
Empirical Answers
to Fundamental Software Engineering Problems (Panel)

Bertrand Meyer (Chair)
ETH Zurich, Switzerland; ITMO Saint Petersburg, Russia;

Eiffel Software, USA
Bertrand.Meyer@inf.ethz.ch

 Harald Gall
University of Zurich, Switzerland

gall@ifi.uzh.ch

Mark Harman
University College London, UK;

Microsoft Research Cambridge, UK
mark.harman@ucl.ac.uk

Giancarlo Succi
Free University of Bozen, Italy

giancarlo@giancarlosucci.com

ABSTRACT
Can the methods of empirical software engineering give us an­
swers to the truly important open questions in the field?

Categories and Subject Descriptors
D.2 Software Engineering

General Terms
Experimentation

Keywords
Empirical Software Engineering

1. PANEL PRESENTATION
(BERTRAND MEYER)
For all the books on software engineering, and the articles, and
the conferences, a remarkable number of fundamental questions,
so fundamental that just about every software project runs into
them, remain open. At best we have folksy rules, some possibly
true, others doubtful, and others — such as “adding people to a
software project delays it further”1 — wrong to the point of ab­
surdity. Researchers in software engineering should, as their duty
to the community of practicing software practitioners, try to help
provide credible answers to such essential everyday questions.

The purpose of this panel discussion is to assess what answers
are already known through empirical software engineering, and
to define what should be done to get more.

“Empirical software engineering” applies the quantitative meth­
ods of the natural sciences to the study of software phenomena.
One of its tasks is to subject new methods — whose authors
sometimes make extravagant and unsupported claims — to ob­
jective scrutiny. But the benefits are more general: empirical
software engineering helps us understand software construction
better.

1 From Brooks’s Mythical Man-Month.

There are two kinds of target for empirical software studies:
products and processes. Product studies assess actual software
artifacts, as found in code repositories, bug databases and docu­
mentation, to infer general insights. Project studies assess how
software projects proceed and how their participants work; as a
consequence, they can share some properties with studies in
other fields that involve human behavior, such as sociology and
psychology. (It is a common attitude among computer scientists
to express doubts: “Do you really want to bring us down to the
standards of psychology and sociology?” Such arrogance is not
justified. These sciences have obtained many results that are both
useful and sound.)

Empirical software engineering has been on a roll for the past
decade, thanks to the availability of large repositories, mostly
from open­source projects, which hold information about long­
running software projects and can be subjected to data mining
techniques to identify important properties and trends. Such stud­
ies have already yielded considerable and often surprising in­
sights about such fundamental matters as the typology of program
faults (bugs), the effectiveness of tests and the value of certain
programming language features.

Most of the uncontested successes, however, have been from the
product variant of empirical software engineering. This situation
is understandable: when analyzing a software repository, an em­
pirical study is dealing with a tangible and well­defined artifact;
if any of the results seems doubtful, it is possible and sometimes
even easy for others to reproduce the study, a key condition of
empirical science. With processes, the object of study is more
elusive. If I follow a software project working with Scrum and
another using a more traditional lifecycle, and find that one does
better than the other, how do I know what other factors may have
influenced the outcome; and even if I bring external factors under
control how do I compare my results with those of another re­
searcher following other teams in other companies? Worse, in a
more realistic scenario I do not always have the luxury of track­
ing actual industry projects since few companies are enlightened
enough to let researchers into their developments; how do I know
that I can generalize to industry the conclusions of experiments
made with student groups?

Such obstacles do not imply that sound results are impossible;
studies involving human behavior in psychology and sociology
face many of the same difficulties and yet do occasionally yield

Copyright is held by the author/owner(s).

ESEC/FSE’13, August 18–26, 2013, Saint Petersburg, Russia
ACM 978-1-4503-2237-9/13/08
http://dx.doi.org/10.1145/2491411.2505430

14

important and credible insights. But these obstacles explain why
there are still few incontrovertible results on process aspects of
software engineering. This situation is regrettable since it means
that projects large and small embark on specific methods, tools
and languages on the basis of hearsay, opinions and sometimes
hype rather than solid knowledge.

No empirical study is going to give us all­encompassing results
of the form “Agile methods yield better products” or “Object­ori­
ented programming is better than functional programming”. We
are entitled to expect, however, that they help practitioners as­
sess some of the issues that await every project. They should also
provide a perspective on the conventional wisdom, justified or
not, that pervades the culture of software engineering. Here are
some examples of general statements and questions on which
many people in the field have opinions, often reinforced by the
literature, but crying for empirical backing:

• The effect of requirements faults: the famous curve by
Boehm is buttressed by very old studies on special kinds of
software (large mission­critical defense projects). What do
we really lose by not finding an error early enough?

• The cone of uncertainty: is that idea just folklore?

• What are the successful techniques for shortening delivery
time by adding manpower?

• The maximum compressibility factor: is there a nominal
project delivery time, and how much can a project decrease it
by throwing in money and people?

• Pair programming: when does it help, when does it hurt? If it
has any benefits, are there in quality or in productivity (deliv­
ery time)?

• In iterative approaches, what is the ideal time for a sprint un­
der various circumstances?

• How much requirements analysis should be done at the be­
ginning of a project, and how much deferred to the rest of the
cycle?

• What predictors of size correlate best with observed develop­
ment effort?

• What predictors of quality correlate best with observed qual­
ity?

• What is the maximum team size, if any, beyond which a team
should be split?

• Is it better to use built­in contracts or just to code assertions
in tests?

When asking these and other similar questions relating to core
aspects of practical software development, I sometimes hear
“Oh, but we know the answer conclusively, thanks to so-and-so’s
study”. This may be true in some cases, but in many others one
finds, in looking closer, that the study is just one particular ex­
periment, fraught with the same limitations as any other.

The principal aim of the present panel is to find out, through the
contributions of the panelists — who are top contributors to em­
pirical engineering, having helped to bring up the field to its cur­
rent level of success and respect —, which questions have useful
and credible empirical answers already available, whether or not
widely known. The answers must indeed be:

• Empirical: obtained through objective quantitative studies of
projects.

• Useful: providing answers to questions of interest to practition­
ers.

• Credible: while not necessarily absolute (a goal difficult to
reach in any matter involving human behavior), they must be
backed by enough solid evidence and confirmation to be taken
as a serious input to software project decisions.

An auxiliary outcome of the panel should be to identify funda­
mental questions on which credible, useful empirical answers do
not exist but seem possible, providing fuel for researchers in the
field.

To mature, software engineering must shed the folkloric advice
and anecdotal evidence that still pervade the field and replace
them with convincing results, established with all the limitations
but also all the respectability of quantitative, scientific empirical
methods. The aim of this panel is to establish what we already
know and what we should do to know more.

2. WHAT IS MISSING
(GIANCARLO SUCCI)
Bertrand Meyer, the organizer of the panel, has proposed a chal­
lenge for helping systematizing the experience coming from
projects with the intention of creating a sound set of propositions
on the effectiveness of software production practices, languages,
tools.

He spells out his goal very clearly: “To mature, software engi­
neering must shed the folkloric advice and anecdotal evidence
that still pervade the field and replace them with convincing re ­
sults, established with all the limitations but also all the re­
spectability of quantitative, scientific empirical methods.”

I think we should step back and ask ourselves why this is not yet
the case. In other disciplines is not so, like in medicine; however,
there are also subjects with the same level of uncertainty on the
effectiveness of practices as software engineering, like manage­
ment, pedagogy, etc.

In the past, people have accounted this lack to the absence of
suitable tools to collect data from industry without interfering
with the work of who is developing software for business, who
cannot devote time to activities who are not directly productive.
However, now we have such tools, especially the Non Invasive
Measurement Tools, like PROM or Hackystat.

So, something else is missing, and I would summarize here what,
in my humble opinion, what it is.

First, we lack a method, agreed by all key stakeholders, to store
the results of the studies in a way that is precise, unambiguous,
reusable both for comparisons by researchers and for use by prac­
titioners. Using an overly abused term, we lack a commonly
agreed and widely used ontology to describe the studies – the hy­
pothesis, the experimental design, the collected measures, etc.
Indeed, building such ontology can be boring, tedious, time con­
suming, cumbersome and not provide any direct career reward,
and this is also because it has not been done.

Second, we lack, as a community, a clear commitment toward
such empirical evidence. Indeed, also thanks to the work done by
many great scientists like Vic Basili, Dieter Rombach, Barbara
Kitchenham, Norman Fenton, and many other, papers on empiri­
cal research are now fully accepted in major Software Engineer­
ing forums. In the past was more difficult – it took me 5 years to
get my first work on measurement at ICSE (Maurer et al., 1999).
However, we have papers in major forums presenting methodolo­
gies, tools, or practices that do not include any significant experi ­

15

mental validation of what they present. Such papers would be
completely rejected in medicine – and for a good reason. And I
find this situation completely unacceptable.

Third, we do not appreciate enough that empirical studies require
a very significant amount of effort. For a PhD or a junior faculty
it is much easier to focus on some more theoretical work (which
often, as said above, can be done without any scientific proof),
rather than to get involved in a lengthy experimentation that
might even not produce confirmation of the original hypothesis –
and, in our discipline, we publish typically only papers on con­
firmed hypotheses, not on rejected hypotheses! In my experience,
the whole cycle from designing an experiment to publishing a pa­
per in a top forum lasts at least four years. For instance, we
started the planning of the experimentation that lead to our 2012
ICSE Paper (Sillitti et al., 2012), in 2006, like this other involv­
ing a significant industrial experimentation (Clark et al., 2004).
This is the duration of a long PhD or the time for a tenure evalu ­
ation...

Lastly, we lack a sense of empiricism in our empirical studies.
Too often we forget that an empirical study carries results that, in
the very best, are statistically significant, meaning that have mar­
gin of errors. We are not presenting truths proven by a theorem,
but facts that sometimes can be wrong. Well, this is true also for
medicine: it is enough to look for all the adverse effects that
drugs can have, as described in their own leaflets – even an as ­
piring may cause the death of the patient!

This is why I really welcome this panel and I am really grateful
to Bertrand for having initiated this work.

3. STRENGTHENING EXPERIMENTAL &
EMPIRICAL SOFTWARE ENGINEERING
KNOWLEDGE USING SBSE
(MARK HARMAN, WITH YUE JIA2 AND
JENS KRINKE3)

3.1 Overview
This position paper gives some examples from source code ana­
lysis and testing of experimental and empirical results, clarifying
the difference between experimental and empirical studies and
arguing that each is complementary to the other. We use these
examples to illustrate the paucity of experimental and empirical
knowledge. We conclude with an outline of an approach to em­
pirical and experimental software engineering that uses Search
Based Software Engineering (SBSE) to enhance rigour so that we
can be more sure of the evidence that underpins experimental
and empirical knowledge.

3.2 What Do We Know?
What do we know about software engineering? Let us be a little
more specific. The most elementary question of all is surely

"what do we know about the fundamental engineering material
with which we work; the programs themselves?"

One of the first things that we believed that we knew was that
structured programming was superior to unstructured program­
ming. This belief arose, initially, from Dijkstra’s famous com­
plaint about the use of the goto statement [2]. However, if one
looks for empirical evidence to support this claim, one finds very

2 University College London, yue.jia@ucl.ac.uk
3 University College London, j.krinke@cs.ucl.ac.uk

little. It would seem that many of the things that we believed to
be true about software are just that: beliefs. Surely many of these
beliefs will turn out to be true. Nevertheless, we do not know the
extent to which they are true, the situations in which the effects
of maximal and minimal, nor any kind of bounds or assessment
of the effect size. This is not a good situation for a quantitative
engineering discipline. Are we really any better than a religious
sect?

Side effects are widely believed to be harmful. Expressions
should be side effect free. Surely this is obvious. This ‘obvious’
observation motivated an entire field of programming literature:
Functional Programming [4]. However, the authors are only
aware of a single paper that attempts to empirically assess the ef­
fect of side effects on programs [3]. Surely, such an important
foundational belief (one that underpins a whole field of research)
deserves a greater degree of scientific investigation.

Our very limited empirical studies of this problem were able to
demonstrate that side effects are, indeed, harmful to program
comprehension. Perhaps the most interesting finding was that ex­
perienced programmers’ performance appears to be just as com­
promised as that of novices. This challenges the potential hubris
of those more experiences programmers, who might believe
themselves to be sufficiently experienced to avoid any cognitive
penalty that might accrue from programming with side effects.

However, for such an important topic it is simply not enough to
rely on a single study. Our study considered only a very limited
type of side effect, it only considered the C programming lan­
guage, and it only consisted of two studies: one on inexperienced
programmers (students) and one on more experienced program­
mers (professional software engineers).

As well as the paucity of studies of important empirical problems
there has also been a tendency to rely on a single study, particu­
larly where this provides results we might want to believe. This
is an understandable and entirely human behaviour, but the fact
remains that it is detrimental to our science and engineering
work.

For example, in software testing research, we are often con­
cerned with the problem of evaluating the degree to which our
testing techniques are effective and efficient. For this purpose it
is convenient and expedient to investigate the proposed testing
technique on simulated faults using mutation testing. This prac­
tice of using mutation testing is often justified with reference to
the seminal work of Andrews, Briand and Labiche [1]. This is an
important result for Empirical Software Engineering. It demon­
strates that there is evidence that mutation faults are good simu­
lators of real faults. However, there is too much temptation
stretch this important finding; believing that it necessarily ap­
plies more widely in the authors would, themselves, claim.

For example, if one is using mutation testing on a language or
with a set of mutation operators not considered in the paper by
Andrews, Briand and Labiche, it would clearly be inappropriate
to claim evidence that mutation faults adequately simulate the
real faults. Since many authors do tend to make such claims, this
highlights a pressing need for more studies that investigate the
relationship between mutation faults and real faults in languages,
paradigms and domains not previously considered in the literat ­
ure.

3.3 Experimental vs. Empirical
It is important to recognise the difference between empirical and
experimental software engineering research [7]. Experimental
software engineering concerns findings that result from experi­
ments conducted under what we might term ‘laboratory condi­

16

tions’. Empirical research is concerned with findings that are ob­
served from the so­called real world. A study on 1000 machine­
generated problem instances is an experimental study. A study
on 10 real­world problem instances is an empirical study.

An unhealthy tendency has developed in which the community as
a whole (and its referees in particular) tend to regard the empir­
ical studies as inherently and fundamentally superior to experi ­
mental studies. In fact, both approaches are entirely compliment­
ary. A robust software engineering claim should, ideally, be
backed by claims supported by both empirical and experimental
evidence.

Empirical studies are clearly valuable because they concern real
world problems. Evidence is guaranteed to be applicable to at
least one real­world instance. Unfortunately, of course, one sel ­
dom has sufficiently many real­world instances on which to base
truly generalisable claims. Experimental studies can provide
complimentary evidence to help to bridge this gap.

In an experimental study, problem instances may be artificial,
but they are also controllable. This allows the researcher to
study, experimentally, the effects of a particular algorithm, meth­
od or approach on varying degrees problem instance. Many prob­
lems are characterised by parameters that denote aspects of the
problem ‘difficulty’. It may not be possible to obtain real­world
examples at sufficiently diverse granularity and in sufficient
numbers to explore the impact of these parameters.

Fortunately, using a problem instance generator, we can generate
an arbitrary number of synthetic solutions that exhibit the charac­
teristics we seek to investigate. This is a fundamentally experi-
mental approach and it allows us to consider, under controlled
conditions, the effect of dependent variables on independent vari­
ables. This is the standard approach to experimental science and
it is somewhat surprising that it seems to have become so thor­
oughly deprecated in the software engineering research com­
munity.

Returning to the example of mutation testing, a study of a pro­
posed testing technique might consist of both an empirical and an
experimental study. Mutation testing can be employed to invest­
igate the behaviour of the proposed approach under controlled
conditions. For example, we can investigate the testing tech­
nique's ability to find particular kinds of fault or its performance
slowdown with respect to certain programming language features
known to be problematic to be approach in hand. Ideally, these
experimental results from mutation testing ought to be combined
with empirical results in the form of an evaluation of the pro­
posed technique on a suite of real software faults.

3.4 Using SBSE to Make Experiments more Robust
Many software engineering studies are concerned with claims
about the performance of the particular kind of approach, al­
gorithm or tool. Typically these studies concern experiments in
which an algorithm or tool is applied to problem instances in or­
der to make claims about improved effectiveness and efficiency
compared to the state­of­the­art. Many of the algorithms and
tools we develop are highly configurable. Sadly this poses a sig­
nificant challenge when it comes to an experimental evaluation
of one technique against another.

How can we be sure that we have not simply
chosen that configuration which just so happens
to make our chosen favourite technique appear
to be superior to the current state of the art?

In the remainder of this position paper we wish to address the
question of how such experimental studies can be made more ro­
bust using search based techniques.

The first step is to formulate the problem as one in which the
configuration space of each technique under investigation be­
comes a search space. The search space is the space of all pos­
sible parameter settings for the techniques. Because of combinat­
orial explosion, it is impossible for an experimenter to report res­
ults for every possible configuration choice. Even relatively well­
understood tools have large configuration spaces. For example,
GCC has more than 200 different parameter settings so its con­
figuration space is larger than 2^200.

We cannot ignore the effect of configuration choices are experi ­
ments. Different configurations can have dramatic effects on ex­
perimental findings. Several approaches have been used to ad­
dress this confounding configuration problem. We could simply
report the configuration choices and thereby allow other re­
searchers to try alternatives. We could sample from the possible
configurations using design of experiments [9]. Alternatively, we
could search the space of configurations seeking to optimise the
parameter settings for the particular experimental questions we
seek to answer.

Suppose we wish to compare Technique A against Technique B.
Suppose that Technique A is the new proposed approach to solv­
ing our Software Engineering problem, while Technique B is the
existing state­of­the­art. Clearly, we would like to demonstrate
that we have evidence to claim that Technique A is superior.
Such a claim can range from a ‘weak existential’ claim to a
‘strong universal’ claim in terms of configurations space.

Weak existential claims: If there exists a configuration setting
for which Technique A outperforms Technique B, then we have a
weak existential claim to superiority. This is the weakest possible
form of evidence (in terms of configuration space) for the superi ­
ority of Technique A. Perhaps such a level of evidence might be
suitable for a workshop. It demonstrates that there is, at least,
some merit in considering the technique.

We can use SBSE to search for a configuration in which Tech­
nique A is superior to Technique B. For many software engineer ­
ing techniques, this is not a demanding task. All that is required
is to use the metrics that assess the performance of the tech­
niques as a fitness function and to maximize this fitness over the
configuration space. Since we must have a way of measuring the
metric in order to make any claims about the performance of the
techniques, it is only a small step to treat this metric as a fitness
function [6].

In this way we would be searching for that configuration which is
most sympathetic to our experimental goal. Our experimental
goal, in turn, is most sympathetic to Technique A. This approach
has a natural and compelling side effect that may be beneficial:
The harder it is for the search to find such a sympathetic config­
uration, the less we should have confidence in the proposed new
technique. The experimenters' confidence in Technique A will
naturally grow commensurate with the ease with which the
search finds sympathetic configurations. This confidence might
reach the point at which the experimenter considers moving on to
strong universal claims for their proposed new technique.

Strong universal claims: If there does not exist a configuration
setting for which Technique A fails to outperform Technique B,
then we can make a strong universal claim for the superiority of
Technique A over Technique B. This is the strongest form of
evidence possible (in terms of the configuration space) for Tech­
nique A.

Unfortunately, in order to provide evidence to support this claim
we would have to present results for all possible configurations
of the techniques in our experimental study. This is clearly in ­
feasible in most cases. However, we can use SBSE to approxim­

17

ate the answer to this question. Suppose we searched the config­
urations that are sympathetic to Technique B. That is, we seek to
make a week existential claim that the existing state­of­the­art
(Technique B) is superior to our new propose approach (Tech­
nique A). The degree of difficulty experienced by the search in
finding such configurations is one indicator of the approximate
strength of the claim we can make the superiority technique A:
The harder it is to find configurations that support the weak ex­
istential claim for Technique B, the stronger our belief becomes
in the strong universal claim to the superiority of Technique A.

Our search algorithm will be optimising the configurations that
favour the state­of­the­art. Therefore this is the kind of testing
approach for evaluating our proposed new software engineering
technique. Just as a tester gains confidence in the system under
test the longer testing proceeds without failure, we will gain con­
fidence in our technique the longer we search without finding a
configuration that it fails to outperform. When the tester finds a
fault in software system, it does not mean that the software sys­
tem is abandoned. The fault is either fixed or a workaround must
be found. Similarly, if an attempt to provide a strong universal
claim for Technique A should fail, this does not necessarily mean
that we must abandon Technique A. Rather, we may use SBSE to
better understand those conditions under which the technique
performs well. This understanding provides another spin­off be­
nefit: Ultimately, we may arrive at a set of configuration condi­
tions under which we have confidence that Technique A outper­
forms Technique B. In this way, SBSE will have helped us to in­
vestigate and construct experimental hypotheses.

Other claims derived from optimised choices over the config­
uration search space

SBSE has recently been used to find configurations of tools that
are better suited to specific software engineering problems [5,8].
We have also recently demonstrated that it can be used to find
configurations that maximise agreement among tools [10]. This
allows us to be more sure that experimental differences observed
are the result of inherent differences in the tools themselves,
rather than the choices of parameters pertaining to these tools.

4. REFERENCES
[1] J. Andrews, L. Briand and Y. Labiche. Is mutation an appro­
priate tool for testing experiments? ICSE 2005.

[2] E. W. Dijkstra. Goto Statement Considered Harmful. CACM,
1968.

[3] J. J. Dolado, M. Harman, M. Carmen Otero and L. Hu. An
empirical investigation of the influence of a type of side effects
on program comprehension, TSE 2003.

[4] A. J. Field and P. G. Harrison. Functional Programming. Ad­
dison­Wesley, 1988.

[5] S. Lohar, S. Amornborvornwong, A. Zisman, and J. Cleland­
Huang. Improving trace accuracy through data­driven configura­
tion and composition of tracing features. In ESEC/FSE, 2013.

[6] M. Harman and J. Clark. Metrics Are Fitness Functions Too.
Metrics 2004.

[7] M. Harman, E. Burke, J. A. Clark and X. Yao. Dynamic Ad­
aptive Search Based Software Engineering. ESEM 2012.

[8] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D.
Poshyvanyk, and A. De Lucia. How to effectively use topic mod­
els for software engineering tasks? An approach based on genetic
algorithms. ICSE 2013.

[9] S. Poulding, P. Emberson, I. Bate and J. Clark. An Efficient
Experimental Methodology for Configuring Search­Based Design
Algorithms. HASE 2007.

[10] T. Wang, M. Harman, Y. Jia, J. Krinke: Searching for Better
Configurations: A Rigorous Approach to Clone Evaluation.
ESEC/FSE 2013.

[11] Justin Clark, Chris Clarke, Stefano De Panfilis, Giampiero
Granatella, Paolo Predonzani, Alberto Sillitti, Giancarlo Succi,
Tullio Vernazza, (2004) Selecting components in large COTS
repositories, Journal of Systems and Software, 73:2(323­331)

[12] Frank Maurer, Giancarlo Succi, Harald Holz, Boris Kötting,
Sigrid Goldmann, Barbara Dellen (1999) Software process sup­
port over the Internet, Proceedings of the 21st International Con­
ference on Software Engineering, Los Angeles, CA, USA, May

[13] Alberto Sillitti, Giancarlo Succi, Jelena Vlasenko (2012)
“Understanding the impact of pair programming on developers
attention: a case study on a large industrial experimentation,”
Proceedings of the 34th International Conference on Software En­
gineering, Zurich, Switzerland, May

18

