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ABSTRACT
It is challenging to effectively check a regular property of a program.

This paper presents RGSE, a regular property guided dynamic sym-

bolic execution (DSE) engine, for finding a program path satisfying

a regular property as soon as possible. The key idea is to evaluate the

candidate branches based on the history and future information, and

explore the branches along which the paths are more likely to sat-

isfy the property in priority. We have applied RGSE to 16 real-world

open source Java programs, totaling 270K lines of code. Compared

with the state-of-the-art, RGSE achieves two orders of magnitude

speedups for finding the first target path. RGSE can benefit many re-

search topics of software testing and analysis, such as path-oriented

test case generation, typestate bug finding, and performance tuning.

The demo video is at: https://youtu.be/7zAhvRIdaUU, and RGSE
can be accessed at: http://jrgse.github.io.
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1 INTRODUCTION
Regular properties are widely used in software engineering to de-

scribe program properties. In program analysis, it is a common

challenge to check whether there exists a program path satisfying a
regular property. Usually, we use finite state machines (FSMs) [11]

to specify regular properties. Checking a program w.r.t. a regular

property equals to check whether there exists a path that drives

the property’s the FSM to an accepted state.

Dynamic symbolic execution (DSE) [12, 25] runs a program both

concretely and symbolically. DSE first uses the initial inputs to run

the program, and collects the encountered constraints on symbolic

variables simultaneously, called path condition. Then, DSE will se-

lect a branch of the path condition to negate for getting a new path

constraint, which will be fed into an SMT solver to generate the

inputs for the next iteration. The next run is supposed to explore

the path along the selected direction. In this way, DSE can sys-

tematically explore the program’s path space. DSE can be used for

automatically finding the program paths satisfying a regular prop-

erty. However, DSE is inherent to the path explosion problem, i.e.,
the exponential increase of paths w.r.t. the number of conditional

statements.

This paper presents RGSE, a regular property guided DSE engine

for finding program paths satisfying a regular property as soon
as possible. RGSE is an implementation of the technique in [31]

for Java programs. The key idea is to guide symbolic execution

based on the history and future information of branches, which

can be calculated through dynamic analysis and static analysis,

respectively. Then, the branches are prioritized w.r.t. the possibility

of generating target paths. RGSE will select the branch with the

highest priority to explore next.

We have applied RGSE to many real-world open source Java

programs against representative regular properties. Compared with

pure DSE and a state-of-the-art work [8] using path slicing [16]

for pruning paths during symbolic execution, RGSE achieves an

average>179X and>130X time speedups for finding the first target

path, respectively. The experimental results demonstrate RGSE’s

effectiveness, efficiency, feasibility and stability.

2 REGULAR PROPERTY GUIDED DSE
Given a program 𝒫 and a regular property 𝜙’s corresponding FSM

𝑀𝜙, a transition event in 𝑀𝜙 represents the execution of one or
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more statements in 𝒫 . If an execution path 𝑝 cannot generate any

event, we call 𝑝 an irrelevant path, otherwise 𝑝 is a relevant path.

If 𝑝 generates an event sequence accepted by 𝑀𝜙, 𝑝 is an accepted
path. The key insight of regular property guided DSE is that a large

portion of 𝒫 ’s path space corresponds to irrelevant paths, and even

for the relevant paths, only the ones with specific event sequences

can be accepted by 𝑀𝜙. Therefore, it is desirable for DSE to delay

the exploration of irrelevant paths and relevant paths not accepted

by 𝑀𝜙, and explore the rest earlier.

The key idea of RGSE is to evaluate the possibility of a branch for

generating an accepted path w.r.t. to 𝑀𝜙, and explore the branches

with higher possibilities in priority. RGSE uses a set of states of

𝑀𝜙, called Postset, to denote the future behavior information of a

branch. A state 𝑞 in the Postset of a branch 𝑏 indicates that 𝑞 can

reach an accepted state of 𝑀𝜙 through executing the program after

𝑏. The history behavior information of a branch is also a set of states

of 𝑀𝜙, called Preset. A state 𝑞 in Preset of branch 𝑏 means executing

the path from the program entry to 𝑏 can drive 𝑀𝜙 from the initial

state to state 𝑞. RGSE uses the size of the intersection of Preset and

Postset as the main heuristic value of a branch for guiding DSE, i.e.,
exploring the branches having larger size of intersection in priority.

The Preset information is calculated during DSE based on the

runtime information. The idea of monitoring in runtime verifica-

tion [17] is used. We use (𝐼𝑠, 𝑞) to represent a monitor, where 𝐼𝑠
is the identity set of the monitored objects, and 𝑞 is a state of 𝑀𝜙.

The size of 𝐼𝑠 depends on the number of related objects w.r.t. prop-

erty 𝜙, e.g., 𝐼𝑠 only contains one element when 𝜙 is a single object

property. RGSE updates the status of the monitor according to 𝑀𝜙

during path exploration. Preset is represented by a set of monitors.

Note that once the status of a monitor becomes 𝑀𝜙’s final state, an

accepted path is found. On the other hand, RGSE computes Postset
by a static typestate analysis [3] of 𝒫 w.r.t.𝑀𝜙. The details of how

to calculate and utilize Preset and Postset can be referred to our

prior work [31].

The method of guided DSE can benefit many research topics. For

detecting typestate bugs [10][19], we can express bug patterns as

regular properties and use guided DSE to find the accepted paths,

i.e., bugs. We can also use guided DSE to do path-oriented test case

generation by expressing the targeting paths as an FSM. Besides,

for verifying a regular property 𝜙, we can use guided DSE to guide

symbolic execution w.r.t. ¬𝜙 for finding counter-examples faster.

3 DESIGN AND IMPLEMENTATION
Figure 1 shows the architecture of RGSE. The inputs of RGSE are

the Java bytecodes under analysis and the FSM specifying a regular

property. The output is the analysis report, which contains the

information including the accepted paths, the relevant paths, etc.
The static analyzer will first analyze the bytecode program (de-

noted by𝒫)w.r.t. the regular property (denoted by𝜙) for computing

the Postset information. Then, 𝒫 will be run using JPF [21], i.e., a

Java virtual machine (JVM). When running 𝒫 , RGSE collects the

path constraint of the current path. At the same time, the dynamic

analyzer uses the runtime information to calculate the Preset in-

formation w.r.t. 𝜙. When the current path terminates, we insert

the path constraint to the constraint manager, which maintains

the constraint tree of 𝒫 . Then, the guided searcher will use the

Java Bytecode
A Regular 

Property (FSM)

Static 
Analyzer

Java Virtual 
Machine (JPF)

Constraint 
Manager

Constraint 
Solver

Dynamic 
Analyzer

JNI
Handler

Guided Searcher

Reporter

+

RGSE

Analysis Report

Figure 1: The architecture of RGSE.

information produced by static and dynamic analyzers to select an

unexplored branch in the constraint manager. The searcher invokes

the constraint solver to solve the path constraint of the branch,

generating the inputs of 𝒫 for the next run. If there is no unex-

plored branch or timeout, the whole analysis is terminated and the

reporter generates an analysis report. Next, we introduce each part

of RGSE.

3.1 Static Analyzer
Inspired by Clara [3], we calculate Postset information using a

backward dataflow analysis. To improve the precision, we make

the analysis inter-procedural based on the IDFS framework [24].

We implement the static analyzer for Java bytecode program us-

ing WALA [13], which provides a convenient IDFS framework for

inter-procedural dataflow analyses and context-sensitive pointer

analysis support. We can control the precision of Postset by the call

string length of inter-procedural control flow graph. The length is

exposed as a parameter of RGSE. RGSE stores the calculated Postset
information in a cache in order for a fast access during DSE.

3.2 Core Components
The core components are the JVM, the constraint manager and

the guided searcher. The JVM is in charge of running the program

and collecting path constraints. We implemented the JVM based

on JPF-JDart [14], which is a concolic execution engine built on

JPF [21]. For each bytecode instruction, its interpretation implemen-

tation needs to include not only the concrete execution, but also the

symbolic manipulations and the constraint collections of symbolic

variables. In addition, for efficient multiple runs, we implemented

a mechanism for state saving and restoring.

The constraint manager maintains the constraint tree of the

program, which is a binary tree that abstracts the execution tree

of the program. Each node in the tree contains the constraint of a

branch statement. When a path condition PC is inserted into the

tree, a node is created for the negation branch of each constraint in

PC , and the node is set to be unexplored. At the original version

of JPF-JDart [14], the constraint tree is stored using an array with
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a fixed length, which is infeasible for real-world programs. We

replaced the array with a binary tree data structure.

The guided searcher drives the path exploration of RGSE. Af-

ter each run, the searcher will select an unexplored node from

the constrain manager and invoke the constraint solver to solve

the path constraint of the node, targeting the input generation of

the next run. To improve the efficiency, we use a highly efficient

sorted list [15] to store the unexplored nodes, each of which is

ordered by its value. Then, the searcher can directly pick the header

of the list. By assigning different values for a node, the searcher

can be configured to adopt different styles of exploration, such as

depth first search (DFS) and breadth first search (BFS). When the

searcher is guided, the Preset and Postset information will be used

for calculating a node’s value.

3.3 Dynamic Analyzer
The dynamic analyzer calculates the Preset information using the

idea of monitoring in runtime verification. We implemented the

analyzer using the listener mechanism in JPF. The analyzer creates

a monitor for each object whose class or interface is specified by

the property. A monitor may change its state w.r.t. the property

when one of the monitored object’s methods is invoked. Once an

accepted state is reached, an accepted path is found. The monitors

are stored in a global set that can be accessed by the searcher.

3.4 Utility Components
The utility components are the constraint solver, the Java native

interface (JNI) handler and the reporter. RGSE uses the bit-vector

module in Z3 for constraint solving. We have developed the bit-

vector solver adaptor for Z3 based on the constraint encoding and

solving framework of SPF [22]. To improve the feasibility, RGSE
utilizes JPF-nHandler [27] to alleviate the environment modeling

problem. The native interface invocations are executed by the un-

derlying JVM. In practice, with the help of the JNI handler, RGSE
can analyze real-world programs including network operations,

file operations, etc. The reporter is in charge of reporting analysis

results, including the numbers of different kinds of paths (e.g., ac-

cepted paths and relevant paths), the status of each path w.r.t. the

regular property, the time for static analysis, etc. For accepted paths,

RGSE can also report the inputs that can generate the paths. Besides,

RGSE uses JFLAP [28] as the library for manipulating FSMs.

4 USAGE
To use RGSE for checking a program w.r.t. a regular property, we

need to write an analysis driver for RGSE. The driver gives the

entry point of analysis, and consists of two main modules: property

specification and run configuration.

Property specification. We specify the regular property to be

checked as a finite state machine (FSM). To define the property’s

FSM, the user need to create the states, add the transitions, and build

the relationship between transition events and program statements.

For example, suppose S0 and S1 are two created states in the FSM

of file’s reader property, i.e., a file cannot be read while closed. Then

trans.add(newFSATransition(S0, S1, “C”)) adds a transition, i.e.,

executing event C can drive state S0 to state S1, and the invoca-

tion Monitor.addMethodNameChar(“close”, “C”) specifies that

event C corresponds to the execution of file close.

Run configuration. The configuration parameters set the

mode of RGSE. Specifically, the most important parameter argu-
ments contains seven elements, and they represent call string bound,

guiding flag, refinement flag, maximum iterations, time thresh-

old, name of result file, and slicing flag, respectively. For example,

args=newString[ ]{“1”,“1”,“0”,“−1”,“1, 5, 30, 0”,“𝑟𝑒𝑠𝑢𝑙𝑡.𝑡𝑥𝑡”,“0”}
indicates that RGSE will run in the guiding mode with no iteration

threshold and 1 hour 5 minutes 30 seconds time threshold. Users can

adjust the running mode through changing the value of arguments.

More details can be found from RGSE’s website.

5 EVALUATION
To demonstrate the effectiveness, efficiency and applicability of

RGSE, we apply it to analyze 16 real-world open source Java pro-

grams (shown in Table 1) against representative regular properties.

The properties we used can be classified into two categories: bug
properties (shown in Table 2) and user-defined properties. Since most

programs are violation free, we mutate the first 6 programs in

Table 1 as follows: 1) collect all the conditional statements along

DSE; 2) inject an event’s statements, e.g., a close operation for

the Reader property, to a branch of a randomly selected condi-

tional statement. We generate 3 mutants for each program. The

time threshold of each analysis task is set to be 24 hours.

Table 1: Programs in the experiments

Program LOC Brief Description
schroeder 11092 Sampled audio editor

soot-c 32358 Static analysis editor

jlex 4400 Lexical analyzer

bloat 45357 Java bytecode optimization

bmpdecoder 531 BMP file decoder

ftpclient 2436 FTP client in Java

rohino-a 19799 Javascript interpreter

pobs 5488 Java parser objects

jpat 3254 Java string parser

jericho 25657 Jericho HTML Parser

nano-xml 3317 Non-validating XML parser

htmlparser 21830 HTML parser in Java

xml 5138 XML parser in Java

fastjson 20223 JSON library from alibaba

jep 42868 Mathematics library

udl 26896 UDL language library

Total 270734 16 open source programs

Bug properties in Table 2 are widely used in typestate analy-

sis [10] for finding the invalid usage of resources. Note that, prop-

erties with superscript * are multi-object properties. In addition,

we also specify application specific properties for the last 9 pro-

grams in Table 1. For example, the user-defined property for html-
parser requires that the input string is in the JSP format, i.e.,
“ <% . . .%> ”.
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Table 2: Regular properties in the experiments

Property Meaning
Enumeration Call hasMoreElements before nextElement

Iterator
Call hasNext before next

Do not update the collection while iterating
*

Reader
Do not read a closed stream

No read if dependent input stream closed
*

Writer
Do not write a closed stream

No write if dependent output stream closed
*

Socket Do not use a closed socket

5.1 Experimental Results
We collect the time for finding the first accepted path. In order

to further evaluate RGSE, we also implemented the path slicing

technique [16] used by Woodpecker [8].

Table 3: Experiment results of analysis time

Program
(Property)

Type First Violation Time(s)
D S G

schroeder

(Reader)

bug1 3.58 3.73 10.64

bug2 173.69 411.45 13.14

schroeder

(Reader*)

bug1 4580.73 5191.91 14.8

bug2 167.11 394.79 223.27

soot-c

(Writer)

bug1 18.77 85.01 103

bug2 17.06 81.12 107.82

bug3 12.79 85.17 107.94

soot-c(Writer*) bug1 16.85 77.25 98.8

bloat(Iterator) O 10.93 35.04 29.26

bloat

(Iterator*)

bug1 23.77 40.14 52.05

bug2 28.77 40.76 44.18

bmp(Reader) bug1 6.82 16.82 8.96

ftpclient

(Socket)

bug1 7.11 31.47 28.55

bug2 8.81 32.39 28.73

jlex

(Reader)

bug1 11.66 446.35 21.79

bug2 no no 11.64

jlex

(Reader*)

bug1 no no 13.99

bug2 190.07 14914.13 37.01

bug3 33.46 1816.1 46.17

rohino-a(Enum) O no 7346.56 279.32

jpat(UD) O no no 15.53

nano-xml(UD) O no no 14.45

pobs(UD) O no 17.43 12.67

jericho(UD) O no 62.44 16.11

fastjason(UD) O no no no

jep(UD) O 1429.23 21326.2 29.88

htmlparser(UD) O 17.01 82.63 20.85

udl(UD) O no no 2963.01

xmlparser(UD) O no no 17.67

Table 3 lists the detailed experimental results. For clarity, we

omit the tasks having no accepted path. The first column gives the

analysis tasks, including the names of programs and the checked

properties. ColumnType indicates whether the program is mutated,

where O denotes the original program, and 𝑏𝑢𝑔𝑖 represents the 𝑖𝑡ℎ
mutant. The time for finding the first accepted path is shown in

column First Violation Time(s), where no means no accepted

path is found after 24 hours. It is worth noting that the overload of

static analysis used by slicing and guiding may make them perform

worse than DFS, e.g., soot-c. The tasks that RGSE performs best

are in gray background. Compared with the pure DFS mode (D)

and the pure path slicing mode (S), RGSE achieves an average 179X

and 130X time speedups, respectively.

5.2 Detected Bugs and Usability
Our tool automatically detected two known bugs in bloat and

rohino-a. One is a bug violating Enumeration property, and

the other one violates Iterator property. Besides, most of the

randomly injected typestate bugs can be successfully detected by

RGSE. In addition, through analyzing the programs in Tables 1,

we also find 17 runtime bugs, including array index out-of-bound,

null pointer exception, division by zero, infinite loop and format

exception.

To evaluate RGSE’s usability, we invited a final year undergradu-

ate student of computer science to use RGSE to analyze open-source

Java programs. After a tutorial of background and usage, the student

successfully analyzed six Java library programs w.r.t. user-defined

regular properties.

6 RELATEDWORK
Static analysis and dynamic analysis are two effective approaches

for checking regular properties. Static analysis [3, 9, 10] enjoys high

code coverage, but suffers from false positives. Dynamic analysis [1,

6] ensures the completeness, but can only cover a small portion of

path space. Compared with static and dynamic approaches, RGSE
employs dynamic symbolic execution, and achieves better precision

or coverage.

Many approaches have been proposed to guide symbolic ex-

ecution targeting different goals, such as improving the cover-

age [4, 5, 18, 26, 29], reaching a program location [2, 23, 30], and

covering specific path space [7, 20, 23]. Different from those ap-

proaches, RGSE focuses on finding the paths satisfying a regular

property as soon as possible.

The closest related work is Woodpecker [8], which employs

path slicing during symbolic execution for pruning redundant paths.

Woodpecker is implemented on KLEE [5] for verifying C programs

w.r.t. system rules. We have implemented Woodpecker’s method

and performed the comparison in the experiments. RGSE outper-

forms Woodpecker significantly in finding the first accepted path.

7 CONCLUSION AND FUTUREWORK
In this paper, we present RGSE, a DSE based tool for finding pro-

gram paths satisfying a given regular property. The behind tech-

nique of RGSE is from [31]. We applied RGSE to 16 real-world open

source Java programs against representative regular properties. For

finding the first accepted path, RGSE has on average two orders of

magnitude time speedups compared with pure DSE and the DSE

with path slicing. Next, we will develop new functions to improve

RGSE’s scalability, feasibility and usability further.
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