
Panning Requirement Nuggets in Stream of Software
Maintenance Tickets

Senthil Mani, Karthik Sankaranarayanan, Vibha Singhal Sinha
IBM Research, India

{sentmani, kartsank, vibha.sinha}@in.ibm.com

and Premkumar Devanbu
University of California, Davis
ptdevanbu@ucdavis.edu

ABSTRACT

There is an increasing trend to outsource maintenance of large ap-
plications and application portfolios of a business to third parties,
specialising in application maintenance, who are incented to deliver
the best possible maintenance at the lowest cost. To do so, they need
to identify repeat problem areas, which cause more maintenance
grief, and seek a unified remedy to avoid the costs spent on fixing
these individually. These repeat areas, in a sense, represent major,
evolving areas of need, or requirements, for the customer. The
information about the repeating problem is typically embedded in
the unstructured text of multiple tickets, waiting to be found and
addressed. Currently, repeat problems are found by manual analysis;
effective solutions depend on the collective experience of the team
solving them. In this paper, we propose an approach to automati-
cally analyze problem tickets to discover groups of problems being
reported in them and provide meaningful, descriptive labels to help
interpret these groups. Our approach incorporates a cleansing phase
to handle the high level of noise observed in problem tickets and a
method to incorporate multiple text clustering techniques and merge
their results in a meaningful manner. We provide detailed experi-
ments to quantitatively and qualitatively evaluate our approach.

Categories and Subject Descriptors

K.6.3 [Software Management]: Software Maintenance

Keywords

Text Clustering, Requirements, Mining Software Repositories

1. INTRODUCTION
Software Maintenance is a crucial phase of any software project

that continues long after the product has been developed. There
have been a number of estimates of effort spent in software main-
tenance and enhancement. Figures varying from 40-80 percent
of total systems and programming resources have been cited [13].
In some market segments, the maintenance phase of the software

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE’14 , November 16–22, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11 ...$15.00.

lifecycle has undergone dramatic changes. Rather than undertake
this costly task in-house, many large and small businesses have
taken to outsourcing their maintenance activities. Market research
firms estimate the Outsourced Software Maintenance business to be
around $250 Billion a year business as of 2012 [18].The software
is turned over (complete with source code, manuals, data, etc) to a
maintenance service provider (such as IBM, Accenture, Cognizant,
Infosys, TCS, inter alia).

The practice of outsourced software maintenance differs substan-
tially from the traditional in-house version. The outsourced service
provider typically operates the system, in addition to providing main-
tenance. Maintenance in this setting consists of answering support
calls, and issuing and handling trouble tickets. This is a challenging
and dynamic business. Service providers compete on the basis of
low costs, and negotiated service-level agreements (SLAs), which
impose volumes and deadlines on the resolution of trouble tickets. In
a typical setting, a service provider handles hundreds of calls a day;
hundreds or thousands of trouble tickets are issued and resolved on
a weekly basis. Cost, and the honouring of SLAs are of paramount
importance. Tickets are typically handled one by one; however,
groups of tickets often follow common patterns (examples below).
Recognising these patterns and exploiting common synergies with
a unified response can lead to substantial cost, quality and interval
benefits. The response could include: process changes that alter the
way certain tickets are handled, changes to documentation, automat-
ing a frequently used service, and also changes to code to add new
features. The recognition of common patterns is both important and
very challenging. In practice, managers are dependent on experience
of individuals resolving these tickets to recognize and report these
patterns on an ad-hoc basis. In a sense, the emerging patterns in the
tickets indicate a kind of "requirements drift" that is latent in the
otherwise undifferentiated mass of individually-generated tickets;
these patterns must be extracted somehow to allow efficient and
co-ordinated responses.

Consider the example of a specific E-Commerce web-site1, main-
tained by IBM. It allows users to log in using a username and
password. The site did not provide a feature to reset the password
and hence, anytime a user forgot his/her password they would open a
problem ticket. Someone in the maintenance team would then reset
the password. In the first year of the web-site there were only 5 tick-
ets related to "password reset". However, as the user base increased
the number of password resets increased to 100. This was noticed
informally by alert personnel. The cost of enhancing the applica-
tion to provide a self password reset option was 10,000$. However,
the cost of manual password reset was only 10$. Hence, the team

1
Identifying information omitted for confidentiality.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

FSE’14, November 16–21, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11...$15.00
http://dx.doi.org/10.1145/2635868.2635897

678

decided to not implement the feature. In the subsequent year, the
password resets increased to 1500 and now the work-around was
not cost-effective anymore and hence the feature was supported.

Consider another example from a supply chain application port-
folio maintained by IBM. A client owned several warehouses and
trucks delivering goods between them. Each truck was fitted with
a GPS device which on returning to its base warehouse, triggered
an alert that updated a database record marking the truck as avail-
able. During the day to day operations, the application maintenance
team were receiving about 20 tickets per month, each asking for
a manual release of trucks. Consultants were able to respond to
this quickly (in less than 10 mins) by manually running a simple
query to update the database record, and thus close these tickets.
However, considering that an automatic GPS-based solution was
already in place, these tickets should not have arisen in the first
place. The repetitive pattern of problem tickets asking for a "vehicle
release" pointed towards a bug in the application that should have
been spotted, investigated and resolved.

In first example, to reduce maintenance cost, the management
team needs to be able to identify "password reset" as a common
pattern because as we saw, such commonly occurring problem pat-
terns are likely to translate into requirements later on. In the second
example, the management team needs to be able to identify "vehicle
release" as a common pattern, as this problem indicated a systematic
application fault.

Our research goal is to build tools that assist managers in identify-
ing these emerging common patterns from the corpus of past tickets.
Towards this end, we make the following contributions to help out-
sourced maintenance software projects manage large volumes of
trouble tickets:

• Tickets contain information about the problem in its title
and description as natural language text. We develop a text
clustering method that identifies emerging patterns of tickets
that can be addressed together in a unified manner.2

• It is imperative that maintenance teams are able to quickly
validate whether the identified patterns indicate valid require-
ments for the maintained system. Hence, the labels used for
summarizing the patterns become very important. We build a
phrase-based approach to assign labels to the identified ticket
clusters in a way that would be strongly suggestive of unified
responses, and thus be salient to practitioners.

• We evaluate the quality of the ticket clusters we find, using
an entropy-based measure of assigning tickets to people (us-
ing historical data) and using qualitative methods on 6 large
application maintenance projects within IBM.

This need to mine common problem patterns to identify feature
requests has also been seen in open source projects. In [5, 11],
authors have presented approaches based on text mining to identify
problem patterns from support forums. In [11], authors apply their
proposed technique on Firefox forum entries and found problem
clusters indicative of technical challenges users are facing that could
be addressed with enhancements. They report that Firefox Principal
Engineer felt that this kind of approach would help their open source
community to prioritise their efforts around commonly reported
challenges. In [5], the authors have applied an existing clustering
algorithm to group forum entries requesting for same/similar feature.
They present a prototype of their approach and evaluate it on support
forum for an open source project called SugarCRM. They also
report that this approach helps the technical team easily identify

2
Note that in this paper, we are not proposing a new general-purpose text

clustering algorithm, but rather, a method to cluster trouble tickets using
multiple existing ideas from text mining so as to effectively identify emergent
patterns of requirements from them.

new feature requests being asked for by user community. Similar
to the need in outsourced maintenance projects, both these works
underscore the need of a technique that can help technical team
easily identify requirements for feature requests and enhancement
from textual data. However, both of these papers present very
limited evaluation. We build upon approaches suggested in these
papers to build a system that uses a combination of different text
clustering techniques to identify cohesive problem clusters. As far as
we know, our work is the first one that presents detailed quantitative
and qualitative experiments that help evaluate the efficacy of the
approach on large outsourced maintenance projects.

Software engineering community has experimented with use of
text analysis for multiple other use-cases. For example, duplicate
bug report detection [21, 15], bug assignment [2], finding similar
bugs [3] to help in fault localization. The underlying approach
here is to identify past bug reports that are textually similar to the
given bug report. However, because the end use-case is different,
these approaches focus on different design considerations than our
approach. For e.g. in the case of duplicate bug report detection, it is
imperative, that there exist a very high textual similarity between old
and the new bug report. Hence, precision of analysis is of paramount
importance. Also, finding one past similar bug report is sufficient
rather than a collection of similar reports. In case of bug assignment,
rather than text clustering, classification based approach works well,
where each developer becomes a class that can be learnt based on
historical data. A new bug report is auto-assigned to one of these
classes. Classification approaches do not work in our use-case, as
the class of problem categories is not known upfront and need to be
discovered from ticket data.

Rest of the paper is organized as follows. In next section we
present important design points for the approach based on the use-
case need and nature of enterprise problem ticket data. In Section 3,
we present our approach, followed by 7 experiments that measure
different aspects of the approach in Section 4. Multiple teams
within IBM are using our approach. In 4, we present examples from
two IBM teams that have successfully used our system to identify
actionable requirements. Finally, we present related work in Section
5 and conclusions in Section 6.

2. DESIGN CONSIDERATIONS
When compared to typical product maintenance, problem ticket

repositories in outsourced maintenance projects contain data corre-
sponding to both, so called bugs (managed in open source projects
using bug tracking systems such as Bugzilla, Jira etc.), and sup-
port requests (managed using discussion forums in open source).
The nature of unstructured text in problem tickets could be 1) au-
tomatic machine-generated text - this type of text is generally well
formatted arising from alerts put in applications to indicate issues,
2) human-generated free text directly typed into these unstructured
fields - their informativeness could vary from being terse to being
very detailed, 3) copy-pasted text from emails threads and other
sources of discussion, or any combination of the above types. (See
Table 1 for examples.) We now identify a couple of major issues
that must be addressed when grouping these problem tickets into
unified, meaningful groups (or clusters).

1) Readable Cluster Labels: Application maintenance practition-
ers need a quick interpretable way to understand what each cluster
represents as they do not have enough time to peruse each individual
ticket in a group. In Table 2, we show some examples of readable
labels that are easier to comprehend versus labels that are not self
explanatory. Later in the paper, in experiment 7, we present using
a user-study the importance of this design consideration in overall
usefulness of the approach.

679

Table 1: Examples show variance in nature of ticket text.

Machine-generated : well-formatted

———
US5163WEBP APDReports 239499: System.NullReferenceException: Ob-
ject reference not set to an instance of an object.

———
US0894SRAP R3Abap CRITICAL: ’R3Abap Shortdumps Frequency-
:Frequency 14 /min > 10 /min (no. of messages per minute above threshold)

———
US0726BIZP BTSAPShr 48743: Document(s) have failed. Please use the
BizAdmin Application for more information. (ErrMonitor)

Natural Language : conversational and noisy

———
To: support@company.com

Subject: Please help

John Doe and I upgraded our NVS Portal to version 5 and we are unable to
open the <company> Daily Volumes app. We get the message showing a
Backend connection error which we have never seen before in this context.

...

I removed the QV plugin from memory and tried again but received the same
message connection error, and this time with an empty response. I’m not
sure how to proceed.

Thanks, Jane Doe

2) Variance in unstructured nature of text : The overall clustering
approach should be able to handle the variance in unstructured nature
of the text (from machine generated to human entered free text)
and maximize the number of tickets clustered, without necessarily
having to know beforehand the nature of data in each ticket. Later in
the paper, in experiments 5 and 6, we evaluate the individual steps
used in our approach that were developed to handle the nature of text
and how they significantly improved the problem cluster quality.

Having characterized the nature of the unstructured data and the
corresponding requirements, we next provide a detailed description
of the approach we developed for our task.

3. PROBLEM TICKET CLUSTERING (PTC)
We call our approach Problem Ticket Clustering (PTC). The first

phase of this approach is Data Cleansing (Sect. 3.1) to prepare the
data for the remaining phases. This phase takes the raw unstructured
data and removes unnecessary information such as email headers,
signature blocks, greetings, etc. Such noise severely impacts the
performance of the following phases and hence to obtain meaningful
results, we define certain pre-processing rules for data cleansing
specific to the nature of problem tickets.

The second phase of our approach is the Grouping phase (Sect. 3.2)
which takes as input the cleansed data and produces as output clus-
ters of problem tickets based on similarity of problems faced along
with meaningful labels describing these clusters. We employ two
distinct clustering algorithms with complementary capabilities, i)
a latent semantic indexing based technique called Lingo [17, 22]
which works well with large non-regular unstructured text and is
known to provide good-quality meaningful cluster labels, and ii)
a novel hierarchical n-gram based technique which is designed to
work well with short snippets of well-formatted text. We then de-
velop a cluster merging technique to merge the results from these
two complementary algorithms. We next describe each of these
phases in detail.

3.1 Data Cleansing and Noise Removal
Typically, raw data in unstructured fields contain conversations

(email threads, etc.) and therefore can have a lot of noise which
hamper text clustering. To handle this noise, we employ the fol-

lowing heuristics and cleanse the data before presenting it for the
grouping phase.

Heurisitic 1: Removal of Email-specific noise. Since the data can
contain copy-pasted email threads, we employ regular expressions to
remove noise arising from them. We remove email headers (FROM:,
TO:, CC:, BCC:, SUBJECT:, etc.), commonly used salutations (HI,
HELLO, DEAR, HEY), signature blocks that usually occur at the
end of email messages, and email formats such as abc@foo.com -
regular type, <Name>/<Country>/<Company> - enterprise type.
This is similar to heuristic 1 proposed in [19].

Heuristic 2: Removal of Context-specific Stop Words. We use a
list of words provided by user (based on domain knowledge) as stop
words over and above the generic English stop words list that many
other techniques also employ. For example, in a problem ticket
collection dealing with SAP issues, the word "SAP" occurs very
frequently but is uninformative.

Heuristic 3: Removal of Names. People names in text typically
do not help discern the technical problems; but their frequent occur-
rence can hinder clustering. Hence we remove them by providing
the ability to specify the names if available in the ticket dump in
columns such as RESOLUTION OWNER, CUSTOMER, etc. as these
are the names commonly observed in the ticket descriptions.

Heuristic 4: Misc. Regular Expression-based Heuristics. On top
of the above mentioned heuristics, we also employ regular expres-
sions to remove entities such as URLs, dates and numbers.

3.2 Grouping Tickets into Labeled Clusters
The grouping phase is divided into the following steps. In the

first step, we extract frequently occurring phrases in the ticket text
and then filter them to derive a pool of candidate cluster labels
(Sect. 3.2.1). Next, to group the tickets, we employ multiple clus-
tering techniques to handle the variance in the unstructured nature
of the data and build a robust clustering method (Sect. 3.2.2). In
addition to a standard, off-the-shelf vector-space clustering tech-
nique, we introduce a novel hierarchical n-gram technique to deal
with the presence of machine-generated trouble tickets along with
human-produced ones. Finally, we apply a merging algorithm to
combine the results of these multiple techniques to present mean-
ingful, well-labeled groupings of tickets which are agnostic to the
nature of ticket data present in the data set (Sect. 3.2.3). In the
following sections, we describe each of the above steps.

3.2.1 Candidate Label Generation
The first step is to extract frequently appearing phrases in the

document set which can later be used to induce labels for the clus-
ters formed. A phrase is a sequence of words occuring together,
commonly refered to as n-gram, where n indicates length of phrase.
To obtain readable labels, we seek to detect complete phrases in
the input text which: i) are shorter than a specified maximum term
length, ii) occur at least a specified number of times in the document
set, iii) do not cross sentence boundaries (such as periods), and iv)
discount the presence of certain words in the subsequence (words
that occur too frequently). These filtered set of phrases constitute
the candidate set of labels for the following clustering step. To
illustrate this technique, consider the following example sentence.

Example Sentence: Inbound GLMAST Idoc failed
Bigrams (2 word phrases): Inbound GLMAST, GLMAST Idoc,
Idoc Failed, Inbound Idoc
Trigrams (3 word phrases): Inbound GLMAST Idoc,
GLMAST Idoc failed, Inbound Idoc Failed
4-gram (4 word phrases): Inbound GLMAST Idoc failed

680

Table 2: Comparison of labels from PTC and LDA.

Labels from PTC Labels from LDA

Change Master Workflow Errors master amd workflow wifi

Removal of Duplicate Accounts ms unable account error

Role Authorization Issues run auth max role

Daily Monitoring Errors netscape tools error monitor

Batch Job Failures job service failed software

Note that here, the word GLMAST is known as a context-specific
stop word and hence its presence is considered optional when cal-
culating candidate labels. Assuming that the word Idoc occurs too
frequently in the tickets collection, the only label remaining in the
candidate set would be Inbound failed. We use a minimum phrase
length of 2 and maximum of 10.

One can argue that we can group the problem tickets simply by
using these candidate labels, and present the groups to the end-users.
However, there are two main problems: i) frequent phrases based
grouping will result in large number of groups which will be labori-
ous and frustrating for the practitioners to act upon, and ii) there will
be a large overlap of problem tickets across groups, and therefore
the very purpose of grouping them is then lost. Text Clustering
seeks precisely to address these problems by considering the text
as whole and leverages the notions of similarity (and distance), and
groups tickets into clusters with minimal overlap.

3.2.2 Text Clustering
Text Clustering is essentially an unsupervised learning approach.

It is well understood in the text mining community that no single
learning technique can work well for all types of data, but rather
individual methods have to be picked and tuned to meet specific
requirements [23]. The K-means clustering algorithm [9] which
was popular for its simplicity a decade ago has been superseded by
methods which capture the semantic relations between words in a
document collection by performing Latent Semantic Analysis [12].
Approaches based on Topic modelling that are commonly used
these days such as Latent Dirichlet Allocation (LDA) [4] tackle
the labelling requirement post-facto by generating high probability
terms associated with each cluster and use them to assign labels to
clusters. But such labels are hard-to-interpret and lead to poorly-
labeled clusters (see Table 2).

Keeping in mind the limitations of these techniques and consider-
ing our requirements, we employ the following two complementary
clustering techniques, i) Lingo [17]: a popular technique that com-
bines the results of frequent phrase finding with the strength of
latent semantic analysis to identify best labels representative of the
document set involving long non-regular text in natural language
(well suited for human authored tickets), and ii) a novel hierarchical
technique based on identifying frequently occurring n-grams (se-
quences of tokens of length n) in the data set which is particularly
suited for short, well-formatted text (such as machine generated
error logs). Humans could have used different words and sentence
formations to describe similar problems. So a clustering technique
that converts the problem text into bag of words (such as Lingo)
is likely to work well. When the problem ticket is generated by a
machine, the sentences are very regular, so a language model based
approach that focuses on sequence of words (such as n-grams) is
likely to give better results.

As a common pre-processing step for both techniques, we run the
entire ticket text through a stemming and stop word removal opera-
tion [11], which is a standard linguistic technique applied in most
text processing tasks. We next describe the two methods and use the

Table 3: Examples to highlight the benefits of complementary

clustering techniques
Example Set 1:
T11: My annual leave verification.
T12: Unable to apply leave. Leave forecast balance is Zero
T13: I can’t apply for leave and why I cant find annual leave
balance in Pso
T14: annual leave application error
T15: Discrepancy in my leave balance.
For the above tickets, we would expect to get the following 3
clusters:
Cluster 1: T11, T13, T14 regarding annual leave
Cluster 2: T12, T13, T15 regarding leave balance
Cluster 3: T12, T13 regarding apply leave

Example Set 2:
T21: GMP: Failed ABC:aaa document
T22: IMPL: Failed DEF:ddd document
T23: BLAST: Failed XYZ:xxx document
T24: GMPL: Failed XYZ document
We would expect to get the following clusters:
Cluster 1: T21, T22, T23, T24 regarding Failed Document
Cluster 2: T23, T24 regarding Failed XYZ Document

two example ticket sets (Table 3) to illustrate the complementary
strengths of each of the techniques.

Lingo Clustering: In what follows, we use the term document
to describe the unstructured text data from a single problem ticket
and document set to describe the entire ticket dump. First, the
document set is represented as a term-document matrix A, where
the columns of the matrix correspond to terms appearing in the
documents, and rows of the matrix correspond to the documents.
The value in each cell is proportional to the frequency of a term in
that particular document and inversely proportional to its frequency
in the entire document set (tf-idf). This matrix A is now decomposed
using Singular Value Decomposition (or any other method such as
Non-negative Matrix Factorization) to obtain an orthogonal basis of
vectors in the feature space as specified in Eqn. 1

A = U ∗ S ∗ V T
(1)

where S is the diagonal matrix of singular values, and U and V are
the left and right matrices of orthogonal bases vectors.

Next, the candidate set of labels discovered previously (Sect. 3.2.1)
are expressed in the same term-document space by considering them
as tiny documents themselves, with each candidate label represented
as a document constituted by the terms in the label. After this, the
similarity of each such candidate label is calculated with respect to
the first k orthogonal basis vectors as shown in Eqn. 2

M = U
T
k ∗ P (2)

where P is matrix of documents formed by the candidate set of labels
and M is the matrix of similarity values between each candidate
label in P and each of the top k basis vectors in U calculated using
the cosine similarity function as

sim(u, p) =
u · p

‖u‖ ‖p‖
=

∑n

i=1
wi,uwi,p

√

∑n

i=1
w2

i,u

√

∑n

i=1
w2

i,p

(3)

where wi,u and wi,p represent the weights of base vector u and
candidate label vector p respectively.

Now, using these cosine similarity values, a label is assigned to
each of the top k basis vectors based on the one that is most similar
to them from the candidate set. The final step is to assign documents

681

to these basis vectors by calculating their cosine similarity with these
vectors, and assigning them to those vectors and labels which fall
within a threshold. Note that, this could result in some tickets being
assigned to multiple vectors, but this is preferred over picking only
the closest one (which would be sensitive to relative similarities
between documents).

Therefore, this entire process results in grouping the documents
according to orthogonal basis vectors that guarantee diversity of
topics covering the term-document space and are also attached with
most frequently occurring phrases that are most similar to these
document clusters, thus resulting in well-labeled clusters.

Applying this clustering technique on Example Set 1 yields the
following labeled clusters:

Cluster 1: Label - Annual Leave, Tickets - T11, T13, T14.
Cluster 2: Label - Leave Balance, Tickets - T12, T13, T15
Cluster 3: Label - Apply Leave, Tickets - T12, T13

which is in line with what we would like to obtain. However, on
Example Set 2 it yields only the following cluster:

Cluster 2: T23, T24 with Label Failed XYZ Document

It fails to identify Cluster 1 since “Failed, document” occurs in all
the tickets. Therefore each document’s column entries correspond-
ing these terms receive low weights due to the idf factor (in tf-idf
weighting explained above), and this results in this cluster not being
identified. We therefore introduce a new clustering technique based
on n-grams, Hierarchical n-gram clustering

Hierarchical N-gram Clustering Technique: As mentioned be-
fore, to handle machine-generated text which are well-formatted
(arising from templates and therefore exhibit almost exactly re-
peating phrases), we require a technique that focuses on extracting
frequently appearing n-grams. For this we develop a suitable hierar-
chical n-gram clustering technique as follows.

The first step in this technique is to filter the set of phrases that
will be used to create the clusters. To do so, we first identify all
bigrams extracted in the candidate label generation phase and then
for each bigram, form a cluster from all the tickets where this bigram
appears. This could result in a cluster of tickets being associated
with multiple bigrams (due to multiple common phrases). Therefore,
to decide which of the associated bigrams to choose as the label for
such a cluster, we pick the bigram having a higher log likelihood
ratio. The log-likelihood ratio measures the deviation between the
observed data “word1 word2” and what would be expected if word1
and word2 were statistically independent. The higher the score, the
less evidence there is in favour of concluding that the words are
independent. It is calculated as follows:

LL = 2(n11 log
n11

m11

+n12 log
n12

m12

+n21 log
n21

m21

+n22 log
n22

m22

)

(4)
where n11 is the number of times word1 word2 occur together, and
n12 is the number of times word1 occurs with some word other than
word2, and so on. Here the mij values are the Expected Values
of the words occurring together and are calculated by taking the
product of their associated marginals and dividing by the sample
size, as follows:

m11 =
n1pnp1

npp

(5)

where n1p is the number of times in total that word1 occurs as the
first word in a bigram, and so on. The formula is similarly extended
for tri-grams, 4-grams, 5-grams and so on.

With this, each cluster now has exactly one label. We then put
each ticket in the clusters whose labels it contains. Similarly, we
repeat the above process using the tri-grams as the candidate phrase
set, 4-grams and so on. At the end of this process, we get a hierarchy
of clusters where each ticket would belong to a bigram cluster and
could further also belong to child trigram, 4-gram and so on clusters.

To illustrate the working of this technique, consider the tickets
in Example Set 2. Here, the two bigrams in the candidate set are
failed document and failed xyz, but the only cluster generated from
bigrams is failed document because all tickets in failed xyz are sub-
sumed in it. The tri-gram step generates a cluster containing tickets
T23, T24 with the label failed xyz document.

Cluster 1: T21, T22, T23, T24 with Label Failed Document
Cluster 1.1: T23, T24 with Label Failed XYZ Document

thus conforming to what we would like to obtain. Applying the same
technique on Example Set 1 yields the following labeled clusters:

Cluster 1: Label - Annual Leave, Tickets - T11, T13, T14.
Cluster 2: Label - Leave Balance, Tickets - T13, T15
Cluster 3: Label - Apply, Tickets - T12, T13

It can be observed that T12 which is also about leave balance is
missing from Cluster 2 because the actual phrase occurring here is
leave forecast balance. This shows that this technique works well
when the text to be clustered is concise and template based. Hence,
in our overall approach we only employ it when the text length is
restricted to a few sentences.

Looking at the results with the two examples sets, we observe the
complementary advantages of the two clustering techniques, which
together provide us with the necessary robustness to deal with the
variance in the unstructured nature of the ticket text.

Both our clustering techniques require a minimum cluster size to
be specified as an input. In practise, we observe that projects choose
to take an action only when a problem has repeated a minimum
number of times, and therefore we allow project teams to specify
this value based on their specific needs. For purposes of experiments
in this paper, we fix this value to be 25. Also, we employed the open-
source implementation of Lingo from Carrot2 (project.carrot2.org)
and retained the default value of K (200). No calibration was needed.

3.2.3 Cluster Merging
In this phase, we combine the outputs of the two clustering tech-

niques to present a unified clustering result by merging the clusters
and their corresponding labels using the following heuristics:

Minimum Cluster Merge Threshold: If the percentage of overlap
in tickets across clusters from the two clustering techniques is high
enough (employing a threshold of 80%), we merge the clusters into a
single cluster by forming a union set of tickets from the two clusters.
To pick the label of the new merged cluster, we simply pick the
cluster label with higher word count.

High Similarity between Labels: It is quite commonly observed
in our ticket data that same typographical errors repeated by the
same practitioners lead to distinct clusters varying only by the dif-
ference of the typo. Another reason could also be due to variations
in spellings employed. For example, a cluster labeled as “Job Can-
celed”, and another labeled as “Job Cancelled” essentially represent
the same underlying problem. In such cases, we find the Levenshtein
distance [14] between the labels normalized by the length of the
longer of the two labels, and check if it lies within a threshold (we
pick 0.2). If so, we collapse the two clusters into a single cluster
and pick one of the two labels as the label for the merged cluster.
Note that, to avoid merging distinct labels differing by a small string

682

Table 4: Details of the subjects used in our experiments

Sub- Total Total Avg Period Total Max

-jects Tickets Words Words (mths) Assignees Entropy

(1) 12387 56963 4.6 6 28 5
(2) 6364 47932 7.5 20 122 7
(3) 12552 220055 17.5 6 64 6
(4) 9224 90067 9.7 14 124 7
(5) 22761 221006 10.0 27 270 9
(6) 17499 278370 16.0 24 280 9

difference not due to an error (e.g. “Cost Error” vs “Post Error”),
we filter the words through an English language dictionary list. Ad-
ditionally, clusters with labels where the order of words is flipped
(e.g. “Job Failed” & “Failed Job”) are collapsed into one. Therefore,
at the end of this cluster merging technique, we obtain a unified set
of document clusters along with their corresponding labels.

We now proceed to provide detailed experimental evaluation of
the entire approach in the next section.

4. EXPERIMENTS
This section is organized as follows. We first describe the different

datasets used for the experiments. We then describe in detail the
experimental methodology employed here to evaluate and compare
the proposed approach with existing techniques, and finally discuss
the results obtained.

4.1 Datasets
For our evaluation we used two different datasets. The first is a

small, hand-labeled dataset used to perform various experiments
and compare performance against ground truth. The second dataset
is a large collection of problem tickets from 6 different customer
projects currently being maintained by IBM.

DS1: Hand-labeled Data: We built a dataset where tickets were
collected from 11 different problem types (classes) manually marked
by a Subject Matter Expert (SME) across multiple IBM clients. In
order to avoid any biases due to imbalanced clustering, we collected
approximately the same number of tickets from each problem type
(∼100 tickets each), giving us a total dataset size of 1084 tickets.
This task was performed by one SME in approximately 4 hours.

The objective was to measure if the composition of clusters in-
ferred from our approach matched the manually marked classes.
This dataset was used for experiments 1, 5 and 6. To measure the
performance for each of the experiments, we compared the clus-
tering results with the manually marked classes and calculated the
precision and recall of the groupings as follows. For each discovered
cluster, we assign the class to which maximum tickets in it belong
as its primary class. For precision, we calculated the percentage of
tickets in that cluster that belong to its primary class, and average
across this for all 11 classes. For recall, we calculated the percentage
of all tickets from the cluster’s primary class that had been detected
in that cluster, and similarly average across all classes.

DS2: IBM Customer Data: We collected 80787 problem tickets
from 6 live projects within IBM. To protect their identities, they
have been referred to as Subjects (1) - (6). Every ticket had a Title
field containing a short description of the problem. All subjects
had tickets created both automatically (by systems) and by humans.
However, the proportion of auto-generated versus human created
tickets varied across these subjects. In Table 4, we show the details
of these subjects. We used this dataset to conduct experiments 2 and
3. The user studies for experiments 4 and 7 were also conducted by
contacting practitioners working on these projects.

4.2 Methodology and Results
Through the experiments performed, we seek to answer the fol-

lowing three key research questions. The first question (RQ1) seeks
to address whether our approach produces good clusters (as mea-
sured by various metrics described below) and analyzes its per-
formance compared to existing popular clustering methods. The
second question (RQ2) focuses on the efficacy of the specific indi-
vidual steps of our approach (i.e. noise removal, cluster merging,
good label generation). Finally, the third question (RQ3) addresses
whether the application of our approach led to identification of co-
herent patterns that project teams acted upon to reduce their software
maintenance cost.

4.2.1 RQ1: Quality of Clustering with PTC
To address this research question, we performed 4 experiments.

In experiment 1, we used the hand-labeled dataset where tickets
are associated to different classes based on the type of problem de-
scribed. We ran our approach on this dataset and then calculated the
precision and recall scores by comparing the clustering assignments
obtained against the manually marked ground truth. This is also
the evaluation approach followed in existing literature [19, 7] and
possibly the most intuitive one. However, this experiment, while
necessary, would not be sufficient to confirm the goodness of the
clustering because the size of hand-labeled datasets are arguably
small. Winbladh et al [7] also report on the challenge of creating
such a truth set. In their work, it took 13.6 hours to manually label
the dataset even for a small set of 327 comments. This made us
further explore additional metrics to evaluate the cluster goodness.

Intuitively, tickets that indicate the same problem should be de-
scribed using same or similar words and hence should show a high
textual similarity when grouped together. Based on this, we de-
veloped our first new metric which we call textual coherence. We
calculate each cluster’s textual coherence by first calculating the
textual similarity between each pair of tickets in that cluster and
then compute the average across all such pairs of tickets. The text
similarity metric employed here is the well-known cosine similar-
ity [20] and is applied on the cleansed tickets. This is described in
detail in experiment 2.

Next, we introduce another metric called Assignee Entropy. In
every problem ticket, there exists a Ticket Assignee field which iden-
tifies the individual to whom that ticket was assigned for resolution.
Typically these tickets are not assigned randomly to individuals.
Rather, there is a top-level process (called "triaging") where an ex-
perienced person observes the nature of the problem and assigns
the ticket to an individual based on their expertise. For example,
“Password resets” are addressed by a select few amongst the en-
tire pool of individuals. Hence, a small subset of people become
specialised or trained in resolving a particular type of issue. As a
result of this practice, during steady-state maintenance, each type
of issue is generally assigned to those limited set of individuals
who would have developed proficiency in solving that issue type.
We therefore exploit this knowledge from software maintenance
ecosystem that coherent problems (problems of the same type) are
solved by a limited set of individuals from amongst the entire pool.
An information-theoretic view of this would be that more coherent
clusters have lower uncertainty about the assignment of tickets in
the cluster to personnel; thus the information content, or entropy of
coherent clusters should be lower.

Based on this view, we conjecture that good clusters i.e. clusters
with high coherence exhibit low assignee entropy values whereas
incoherent or dissimilar clusters exhibit high entropy. To mathemati-
cally capture this knowledge, if we look at a histogram of counts for
the entire pool of assignees for tickets from the same problem type

683

1 2 3 4 5 6

0.00

0.25

0.50

0.75

1.00

A
s
s
ig

n
e

e
−

o
n

ly

L
D

A

R
a

n
d

o
m

P
T

C

A
s
s
ig

n
e

e
−

o
n

ly

L
D

A

R
a

n
d

o
m

P
T

C

A
s
s
ig

n
e

e
−

o
n

ly

L
D

A

R
a

n
d

o
m

P
T

C

A
s
s
ig

n
e

e
−

o
n

ly

L
D

A

R
a

n
d

o
m

P
T

C

A
s
s
ig

n
e

e
−

o
n

ly

L
D

A

R
a

n
d

o
m

P
T

C

A
s
s
ig

n
e

e
−

o
n

ly

L
D

A

R
a

n
d

o
m

P
T

C

S
im

ila
ri

ty
 S

c
o

re

Figure 1: Textual Coherence score of clusters for different tech-

niques - assignee-only, LDA, Random and our PTC approach

(a cluster), we should observe a distribution that exhibits low entropy
(i.e. there is a fairly high certainty regarding which individuals these
tickets are being assigned to). This entropy value is calculated as
shown below in Eqn. 6,

H = −

M
∑

i=1

ni

N
log

2
(
ni

N
) (6)

where M is the number of total number of assignees in a project,
N is the total number of tickets in a problem type (cluster) whose
entropy you want to calculate, and ni is the number of tickets from
that cluster assigned to assignee number i. In experiment 3, we
use this to demonstrate, using historical data, that clusters obtained
by our PTC approach do exhibit low assignee entropy values and
therefore are reflective of coherent problem types.

Our choice of the two new metrics introduced above are also
driven by their complementary nature. While the Textual Coher-
ence measures the clustering goodness based on the textual patterns,
which is an intrinsic property of the tickets themselves, the As-
signment Entropy measures the quality of clustering based on the
steady-state practise observed in software engineering ecosystems
and is therefore essentially an extrinsic measure. Therefore, em-
ploying both these metrics helps us comprehensively measure the
goodness of the clusters obtained.

In both experiments 2 and 3, we compared the performance of
our PTC approach against the following methods:

• LDA: Latent Dirichlet Allocation, which is the clustering
technique of choice for most of the recent work in litera-
ture [10, 16, 19] employing text-based clustering. We used
the LDA implementation from a tool called MALLET3. We
configured MALLET according to the approach used in [19],
where we keep the number of topics per subject as a constant
(500 for our experiments) and associate a document j to a
topic i only if document to topic proportion is >=0.25.

• Random: A random clustering approach where we create
1000 clusters per subject by randomly assigning tickets to
each cluster. There are four cluster sizes per subject, selected
as median of the 4 quartiles of cluster sizes in PTC.

• Assignee-Only: Clustering based on Ticket Assignee field,
completely ignoring the problem text. Here we ignore indi-
viduals who have resolved less than 25 tickets.

Finally, in order to ensure that end users actually find the clusters
useful, we did a user study where practitioners were asked to rate the

3http://mallet.cs.umass.edu/

1 2 3 4 5 6

0

2

4

6

L
D

A

R
a

n
d

o
m

P
T

C

L
D

A

R
a

n
d

o
m

P
T

C

L
D

A

R
a

n
d

o
m

P
T

C

L
D

A

R
a

n
d

o
m

P
T

C

L
D

A

R
a

n
d

o
m

P
T

C

L
D

A

R
a

n
d

o
m

P
T

C

A
s
s
ig

n
e

e
 E

n
tr

o
p
y

Figure 2: Assignee entropy of clusters for different techniques -

LDA, Random and our PTC approach.

clusters as meaningful i.e. all tickets in the cluster indicate the same
problem that is repeatedly actioned. This evaluation is discussed in
experiment 4.

Experiment 1: Does PTC give high precision and recall
when evaluated against a truth set?
Experiment 2: Does PTC give clusters with higher textual
coherence when compared to other approaches?
Experiment 3: Does PTC give clusters with higher assign-
ment entropy when compared to other approaches?
Experiment 4: Do end users find the clusters identified by
PTC as coherent?

Experiment 1: (Precision and Recall) We observe that we ob-
tain both high average precision (0.94) and recall (0.80) values. We
also observe that the standard deviation values are quite low for both
metrics (0.09 and 0.24 respectively) showing that the clustering is
consistent across the various classes in the dataset. These values
demonstrate that our approach produces good quality clusters on the
small, hand-labeled dataset.

Experiment 2: (Textual Coherence) In this experiment we cal-
culated the Textual Coherence scores obtained with our approach on
each of the 6 IBM datasets and compared these scores against the
ones obtained using LDA, Random and Assignee-Only. The results
of this experiment are shown in the Fig. 1. The box plots show
the mean and the variance of Textual Coherence scores for various
clusters obtained using the four approaches across each of the 6
datasets. On comparing the distributions, we clearly observe that
our approach yields clusters with higher Textual Coherence as com-
pared to LDA and Random clustering. The textual coherence of our
approach is also better than Assignee-only clusters, which validates
the obvious that even though coherent problems are solved by a lim-
ited set of individuals, the same individual can solve multiple sets
of coherent problems, and hence grouping tickets by assignee might
not necessarily provide problem clusters of high Textual Coherence.
This experiment reflects the better quality of clusters obtained from
our approach as measured by their intrinsic similarity.

Experiment 3: (Assignee Entropy) Similar to the previous ex-
periment, upon running the LDA and Random algorithm on each of
the 6 datasets, we calculated the corresponding Assignee Entropy
values and compared them against the ones obtained using PTC.
We remind the reader that good clusters must exhibit low assignee
entropy values whereas incoherent or dissimilar clusters exhibit high
entropy. The results of this experiment are shown by the box plots
in Fig. 2. As we can see, for Subject 1 and 3, we observe similar
Assignee Entropy distributions between PTC, LDA and Random.
However for each of the remaining 4 Subjects, we clearly observe

684

Table 5: Distribution of responses for Experiment 4

Total Coherent Not Coherent Not Sure

92 59 28 5

that PTC yields clusters with lower (better) Assignee Entropy as
compared to LDA. For these 4 subjects, the difference in assignee
entropy between our and LDA approach was statistically significant
with p − value < 0.01. Upon further investigation, we found in
Subjects 1 and 3, the problem ticket assignment to people were more
dictated by their availability rather than their specific skill. Some
of the reasons for this are: 1) most of the tickets required a generic
skills to fix or 2) the project had well documented resolution FAQs
for reference.

Based on experiments 2 and 3, we observe that our approach
yields clusters with better textual similarity and equivalent or better
assignee entropy when compared to LDA, which is a popular topic
identification technique. Our understanding is that this performance
is primarily because we employ multiple clustering algorithms in
PTC to handle the variance in the nature of text in problem tickets
and merge their results to obtain representative clusters, therefore
making it better-suited to this domain.

Experiment 4: (User Study) For this experiment, we first ran-
domly picked problem clusters obtained from PTC across the range
of assignee entropy and textual similarity scores to conduct a user-
study on. We then contacted the technical experts from each of 6
IBM project teams and asked them the following question: Are these
problem clusters coherent enough to take unified responsive actions
in your project? We asked the experts to rate each problem cluster
as either (1) coherent, (2) not coherent, or (3) not sure. Overall we
had 92 problem clusters (data points) for the experts to verify across
subjects. Per subject for each problem cluster, a pool of experts (3
to 5 people) provided their consolidated response.

From the response distribution seen in Table 5, we find that out
of 92 responses (corresponding to 92 problem clusters), 59 (64%)
clusters were marked as coherent by experts and 28 (30%) as not.
We also observed that experts were able to identify the coherent
categories without any deliberation, however for marking them as
not coherent they took longer. This demonstrates that for a randomly
selected subset of clusters, the experts found >50% coherent i.e. the
problem cluster indicates a problem reported in multiple tickets in
project and it could be removed by taking a single action.

These set of experiments indicate that our technique yields
good clusters as measured using metrics of precision, recall,
textual coherence and assignment entropy. In the user study,
project experts further confirmed that a large percentage of
identified clusters were useful.

4.2.2 RQ2: Efficacy of Individual Steps of PTC
Our approach had three steps: (1) noise removal, (2) clustering

and (3) merging. Our clustering approach specifically focused on
generating readable labels for clusters. In these sets of experiments
we evaluate the efficacy of individual steps. The first step in our
approach is to pre-process the tickets so as to remove noise. In
experiment 5, we evaluate the impact of this step in the overall
approach and measure it in terms of loss in precision and recall on
the hand-labeled dataset when this step is removed from our PTC
approach. The next step in our approach is to employ two different
clustering algorithms and then combine the results using a merge
algorithm. In experiment 6, we evaluate the effectiveness of using
two algorithms and merging their results when compared to using
only either of them. Again, we measure the effectiveness using the
standard metrics of precision and recall on the hand-labeled dataset.

Table 6: Quantitative Evaluation of Improvements in the

Cleansing and Merging Phases on Hand-labeled dataset.
Before Cleansing After Cleaning After Merging

P R P R P R

Avg 0.66 0.51 0.92 0.54 0.94 0.80

StdDev 0.37 0.38 0.08 0.23 0.09 0.24

Finally, we measure the effectiveness of our cluster labels with a
user study in experiment 7 where practitioners from various projects
were given the same cluster of tickets with two sets of labels. The
first one were labels generated using our approach PTC and the
other using the state of the art algorithm LDA. They were asked to
qualitatively judge which label was more helpful from the point of
view of comprehending the problem described by reading the label.

Experiment 5: What is the effectiveness of the noise removal
step in PTC?
Experiment 6: Do we require multiple clustering methods
and merging in PTC?
Experiment 7: Do end users find the labelling of clusters in
PTC meaningful?

Experiment 5: (Noise Removal) Through this experiment, we
evaluated the importance of the noise removal step of our approach
by measuring the change in precision and recall values on the hand-
labeled dataset as shown in Table. 6. We observed that before
cleansing, the average precision was quite poor (0.66) implying that,
on average, clusters had high contamination of tickets from classes
other than the primary class. This was because clusters were being
formed due to noisy, uninformative text across tickets. For e.g, a
cluster was formed due to a common signature block of the same
person across multiple classes. But, after cleansing, the average
precision increased to 0.92 indicating that the clusters obtained
contained tickets mostly from one class, along with a low value of
standard deviation (0.08) indicating this to be the case across all
classes. These improvements confirm the importance of the noise
removal step of our approach. We used only the Lingo clustering
algorithm for this experiment.

Experiment 6: (Merge Clusters) In this experiment, we com-
pared the change in precision (P) and recall (R) values on the hand-
labeled dataset when we just used one clustering algorithm (i.e.
Lingo) versus running both algorithms and merging. As shown in
Table. 6 a low value of average recall even after cleansing (0.54)
indicated that not all of the 11 classes were being discovered by
the clusters. But, after running both our clustering approaches and
merging, we observed a rise in the recall to 0.80 showing that com-
bining the results of multiple techniques helps increase the recovery
of classes discovered by the clustering due to the ability to handle
the variance in the nature of the text across these classes. This exper-
iment demonstrates the importance of utilizing multiple clustering
techniques and merging their results.

Experiment 7: (User Study) We conducted another user study
to evaluate the effectiveness of labelling of the problem clusters and
compared them against the ones obtained via LDA. To do so, we
first identified overlapping clusters between PTC and LDA (clusters
were marked as overlapping if they had 70% or more tickets in
common). We then randomly picked 5 such overlapping clusters
from each subject and presented them to the experts, asking them to
answer the following question: Is the label meaningful enough to
describe the problem suggested by the cluster? They could answer
either (1) meaningful, (2) not meaningful, or (3) not sure. The
experts were not made aware that these labels refer to overlapping 5
problem clusters, in order to allow them to make their judgements

685

Table 7: Distribution of responses for Experiment 7

Method Total Meaningful Not Meaningful Not Sure

LDA 25 6 17 2
PTC 25 19 6 0

about each label in isolation. Overall we had 60 data points for the
experts to verify across subjects. We reached out to 6 experts for
participation, but received responses from only 5 of them.

Table 7 presents the response distribution received. As we can
see, out of the 25 overlapping problem categories between LDA and
PTC, 17 of them were marked as not meaningful for labels generated
through LDA while only 6 of them were marked not meaningful
in PTC. 75% (19) of the problem categories labeled by PTC were
marked meaningful, while on the other hand only 24% of LDA were
marked as meaningful. This validates our claim that labelling the
problem categories for easy comprehension is important towards
reporting cohesive problem categories, and PTC provides more
meaningful labels to experts as compared to LDA.

These set of experiments indicate that noise removal, use of
multiple clustering algorithms and readable cluster labels are
indeed essential steps in the approach and lead to significant
improvements in the quality of output clusters.

4.2.3 RQ3: Usefulness of Clusters in IBM Projects
The quantitative and qualitative experiments performed above

help us establish the goodness of our approach and necessity of indi-
vidual steps. However, the actual benefit of the approach is realized
only when project teams choose specific clusters identified using
this approach and decide to implement a follow-up action which
either identifies new requirements or reduces their maintenance cost.
More than sixty different software maintenance projects within IBM
have deployed our tool. We have several discussions with these
practitioners to understand the kinds of actions project teams have
been implementing using the clusters identified with our approach.
In this section, we present two such case-studies. Since these are
existing IBM customers, in the interest of confidentiality, we omit
certain specific details but nonetheless report key observations and
actions taken thereof.

Case Study 1: A particular project was observing a continuous
increase in backlog of tickets. Both ticket volumes and average
resolution time are key process metrics of concern to maintenance
projects. Service Level Agreement (SLA) adherence could be ad-
versely impacted if ticket volumes or ticket resolution times were to
keep surging. To address these concerns, the project team primarily
looked at those problem clusters which had a high volume of tickets
in them. Amongst such clusters, of particular interest were those
that took a longer time to fix. Below we discuss a few examples
of unified actions this project implemented in response to these
identified problem clusters.

Upon inspecting large clusters such as cheque payment on LIV
exception not working, and PO output ZNEU triggering for any
field changed, the teams realized that these problems point to design
issues and can be avoided by implementing enhancements in the
payment and purchase order processes respectively. Additionally,
to address the problem of high resource turnover and to ensure
that productivity is not lost when a new resources come in to solve
tickets, the team started authoring FAQs for large problem clusters
such as Changing DSN Table Entries, Incorrect Instance in New
User Forms, GSAP File Missing for Business Users.

This project also found problem clusters that indicated a require-
ments drift. There was an existing functionality to convert a docu-
ment to an OCR image.Once the image was successfully generated,
it was transmitted to another system. The project kept receiving

tickets thrice a week that required manual intervention to transmit
the document. The identified problem clusters through PTC (such as
manually transmit document and OCR unsuccessful) indicated that
the OCR program was only able to handle documents that strictly
adhered to a template. Based on this, the new requirement identified
was to reject non-compliant documents upfront, even before they
are passed to the OCR system.

Case Study 2: In another project, the software maintenance had
been transferred over from another service provider to IBM. The
new team did not have any prior knowledge of the repetitive problem
patterns and therefore, used our approach to quickly come up to
speed. The team observed that a large number of tickets formed
clusters such as password reset. This was despite the fact that a
self-help password-reset functionality was already available. A
discussion with the client indicated that there was a user-awareness
issue since the feature had only been recently implemented.

Further, the team found clusters such as process chain failure,
job abended. These clusters were indicative of step failures in an
otherwise large process chain. In most cases, the resolver would
just re-initiate the process chain. Once the problem clusters were
identified, it became easy for the IBM team to train there resolvers
also to do the same. But this time, in response to the identified clus-
ters, the team performed a deeper and more thorough investigation
and found that many of these failures were reported on Fridays and
resolved by Monday. It turned out that the system was shut down
for routine maintenance for a couple of hours every Friday evening.
Quite a few reports were also auto-configured to run at the same
time. Now, as the system was not available during these times, the
corresponding jobs as well as the process chains failed. The root
cause of the problem was that over the years the knowledge and
ownership of scheduled jobs and system maintenance had changed
multiple hands and was now resident in multiple teams.

This issue led to a new requirement for the system maintenance
team to change system downtime to a more opportune time. Also, a
new application was developed to handle job failures during sched-
uled downtimes. System administrators advertised the system down-
time and all problem tickets raised for job failures during that time
period, were auto-queued for job restart once the system came up.

In general, we have found that PTC-found clusters helped project
management teams better manage the volume of ticket streams and
identify new requirements latent in these problem tickets. They are
able to follow up with the technical leads to get a deeper under-
standing of the issues identified and decide on some unified actions.
Building on this work, we are developing techniques to correlate
these problem categories to operational (process) metrics such as
volume, resolution time, SLA adherence to automatically identify
those problem categories that cause majority of the operational grief
and therefore present them in a prioritized manner.

4.3 Threats to Validity
Threats to external validity arise when the observed results cannot

be generalized to other experimental setups. In our experiments
we tried to limit this threat by evaluating on 80787 tickets across
6 different IBM client projects. The average number of words
per ticket also varied across the subjects from 4 to 17. Also, our
approach has been deployed within IBM and has been used by 60
different projects till date. We have received anecdotal evidence of
its usefulness, some of which has been presented in RQ3. Finally,
our approach has also proven to be useful in Solutioning (bidding
for new projects), where the problem tickets are from client accounts
which are not serviced by IBM.

Threats to internal validity arise when factors affect the dependent
variables (the datasets described in Section 4.1). In our study, such

686

factors are errors in implementation of cleansing and identifying
candidate labels. Moreover, we used certain heuristics in our cleans-
ing phase based on manual inspection of the tickets and guidance
from project leads. The clustering approach required some configu-
ration parameters such as minimum cluster size, minimum cluster
merge threshold, minimum and maximum n-gram/phrase length etc.
The choice of these parameters was heuristic based. Also factors
like ticket assignment process, maturity of the project, geographical
and cultural aspects of the people participating in the project could
impact the Assignee Entropy metric.

The choice of metrics can be considered as threats to construct
validity. Precision and recall are appropriate measures in search
retrieval domain. However for measuring clustering efficiency of
our approach in comparison with the golden set, we leverage these
metrics. To address this, we used other metrics for evaluation and
also performed user studies to validate our approach. Gold standard
was produced by a single Subject Matter Expert (SME). While its
true that in open domain (such as news articles, etc), there can be
significant inter-annotator disagreement, in the domain of IT tickets
where the notion of problem categories in operations are fairly well-
understood and agreed upon, we did not see the need to calculate
inter-annotator agreements. Further, since we use multiple clustering
techniques which employ different measures, we wanted to employ
a general textual coherence method for evaluation that is agnostic to
all clustering methods compared. Also, we did not conduct a formal
validation of the conjecture behind Asignee Entropy metric.

5. RELATED WORK
Using text-based analysis to identify groupings from software

artifacts is not new. Most recently the work of [19] extracted topics
from user queries on software forums. Having extracted the topics,
they then try to create an FAQ (frequently asked question) from
answers put in all the user queries grouped under a topic. In [10],
authors have tried to extract automated labelled topics from commit-
log comments recovered from source control systems to provide
insights into evolving software development activities. Both these
and other approaches such as [16] use LDA [4]. As we have seen
in this paper, one of the primary challenges with using LDA is the
labeling aspect of the extracted topics. Because of unreadable labels
the topics are often discarded as not useful in our use case.

Prior work exist very similar to ours towards the specific goal
of managing feature requests [5, 11]. In Frictionary [11], they pro-
posed an approach to extract problem topics from Firefox support
requests. They extract a problem topic from each request by trans-
forming it into a predefined grammatical format (subject-verb-object
such as bookmark-disappeared-browser) and by then aggregating
the topics using certain heuristics. While such linguistic assump-
tions for transformation may be reasonable in their domain, they are
highly restrictive for problem tickets, which, as shown before, can
be machine-generated logs (no grammar), or email threads (contain
too much noise). In [5], they focused on discussion threads on pub-
lic forums and applied a known clustering algorithm called spherical
K-means. Our approach builds upon these works by customizing
known text clustering approaches to work well with noisy and di-
verse textual formats found in problem tickets seen in an industrial
setting.

Text analysis approaches can be of two types: unsupervised such
as IR-based techniques, clustering, topic modeling or supervised
such as classification. Software engineering community has used for
of these types to solve various use-cases. Multiple works [3, 21, 15]
have applied unsupervised text analysis to detect similar or duplicate
bug reports. Bug reports have more structure such as platform and
components used, stack traces and free text. In [3], authors apply a

different similarity detection approach for each of the constituents,
for example 2 stack traces are similar if the method sequences being
reported in trace are same, which 2 titles are similar if they contain
same bag of words. [15], identify if a bug is duplicate by building
using a combination of IR-based features and topic-based features.
In [21] authors use natural language features along with execution
information to find duplicate bug reports.

Supervised text analysis has been applied to propose solution to
problems such as bug assignment [6], for classifying whether a
given bug report is a feature or bug [1] or for determining whether
a bug will be fixed or not [8]. In [6], authors learn a model per
developer based on text similarity of maintenance requests and
use it to assign these requests to an appropriate developer. In [1],
authors train a naive bayes and regression based model to distinguish
between bugs and enhancement requests. In [8], a regression model
is trained on structured features available in bug reports such as
who opened the bug, how many times it was re-assigned, who it
was re-assigned to etc to determine if a bug will get fixed or not.
A supervised approach would not work well in our scenario where
problem categories are not known upfront and need to be discovered
from problem tickets.

6. CONCLUSION
In this research, we addressed the problem of managing high-

volume streams of trouble-ticket requests in an outsourced software
maintenance ecosystem. Using unstructured information processing
methods, we developed our “PTC" approach to cluster the stream
into unified groups, and assigning suggestive, salient labels to the
groups. We quantitatvely validated the clustering approach by show-
ing that a) the groups were textually coherent, b) the groups were
coherent enough to facilitate assignment to smaller teams drawn
from the larger collection of project personnel, and c) our cluster-
ing approach was significantly better than commonly used LDA
based approaches. A qualitative case study with domain experts
suggested that our approach provided useful results which improved
upon LDA based approaches. Our approach is quite general, and
has proven to be useful in live, customer engagements on a wide
range of software platforms (Oracle, Java, SAP, etc) and application
domains; this experience suggests that this approach will be useful
in a broad range of settings in the growing outsourced maintenance
industry. In future work, we intend to explore beyond cluster size
what other metrics we can use to rank/prioritize clusters for action
by the account team. We also wish to explore how change in trends
for high ticket volume problem categories are explainable through
code changes being performed on application.

7. REFERENCES

[1] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G.
Guéhéneuc. Is it a bug or an enhancement?: A text-based
approach to classify change requests. CASCON ’08, pages
23:304–23:318. ACM, 2008.

[2] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this
bug? In Proceedings of the 28th International Conference on
Software Engineering, ICSE ’06, pages 361–370. ACM, 2006.

[3] B. Ashok, J. Joy, H. Liang, S. K. Rajamani, G. Srinivasa, and
V. Vangala. Debugadvisor: a recommender system for de-
bugging. In Proceedings of the the 7th joint meeting of the
European software engineering conference and the ACM SIG-
SOFT symposium on The foundations of software engineering,
ESEC/FSE ’09, pages 373–382. ACM, 2009.

687

[4] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet
allocation. the Journal of machine Learning research, 3:993–
1022, 2003.

[5] J. Cleland-Huang, H. Dumitru, C. Duan, and C. Castro-Herrera.
Automated support for managing feature requests in open
forums. Communications of the ACM, 52(10):68–74, 2009.

[6] G. A. Di Lucca, M. Di Penta, and S. Gradara. An approach
to classify software maintenance requests. In Proceedings.
International Conference on Software Maintenance, pages
93–102. IEEE, 2002.

[7] L. V. Galvis Carreño and K. Winbladh. Analysis of user com-
ments: an approach for software requirements evolution. In
Proceedings of the 2013 International Conference on Software
Engineering, pages 582–591. IEEE Press, 2013.

[8] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy.
Characterizing and predicting which bugs get fixed: An empir-
ical study of microsoft windows. In Proceedings of the 32Nd
ACM/IEEE International Conference on Software Engineering
- Volume 1, ICSE ’10, pages 495–504. ACM, 2010.

[9] J. A. Hartigan and M. A. Wong. Algorithm as 136: A k-means
clustering algorithm. Journal of the Royal Statistical Society.
Series C (Applied Statistics), 28(1):100–108, 1979.

[10] A. Hindle, N. A. Ernst, M. W. Godfrey, and J. Mylopoulos.
Automated topic naming to support cross-project analysis of
software maintenance activities. In Proceedings of the 8th
Working Conference on Mining Software Repositories, pages
163–172. ACM, 2011.

[11] A. Ko. Mining whining in support forums with frictionary.
In Proceedings of the 2012 ACM annual conference extended
abstracts on Human Factors in Computing Systems Extended
Abstracts, pages 191–200. ACM, 2012.

[12] T. K. Landauer, P. W. Foltz, and D. Laham. An introduction
to latent semantic analysis. Discourse processes, 25(2-3):259–
284, 1998.

[13] A. Mukhija and M. Glinz. Estimating software maintenance.
Lecture slides from Requirements, 2003.

[14] G. Navarro. A guided tour to approximate string matching.
ACM computing surveys (CSUR), 33(1):31–88, 2001.

[15] A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo, and C. Sun.
Duplicate bug report detection with a combination of informa-
tion retrieval and topic modeling. In Proceedings of the 27th
IEEE/ACM International Conference on Automated Software
Engineering, ASE 2012, pages 70–79. ACM, 2012.

[16] A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo, and C. Sun.
Duplicate bug report detection with a combination of informa-
tion retrieval and topic modeling. In Proceedings of the 27th
IEEE/ACM International Conference on Automated Software
Engineering, pages 70–79. ACM, 2012.

[17] S. Osiriski, J. Stefanowski, and D. Weiss. Lingo: Search
results clustering algorithm based on singular value decompo-
sition. In Intelligent information processing and web mining:
proceedings of the International IIS: IIPWMÕ04 Conference
held in Zakopane, Poland, page 359, 2004.

[18] C. Pettey and R. van der Meulen. Gartner research -
worldwide information technology outsourcing market re-
port 2012. http://www.gartner.com/newsroom/

id/2021215.

[19] S. Stefan HenSS, M. Monperrus, and M. Mezini. Semi-
automatically extracting faqs to improve accessibility of soft-
ware development knowledge. In Proceedings of the 2012
International Conference on Software Engineering, pages 793–
803. IEEE Press, 2012.

[20] P.-N. Tan et al. Introduction to data mining. Pearson Education
India, 2007.

[21] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. An approach
to detecting duplicate bug reports using natural language and
execution information. In Proceedings of the 30th interna-
tional conference on Software engineering, pages 461–470.
ACM, 2008.

[22] D. Weiss. Descriptive clustering as a method for exploring
text collections. PhD thesis, Citeseer, 2006.

[23] D. H. Wolpert. The lack of a priori distinctions between
learning algorithms. Neural Computation, 8(7):1341–1390,
1996.

688

