed by enough solid evidence and confirmation to be taken 
as a serious input to software project decisions.

An auxiliary outcome of the panel  should be to identify funda­
mental questions on which credible, useful empirical answers do 
not exist but seem possible, providing fuel for researchers in the 
field.

To mature,  software engineering must shed the folkloric advice 
and anecdotal  evidence that  still  pervade  the field and replace  
them with convincing results, established with all the limitations 
but also all the respectability of quantitative, scientific empirical  
methods. The aim of this panel is to establish what we already 
know and what we should do to know more.

2. WHAT IS MISSING
(GIANCARLO SUCCI)
Bertrand Meyer, the organizer of the panel, has proposed a chal­
lenge  for  helping  systematizing  the  experience  coming  from 
projects with the intention of creating a sound set of propositions 
on the effectiveness of software production practices, languages, 
tools.

He spells  out his goal very clearly: “To mature,  software engi­
neering must  shed  the  folkloric advice and  anecdotal  evidence 
that still pervade the field and replace them with convincing re ­
sults,  established  with  all  the  limitations  but  also  all  the  re­
spectability of quantitative, scientific empirical methods.”

I think we should step back and ask ourselves why this is not yet 
the case. In other disciplines is not so, like in medicine; however,  
there are also subjects with the same level of uncertainty on the  
effectiveness of practices as software engineering, like manage­
ment, pedagogy, etc.

In the  past,  people  have accounted this  lack to the absence of 
suitable  tools  to  collect  data  from industry without  interfering 
with the work of who is developing software for business,  who 
cannot devote time to activities who are not directly productive. 
However, now we have such tools, especially the Non Invasive 
Measurement Tools, like PROM or Hackystat.

So, something else is missing, and I would summarize here what,  
in my humble opinion, what it is.

First, we lack a method, agreed by all key stakeholders, to store 
the results of the studies in a way that is precise, unambiguous,  
reusable both for comparisons by researchers and for use by prac­
titioners.  Using  an  overly  abused  term,  we  lack  a  commonly 
agreed and widely used ontology to describe the studies – the hy­
pothesis,  the  experimental  design,  the  collected  measures,  etc.  
Indeed, building such ontology can be boring, tedious, time con­
suming, cumbersome and not provide any direct career reward,  
and this is also because it has not been done.

Second,  we lack,  as  a  community,  a clear  commitment  toward 
such empirical evidence. Indeed, also thanks to the work done by 
many great scientists  like Vic Basili,  Dieter Rombach, Barbara  
Kitchenham, Norman Fenton, and many other, papers on empiri­
cal research are now fully accepted in major Software Engineer­
ing forums. In the past was more difficult – it took me 5 years to 
get my first work on measurement at ICSE (Maurer et al., 1999).  
However, we have papers in major forums presenting methodolo­
gies, tools, or practices that do not include any significant experi ­
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mental  validation  of what  they present.  Such papers  would  be 
completely rejected in medicine – and for a good reason. And I 
find this situation completely unacceptable.

Third, we do not appreciate enough that empirical studies require 
a very significant amount of effort. For a PhD or a junior faculty 
it is much easier to focus on some more theoretical work (which  
often,  as said above, can be done without any scientific proof),  
rather  than  to  get  involved  in  a  lengthy  experimentation  that  
might even not produce confirmation of the original hypothesis – 
and, in our discipline,  we publish typically only papers on con­
firmed hypotheses, not on rejected hypotheses! In my experience,  
the whole cycle from designing an experiment to publishing a pa­
per  in  a  top  forum lasts  at  least  four  years.  For  instance,  we 
started the planning of the experimentation that lead to our 2012 
ICSE Paper (Sillitti et al., 2012), in 2006, like this other involv­
ing a significant industrial  experimentation (Clark et al.,  2004).  
This is the duration of a long PhD or the time for a tenure evalu ­
ation... 

Lastly, we lack a sense of empiricism in our empirical studies.  
Too often we forget that an empirical study carries results that, in  
the very best, are statistically significant, meaning that have mar­
gin of errors. We are not presenting truths proven by a theorem,  
but facts that sometimes can be wrong. Well, this is true also for 
medicine: it  is  enough to look for  all  the  adverse  effects  that  
drugs can have, as described in their own leaflets – even an as ­
piring may cause the death of the patient!

This is why I really welcome this panel and I am really grateful  
to Bertrand for having initiated this work.

3. STRENGTHENING EXPERIMENTAL & 
EMPIRICAL SOFTWARE ENGINEERING 
KNOWLEDGE USING SBSE
(MARK HARMAN, WITH YUE JIA2 AND 
JENS KRINKE3 )

3.1 Overview
This position paper gives some examples from source code ana­
lysis and testing of experimental and empirical results, clarifying 
the difference between experimental  and empirical  studies  and 
arguing that  each is complementary to the other.  We use these  
examples to illustrate the paucity of experimental and empirical  
knowledge. We conclude with an outline of an approach to em­
pirical  and experimental  software engineering that  uses  Search 
Based Software Engineering (SBSE) to enhance rigour so that we 
can be more sure  of the  evidence that  underpins  experimental 
and empirical knowledge.

3.2 What Do We Know?
What do we know about software engineering? Let us be a little  
more specific. The most elementary question of all is surely 

"what do we know about the fundamental engineering material  
with which we work; the programs themselves?"

One of the first  things that we believed that we knew was that  
structured  programming was  superior  to unstructured  program­
ming.  This  belief  arose,  initially,  from Dijkstra’s  famous com­
plaint  about the use of the goto statement  [2]. However, if one  
looks for empirical evidence to support this claim, one finds very 

2  University College London, yue.jia@ucl.ac.uk
3  University College London, j.krinke@cs.ucl.ac.uk

little. It would seem that many of the things that we believed to  
be true about software are just that: beliefs. Surely many of these 
beliefs will turn out to be true. Nevertheless, we do not know the 
extent to which they are true, the situations in which the effects 
of maximal and minimal, nor any kind of bounds or assessment 
of the effect  size. This is not a good situation for a quantitative 
engineering discipline. Are we really any better than a religious  
sect?

Side  effects  are  widely  believed  to  be  harmful.  Expressions 
should be side effect free. Surely this is obvious. This ‘obvious’ 
observation motivated an entire field of programming literature: 
Functional  Programming  [4].  However,  the  authors  are  only 
aware of a single paper that attempts to empirically assess the ef­
fect of side effects on programs [3]. Surely, such an important  
foundational belief (one that underpins a whole field of research) 
deserves a greater degree of scientific investigation.

Our very limited empirical studies of this problem were able to 
demonstrate  that  side  effects  are,  indeed,  harmful  to  program 
comprehension. Perhaps the most interesting finding was that ex­
perienced programmers’ performance appears to be just as com­
promised as that of novices. This challenges the potential hubris 
of  those  more  experiences  programmers,  who  might  believe 
themselves to be sufficiently experienced to avoid any cognitive 
penalty that might accrue from programming with side effects.

However, for such an important topic it is simply not enough to 
rely on a single study. Our study considered only a very limited 
type of side  effect,  it  only considered  the C programming lan­
guage, and it only consisted of two studies: one on inexperienced 
programmers (students) and one on more experienced program­
mers (professional software engineers).

As well as the paucity of studies of important empirical problems 
there has also been a tendency to rely on a single study, particu­
larly where this provides results we might want to believe. This  
is an understandable and entirely human behaviour, but the fact  
remains  that  it  is  detrimental  to  our  science  and  engineering 
work.

For  example,  in  software  testing  research,  we  are  often  con­
cerned with the problem of evaluating the degree to which our  
testing techniques are effective and efficient. For this purpose it  
is  convenient  and expedient  to investigate  the proposed testing 
technique on simulated faults using mutation testing. This prac­
tice of using mutation testing is often justified with reference to 
the seminal work of Andrews, Briand and Labiche [1]. This is an 
important  result  for Empirical  Software Engineering. It demon­
strates that there is evidence that mutation faults are good simu­
lators  of  real  faults.  However,  there  is  too  much  temptation 
stretch  this  important  finding;  believing that  it  necessarily ap­
plies more widely in the authors would, themselves, claim. 

For example,  if one is using mutation testing on a language or 
with a set of mutation operators not considered in the paper by 
Andrews, Briand and Labiche, it would clearly be inappropriate 
to claim evidence  that  mutation  faults  adequately simulate  the  
real faults. Since many authors do tend to make such claims, this 
highlights  a pressing need for more studies  that  investigate  the 
relationship between mutation faults and real faults in languages,  
paradigms and domains not previously considered in the literat ­
ure.

3.3 Experimental vs. Empirical
It is important to recognise the difference between empirical and 
experimental  software  engineering  research  [7].  Experimental  
software engineering concerns findings that  result  from experi­
ments  conducted under  what  we might  term ‘laboratory condi­
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tions’. Empirical research is concerned with findings that are ob­
served from the so­called real world. A study on 1000 machine­
generated  problem instances is  an experimental  study. A study 
on 10 real­world problem instances is an empirical study. 

An unhealthy tendency has developed in which the community as 
a whole (and its referees in particular) tend to regard the empir­
ical studies  as inherently and fundamentally superior to experi ­
mental studies. In fact, both approaches are entirely compliment­
ary.  A robust  software  engineering  claim  should,  ideally,  be 
backed by claims supported by both empirical and experimental  
evidence.

Empirical studies are clearly valuable because they concern real  
world problems.  Evidence is  guaranteed  to be applicable  to at  
least  one real­world instance. Unfortunately, of course, one sel ­
dom has sufficiently many real­world instances on which to base 
truly  generalisable  claims.  Experimental  studies  can  provide 
complimentary evidence to help to bridge this gap.

In an experimental  study, problem instances may be  artificial, 
but  they  are  also  controllable.  This  allows  the  researcher  to 
study, experimentally, the effects of a particular algorithm, meth­
od or approach on varying degrees problem instance. Many prob­
lems are characterised by parameters that denote aspects of the  
problem ‘difficulty’. It may not be possible to obtain real­world 
examples  at  sufficiently  diverse  granularity  and  in  sufficient  
numbers to explore the impact of these parameters. 

Fortunately, using a problem instance generator, we can generate 
an arbitrary number of synthetic solutions that exhibit the charac­
teristics we seek to investigate.  This is a fundamentally  experi-
mental approach and it  allows us to consider,  under  controlled 
conditions, the effect of dependent variables on independent vari­
ables. This is the standard approach to experimental science and 
it is somewhat surprising that it seems to have become so thor­
oughly  deprecated  in  the  software  engineering  research  com­
munity.

Returning to the example of mutation testing, a study of a pro­
posed testing technique might consist of both an empirical and an  
experimental study. Mutation testing can be employed to invest­
igate  the  behaviour  of the  proposed  approach under  controlled 
conditions.  For  example,  we  can  investigate  the  testing  tech­
nique's ability to find particular kinds of fault or its performance 
slowdown with respect to certain programming language features  
known to be problematic to be approach in hand. Ideally, these 
experimental results from mutation testing ought to be combined 
with empirical  results  in the form of an evaluation of the pro­
posed technique on a suite of real software faults.

3.4 Using SBSE to Make Experiments more Robust
Many software  engineering  studies  are  concerned  with  claims 
about  the  performance  of the  particular  kind  of  approach,  al­
gorithm or tool. Typically these studies  concern experiments  in  
which an algorithm or tool is applied to problem instances in or­
der to make claims about improved effectiveness and efficiency 
compared  to  the  state­of­the­art.  Many  of  the  algorithms  and 
tools we develop are highly configurable. Sadly this poses a sig­
nificant challenge when it  comes to an experimental  evaluation 
of one technique against another.

How can  we be sure that  we have not  simply  
chosen that configuration which just so happens  
to make our chosen favourite technique appear  
to be superior to the current state of the art? 

In the remainder  of this position paper we wish to address  the  
question of how such experimental studies can be made more ro­
bust using search based techniques.

The first  step is to formulate  the problem as one in which the 
configuration  space  of  each  technique  under  investigation  be­
comes a search space. The search space is the space of all pos­
sible parameter settings for the techniques. Because of combinat­
orial explosion, it is impossible for an experimenter to report res­
ults for every possible configuration choice. Even relatively well­
understood tools have large configuration spaces.  For example, 
GCC has more than 200 different parameter settings so its con­
figuration space is larger than 2^200. 

We cannot ignore the effect of configuration choices are experi ­
ments. Different configurations can have dramatic effects on ex­
perimental  findings.  Several  approaches have been used to ad­
dress this confounding configuration problem. We could simply 
report  the  configuration  choices  and  thereby  allow  other  re­
searchers to try alternatives. We could sample from the possible 
configurations using design of experiments [9]. Alternatively, we 
could search the space of configurations seeking to optimise the 
parameter  settings for the particular  experimental  questions we 
seek to answer. 

Suppose we wish to compare Technique A against Technique B. 
Suppose that Technique A is the new proposed approach to solv­
ing our Software Engineering problem, while Technique B is the 
existing state­of­the­art.  Clearly,  we would like to demonstrate 
that  we  have  evidence  to  claim  that  Technique  A is  superior.  
Such  a  claim  can  range  from a  ‘weak  existential’  claim  to  a 
‘strong universal’ claim in terms of configurations space.

Weak existential claims:  If there exists a configuration setting 
for which Technique A outperforms Technique B, then we have a 
weak existential claim to superiority. This is the weakest possible 
form of evidence (in terms of configuration space) for the superi ­
ority of Technique A. Perhaps such a level of evidence might be 
suitable  for a workshop.  It demonstrates  that  there  is,  at  least,  
some merit in considering the technique.

We can use SBSE to search for a configuration in which Tech­
nique A is superior to Technique B. For many software engineer ­
ing techniques, this is not a demanding task. All that is required 
is  to  use  the  metrics  that  assess  the  performance of the  tech­
niques as a fitness function and to maximize this fitness over the 
configuration space. Since we must have a way of measuring the 
metric in order to make any claims about the performance of the 
techniques, it is only a small step to treat this metric as a fitness  
function [6].

In this way we would be searching for that configuration which is  
most  sympathetic  to  our  experimental  goal.  Our  experimental  
goal, in turn, is most sympathetic to Technique A. This approach 
has a natural and compelling side effect that may be beneficial:  
The harder it is for the search to find such a sympathetic config­
uration, the less we should have confidence in the proposed new 
technique.  The  experimenters'  confidence in  Technique  A will  
naturally  grow  commensurate  with  the  ease  with  which  the 
search finds sympathetic  configurations.  This  confidence might 
reach the point at which the experimenter considers moving on to 
strong universal claims for their proposed new technique.

Strong universal claims:  If there does not exist a configuration 
setting for which Technique A fails to outperform Technique B, 
then we can make a strong universal claim for the superiority of 
Technique  A over Technique  B.  This  is  the  strongest  form of 
evidence possible (in terms of the configuration space) for Tech­
nique A. 

Unfortunately, in order to provide evidence to support this claim 
we would have to present results for all  possible configurations 
of the techniques in our experimental  study. This is clearly in ­
feasible in most cases. However, we can use SBSE to approxim­
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ate the answer to this question. Suppose we searched the config­
urations that are sympathetic to Technique B. That is, we seek to 
make a  week existential  claim that  the  existing  state­of­the­art 
(Technique B) is  superior  to our new propose approach (Tech­
nique A). The degree of difficulty experienced by the search in 
finding such configurations is one indicator of the approximate 
strength of the claim we can make the superiority technique A: 
The harder it is to find configurations that support the weak ex­
istential  claim for Technique B, the stronger our belief becomes 
in the strong universal claim to the superiority of Technique A.

Our search algorithm will  be optimising the configurations that  
favour the state­of­the­art.  Therefore this  is  the kind of testing 
approach for evaluating our proposed new software engineering 
technique.  Just as a tester gains confidence in the system under 
test the longer testing proceeds without failure, we will gain con­
fidence in our technique the longer we search without finding a 
configuration that it fails to outperform. When the tester finds a  
fault in software system, it does not mean that the software sys­
tem is abandoned. The fault is either fixed or a workaround must  
be found. Similarly, if an attempt to provide a strong universal 
claim for Technique A should fail, this does not necessarily mean 
that we must abandon Technique A. Rather, we may use SBSE to 
better  understand  those  conditions  under  which  the  technique 
performs well.  This understanding provides another spin­off be­
nefit: Ultimately, we may arrive at a set of configuration condi­
tions under which we have confidence that Technique A outper­
forms Technique B. In this way, SBSE will have helped us to in­
vestigate and construct experimental hypotheses. 

Other claims derived from optimised choices over the config­
uration search space

SBSE has recently been used to find configurations of tools that  
are better suited to specific software engineering problems [5,8]. 
We have also recently demonstrated that it  can be used to find 
configurations that maximise agreement  among tools [10]. This 
allows us to be more sure that experimental differences observed 
are  the  result  of inherent  differences  in  the  tools  themselves,  
rather than the choices of parameters pertaining to these tools.
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