
Spotting Familiar Code Snippet Structures
for Program Comprehension

Venkatesh Vinayakarao
Indraprastha Institute of Information Technology Delhi

New Delhi, India
venkateshv@iiitd.ac.in

ABSTRACT
Developers deal with the persistent problem of understanding
non-trivial code snippets. To understand the given implemen-
tation, its issues, and available choices, developers will benefit
from reading relevant discussions and descriptions over the
web. However, there is no easy way to know the relevant nat-
ural language terms so as to reach to such descriptions from
a code snippet, especially if the documentation is inadequate
and if the vocabulary used in the code is not helpful for web
search. We propose an approach to solve this problem using
a repository of topics and associated structurally variant
snippets collected from a discussion forum. In this on-going
work, we take Java methods from the code samples of three
Java books, match them with the repository, and associate
the topics with 76.9% precision and 66.7% recall.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models; D.3.3 [Language Constructs and Features]: Con-
trol structures

General Terms
Code Search, Program Comprehension

Keywords
Variant Repository, Structure Matching

1. INTRODUCTION AND MOTIVATION
What does the code snippet in Listing 1 do? During

software maintenance, developers need to comprehend such
snippets written by other developers. The vocabulary used
in this snippet is not helpful to make an effective web search.
A way to reach the relevant discussion on StackOverflow [1]
from Listing 1 will help the developer to understand this
snippet related to Chebyshev Type 2 LPF [2]. We define
snippets that are discussed over the web as familiar snip-
pets. Spotting familiar snippets in a given project has not

float process(float in) {
double out = in * b[0];
for(int i=0; i<9; ++i) out += x[i]*b[i+1];
for(int i=0; i<9; ++i) out -= y[i]*a[i+1];
for(int i=9; i>=1; --i) y[i] = y[i-1];
y[0] = out;
for(int i=9; i>=1; --i)x[i] = x[i-1];
x[0] = in;
return out;

}

Listing 1: Direct Form I code from StackOverflow.

received much attention. We study the challenges involved in
structurally matching arbitrary code snippets with familiar
snippets. From any given Java project, our implementation
is able to locate method definitions that contain snippets
discussed in StackOverflow, and show the relevant topics.

2. BACKGROUND AND RELATED WORK
We use code snippet structure to locate familiar snippets.

We use a repository containing structural representation of
familiar snippets and their variant implementations.

Spotting Topics. Spotting topics in source code has been
researched under the titles of Feature Location [7], Topic
Modeling [5], Code Summarization [9], and Annotation [11].
Research on these lines can be broadly classified into two
types: a) Vocabulary based, and b) Structure based. Purely
vocabulary based topic models such as Latent Dirichlet Allo-
cation [5] expect helpful user defined terms (UDT) in source
code. The closest work to ours is on Structural Semantic
Indexing [4]. It uses call hierarchy information, and hence
cannot work at intra-procedural level.

Building a Variant Repository. Variant implementations
for a set of topics can be associated using the approach pro-
posed by Vinayakarao et al. [15]. For each topic, StackOver-
flow posts are ranked by the augmented term frequency [12]
of topic terms. Snippets from these posts are transformed
into a textual representation which enables dropping struc-
turally similar snippets belonging to the same topic. Our
objective is to spot these structures in any given arbitrary
input program. To the best of our knowledge, this is the first
work to use a variant repository for topic identification.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
ACM. 978-1-4503-3675-8/15/08
http://dx.doi.org/10.1145/2786805.2807560

1054

Algorithm 1 Overview: Algorithm to match structures.

1: procedure structureMatcher(snippet)
2: structure← structure(snippet)
3: structureLen← structure.length
4: loc← loc(snippet)
5: if ((structureLen < minLen) or (loc < minLen))

then exit
6: for i from maxLen to minLen do
7: results← proximitySearch(structure, i)
8: if (topicCount(results) > 1) then
9: vocabulary← udt(snippet) / stops

10: if (match(vocabulary, input) == 0) then
11: results.remove(structure)

12: matchedList.add(results)
return matchedList

3. APPROACH AND UNIQUENESS
For each method in an arbitrary input program, we check

if it is related to a known topic. To achieve this, we use
a novel approach of using a variant repository. A variant
repository contains structurally heterogeneous implementa-
tions for known set of topics as discussed in Section 2. While
constructing a variant repository is a solved problem [15],
matching variants to code snippets is a hard problem [10]
and that is the focus of this paper.

In this paper, we deal with two specific challenges: In-
terleaved Code, and Overlapping Structures. Firstly, input
code snippet typically contains interleaved code which should
not be matched. A trivial example is the occurrence of a
print statement. A more complicated example is the use of
factorial implementation to compute sine value. So, an exact
match of structures does not work. A proximity search [8]
on textual representation of structure solves this problem.
Secondly, same code structures may apply for several topics.
We refer to disambiguating them as a problem of overlapping
structures. Figure 1 shows the frequency of all 372 distinct
structures for Java method definitions in StackOverflow with
more than three lines of code. To deal with overlapping struc-
tures, we use UDT in the input snippet for disambiguation.
Algorithm 1 puts these ideas together. stops denotes a list
of manually compiled stop words. We extract the structural
representation of the input snippet into structure. We skip
processing if either the snippet length or structural elements
count (structureLen) are less than minLen which is three
in our case. Increasing maxLen increases query time. For
StackOverflow dataset, matching beyond seven terms does
not improve precision or recall. Let topicCount(results) give
the number of topics in the query results. If there are multiple
topics, we use udt(snippet) in the snippet for disambiguation.
Snippet heuristics to replace the use of vocabulary in this
algorithm, is under experimentation.

Search based solutions have been used for debugging [3].
Our approach for structural comparison of code snippets,
opens up opportunities for solving problems that are oth-
erwise difficult to solve using traditional program analysis
techniques.

4. RESULTS AND CONTRIBUTIONS
We manually setup a 156 topic variant repository from

StackOverflow data. We used 1322 Java methods mentioned

0

10

20

30

40

-
-

*
*

/

/
_

+

/
=

_
|

_
+

=
b

ra
n

ch
!= +

-

+
=

+
lo

o
p

=
lo

o
p

!=
 lo

o
p

=

=
_

=

=
=

=

=
=

=
=

=
=

=
b

ra
n

ch
==

b
ra

n
ch

!=
 b

ra
n

ch
=

b
ra

n
ch

==
 +

 +
 b

ra
n

ch
>=

b
ra

n
ch

==
 b

ra
n

ch
_

b
ra

n
ch

==
…

b
ra

n
ch

==
 b

ra
n

ch
_…

b
ra

n
ch

==
 b

ra
n

ch
==

b
ra

n
ch

b
ra

n
ch

b
ra

n
ch

>…

lo
o

p
<

lo
o

p
+

lo
o

p
<

lo
o

p
=

lo
o

p
<

lo
o

p
lo

o
p

<

lo
o

p
=

lo
o

p
!=

 lo
o

p
=

lo
o

p
+

lo
o

p
>

lo
o

p
=

Structures in stackoverflow

Structures

Fr
eq

u
e

n
cy

Figure 1: There exist 372 distinct structures in
StackOverflow. Here, we show some of them and
their frequency.

in three Java books [14, 6, 13] as our input dataset. The
vocabulary used in the books were different when compared
with those in our repository. Hence, a purely vocabulary
based comparison does not work. For each topic, we are in-
terested in knowing if it was associated with input programs
precisely (Precision) and if all relevant methods were asso-
ciated for any specific topic (Recall). We extract identifiers
from all snippets stored in our repository and find that their
frequency follows power law. We use the elbow of this curve
to capture most occurring names and use it as our stopwords
list. With this configuration, we surfaced 14 distinct topics
out of the 39 topics that were expected to match (recall of
35.9%). We got 16 correct out of 26 matched topics (61.5%
precision).

Discussion. We observe that the loss of precision and recall,
is caused by three major factors: a) Setup of IR system
b) Nature and limitations of data, and c) Effectiveness of
topics. We do a post-analysis on the results to understand
the potential of our approach and segregate the results that
lost precision because of these limitations. Based on these
insights, we update the IR system configuration and also
re-phrase the topics. With such a well-configured setup, we
achieve 76.9% precision (20 out of 26) and 66.7% recall
(26 out of 39). Deriving best configurations based on data
and query logs is an open area of research in IR.

5. CONCLUSION AND FUTURE WORK
We present a new approach to spot familiar snippets by

modeling it as a structural search problem over a repository
of variants without being solely dependent on program vocab-
ulary. Our work supports and enhances existing vocabulary
based techniques and is not proposed as an alternative. On
the downside, our approach depends on data availability and
heavy computing infrastructure. In this work, we have used
program comprehension as a case to show the utility of a
variant repository. In future, we hope to address scalability
issues, refine the structural comparison technique and use it
to solve more problems in software engineering such as bug
detection, bug localization, and clone detection.

6. ACKNOWLEDGMENTS
The author would like to thank Rahul Purandare (IIITD),

Aditya Nori (MSR) and Matthew Dwyer (UNL) for their
guidance. This work is supported by MSR and CII.

1055

7. REFERENCES
[1] http://StackOverflow.com/.

[2] How to implement Chebyshev Type 2 LPF in Java?
http://StackOverflow.com/questions/16879642/

how-to-implement-chebyshev-type-2-lpf-in-java.

[3] B. Ashok, J. Joy, H. Liang, S. K. Rajamani,
G. Srinivasa, and V. Vangala. Debugadvisor: A
recommender system for debugging. In Proceedings of
the the 7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software
Engineering, ESEC/FSE ’09, pages 373–382, New York,
NY, USA, 2009. ACM.

[4] S. K. Bajracharya, J. Ossher, and C. V. Lopes.
Leveraging usage similarity for effective retrieval of
examples in code repositories. In Proceedings of the
Eighteenth ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE ’10,
pages 157–166, 2010.

[5] L. R. Biggers, C. Bocovich, R. Capshaw, B. P. Eddy,
L. H. Etzkorn, and N. A. Kraft. Configuring latent
dirichlet allocation based feature location. Empirical
Softw. Engg., 19(3):465–500, June 2014.

[6] J. Bloch. Effective Java, Second Edition.

[7] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk.
Feature location in source code: a taxonomy and
survey. Journal of Software: Evolution and Process,
25(1):53–95, 2013.

[8] A. Feuer, S. Savev, and J. A. Aslam. Implementing and

evaluating phrasal query suggestions for proximity
search. Inf. Syst., 34(8):711–723, Dec. 2009.

[9] S. Haiduc, J. Aponte, and A. Marcus. Supporting
program comprehension with source code
summarization. In Proceedings of the 32Nd ACM/IEEE
International Conference on Software Engineering -
Volume 2, ICSE ’10, pages 223–226, 2010.

[10] S. Lahiri, C. Hawblitzel, M. Kawaguchi, and H. Rebelo.
Symdiff: A language-agnostic semantic diff tool for
imperative programs. In Computer Aided Verification
(CAV ’12) (Tool description). Springer, July 2012.

[11] A. Lucia, M. Penta, R. Oliveto, A. Panichella, and
S. Panichella. Labeling source code with information
retrieval methods: An empirical study. Empirical Softw.
Engg., 19(5):1383–1420, Oct. 2014.

[12] C. D. Manning, P. Raghavan, and H. Schütze.
Introduction to Information Retrieval. Cambridge
University Press, 2008.

[13] H. Schildt. Java: A Beginner’s Guide, Sixth Edition.
http://www.mhprofessional.com/product.php?

isbn=0071809252.

[14] K. Sierra and B. Bates. Head First Java, Second
Edition.
http://www.headfirstlabs.com/books/hfjava/.

[15] V. Vinayakarao, R. Purandare, and A. V. Nori.
Structurally heterogeneous source code examples from
unstructured knowledge sources. In Proceedings of the
2015 Workshop on Partial Evaluation and Program
Manipulation, PEPM ’15, pages 21–26, 2015.

1056

