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ABSTRACT

Static analysis is challenged by the dynamic language con-
structs of JavaScript which often lead to unacceptable per-
formance and/or precision results. We describe an approach
that focuses on improving the practicality and accuracy of
points-to analysis and call graph construction for JavaScript
programs. The approach first identifies program constructs
which are sources of imprecision (i.e., root causes) through
monitoring the static analysis process. We then examine
and suggest specific context-sensitive analyses to apply. Our
technique is able to to find that the root causes comprise less
than 2% of the functions in JavaScript library applications.
Moreover, the specialized analysis derived by our approach
finishes within a few seconds, even on programs which can
not complete within 10 minutes with the original analysis.

CCS Concepts

•Software and its engineering → Software testing

and debugging; •Theory of computation → Program
analysis;

Keywords

JavaScript; program analysis

1. INTRODUCTION
Dynamic programming languages such as JavaScript are

now in widespread use for both client-side and server-side
applications, often together with cloud services and/or mo-
bile devices. The flexibility of these languages, for exam-
ple for building prototypes, is key to their popularity, but
their dynamic nature presents real challenges to static pro-
gram analyses. These challenges affect analyses used to en-
sure the security of applications (e.g., [5, 6]), to optimize
code for good performance (e.g., [8]) and to aid program

∗The author was employed by IBM Research when the paper
was written.

understanding (e.g., [4]). For example, JavaScript allows ob-
ject property accesses as associative arrays where the prop-
erty name may be set as a result of execution. Making as-
sumptions more accurate than worst-case here may be diffi-
cult. Moreover, JavaScript supports multiple programming
paradigms including object-oriented, functional and proce-
dural programming. Each programming paradigm requires
specialized techniques for accurate analysis [23]. These are
examples of how JavaScript features render accurate static
analysis very difficult for many real-world programs.

The effectiveness of a static analysis often is evaluated as
a combination of its precision (i.e., low false positive rate)
and performance (i.e., efficiency in a limited time/space bud-
get). With complex, medium-sized JavaScript programs,
especially those using real-world libraries such as jQuery,
static analysis cannot reach a useful solution within a rea-
sonable time budget despite recent progress on improving
the state-of-the-art (e.g., [20, 2, 23, 14]). Often it is even
difficult to obtain a good approximation of the program call
graph, which is a foundation of inter-procedural static anal-
ysis and useful for tasks such as dead-code elimination [12].

We present a new approach to tackle this problem for
JavaScript programs. By applying an imprecise static call
graph construction and points-to analysis algorithm to the
program, extra information about points-to propagation is
gathered in the points-to graph under construction.1 A
heuristic process observes the analysis propagation phase in
order to capture anomalous behavior (i.e., when the anal-
ysis is becoming too approximate through propagation of
inaccuracy). A diagnosis algorithm is applied to trace this
“bad”behavior back to its root causes linked to specific func-
tions. By applying a well-chosen context sensitivity policy
to use on these functions during a fresh analysis pass, the
anomalous behavior may be circumventable. This process
utilizes dynamic analysis results in addition to the static
analysis self-inspection to help choose the kinds of context
sensitivity to propose. We call this entire process root-cause
localization and remediation, and it is crucial for designing
effective, new static analysis algorithms for JavaScript as
well as for tuning existing analysis algorithms.

More specifically, our systematic support for root-cause
localization and remediation focuses on points-to analysis,
an enabling static analysis for various automated software
tools. When confronted with an unscalable and/or too im-
precise static points-to analysis on a target program, we keep

1Note that JavaScript points-to analysis and call graph con-
struction are often interleaved. The accuracy of the points-
to graph directly determines the accuracy of the call graph.
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track of the history information in the propagation system,
labeling the origins of the points-to relations. While examin-
ing the analysis propagation as it is performed, heuristics are
applied to decide when to identify the sources of imprecision
(i.e., when the analysis result begins to diverge). Our auto-
matic root-cause identification uses the intermediate points-
to results and the history labels to infer the variables and/or
reference properties that have big impact on overall analysis
precision and performance as the root causes.

In addition, we have designed an automatic approach that
suggests specialized refinements to improve analysis preci-
sion for these root causes. Using a dynamic trace of pro-
gram execution, we build a set of dynamic points-to graphs
using various kinds of context sensitivity. The idea is that
the dynamic points-to graphs can simulate the possible ef-
fects of applying a particular kind of context sensitivity to
the root-cause function in the re-started analysis.

The automatic root-cause localization relieves a static anal-
ysis designer from the chores of manually inspecting the pro-
gram and the analysis implementation to understand the
sources of imprecision. Moreover, the automatic improve-
ment suggestion provides possible context-sensitive analysis
choices that may significantly improve the overall analysis
performance and precision. The specialized analysis con-
figurations derived from the results of our approach, with
possible adjustment from the static analysis designer, can be
executed on the same program to observe if the performance
and/or precision issues have been resolved. If necessary, the
same process can be iteratively performed to locate suffi-
ciently many of the sources of imprecision in the analysis on
the target program to achieve the desired accuracy and per-
formance. We have conducted experiments to evaluate the
accuracy of the automatic root-cause location and the sub-
sequent improvement suggestions on real-world JavaScript
libraries and applications.

The major contributions of this work are:

• We present the first research that focuses on support-
ing static analysis design with automatic root-cause
localization, identifying the sources significantly affect-
ing analysis precision and performance.

• Our approach is the first to use dynamic information
to automatically suggest the kind of context sensitivity
needed for significant precision improvement on iden-
tified root causes of analysis inaccuracy.

• We present an evaluation of the proposed approaches
on several benchmarks. The experimental results on
JavaScript library applications demonstrate that our
root-cause localization algorithm accurately identifies
the program constructs that cause an initial static anal-
ysis to not finish in a 10 minute time allotment. Apply-
ing specialized context sensitivity on these constructs
significantly improves the analysis performance. The
results on JavaScript benchmarks also show that an
analysis that selectively applies the recommended con-
text sensitivity from our automatic improvement sug-
gestion achieves a much better balance between preci-
sion and performance compared both to an imprecise
analysis and a more precise analysis that applies con-
text sensitivity over the entire program.

1 function extendBasic(target, source) {
2 var name;
3 target = target || {};
4 for (name in source) {
5 target[name] = source[name];
6 }
7 return target;
8 }

Figure 1: Modifed extend function of jQuery 1.6.1.

2. BACKGROUND & MOTIVATION
In this section, we first introduce JavaScript points-to

analysis with an example. We then discuss an empirical
study of interesting static analysis behaviors that guided
our design. Finally, we illustrate our approach using a code
example.

2.1 Background
Points-to analysis approximates the program’s heap by

calculating the set of abstract values a variable or reference
property may have during execution. Context sensitivity is
a general technique to achieve more precise program analy-
sis by distinguishing between calls to a function [16]. It has
been demonstrated that applying specialized context sen-
sitivity in JavaScript points-to analysis is an effective ap-
proach for improving its precision and performance. For
example, Sridharan et al. [20] used the values of a pa-
rameter p of a function as the calling context, if p is the
property name in a property access (e.g., v[p]), a special
treatment for dynamic property accesses in JavaScript. Be-
cause this algorithm is designed to address the challenges
caused by a specific language feature and performs well for
the programs where this feature is present, other program
constructs found in real-world JavaScript applications that
require more accurate handling may render the analysis in-
effective.

Therefore, an important stage of static analysis design is
to identify the causes of unexpected results. Intuitively, a
root cause is a program construct that is a source of the pre-
cision and/or performance loss for a static analysis. Specifi-
cally, if the overall precision and performance of an analysis
A improves significantly via specialized handling of the pro-
gram construct in a specific program location, this construct
is the root cause of imprecision of the analysis A for the pro-
gram. For example, Figure 1 shows a small piece of code
from jQuery, the most widely used JavaScript library [21].
A whole-program 1-CFA analysis [17] that separately an-
alyzes each different call site of a function has scalability
problems for any simple application that uses jQuery [20].
Applying the technique proposed by Sridharan et al. [20]
only to the property accesses at line 5 resolves the perfor-
mance issues. Therefore, this program construct is a root
cause of imprecision of 1-CFA analysis for jQuery applica-
tions.

Unfortunately, identifying root causes is a costly process,
requiring extensive experience in designing static analyses as
well as a deep understanding of the target program. To the
best of our knowledge, there is little tool support for this
process, making it time-consuming and unprincipled. For
example, identifying the property accesses at line 5 in Fig-
ure 1 as the root cause for 1-CFA analysis is difficult because
(i) the jQuery library consists of about 9,000 lines of code,
and (ii) similar program constructs are used throughout the
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Figure 2: Points-to size growth during the analysis

lifetime.

jQuery library with less impact on the overall analysis re-
sults, whereas this particular program location is critical.
Therefore, we are motivated to develop new techniques to
assist in root-cause localization by automating a significant
part of the process of identifying the sources of imprecision.

2.2 Static Analysis Behavior
We have performed a brief empirical study to understand

the behavior of JavaScript static analysis. Figures 2 and
3 show the different behaviors of two points-to analyses of
a simple application that uses jQuery. The two points-to
analyses in comparison are the 0-1-CFA analysis (i.e., only
use 1-CFA analysis for the constructors to name objects by
their allocation sites) and the combined 1-CFA and special-
ized argument-sensitive analysis [20]. Overall, the 0-1-CFA
analysis experiences performance and precision issues (e.g.,
the analysis cannot finish analyzing the program within a
time budget of 10 minutes), while the combined context-
sensitive analysis performs significantly better.

Figure 2 shows the trend of overall points-to size (i.e.,
total number of points-to edges) growth for these two anal-
yses during their lifetimes. The x axis presents the number
of evaluations2 and y axis presents the total points-to size
of all variables in the program. The points-to size of the
good combined context-sensitive analysis grows steadily“lin-
ear” throughout its lifetime. On the other hand, the overall
points-to size growth of 0-1-CFA analysis exhibits “jumps”,
periods during which its overall points-to size dramatically
increases. For example, between rounds 23,000 and 25,000 of
evaluation, the overall points-to size of the 0-1-CFA analysis
grows about ten times. The existence of such “jumps” in-
dicates that the overly-approximated results are frequently
propagated, resulting in significant overall precision loss. In
addition, since the 0-1-CFA analysis experiences scalabil-
ity issues, it remains incomplete at the end of the allocated
analysis time and its overall points-to size continues to grow
after 120,000 evaluations in Figure 2.

Figure 3 shows the distributions of the points-to sizes for
each variable in the program. The x axis presents the points-
to size of a variable and the y axis presents the percentage of
the variables in the program with the corresponding points-
to size. For the combined context-sensitive analysis, the
points-to size of the majority of the variables (i.e., 81%) is
less than 6; few variables are associated with large points-
to sets. For the 0-1-CFA analysis, the points-to sizes of
only 40% variables are less than 6 and there are condensed

2An evaluation in the points-to analysis solves a constraint
that may result in changes of the points-to results.
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Figure 3: Points-to size distribution.

occurrences of variables with extremely large points-to sets
(e.g., about 20% of the variables’ points-to sizes are 150).
This result also indicates that overly-approximated results of
specific program constructs may pollute many places in the
program due to copying during the points-to propagations.

The above results demonstrate the significantly different
behaviors between points-to analyses when their performance
and precision vary. These results motivated us to design an
automated approach to identify root causes of imprecision
via the differences in static analysis behavior.

2.3 Root-cause Localization & Remediation
We now use the example in Figure 1 to illustrate the ideas

on localizing root causes. First, the root-cause localization
should be performed during the period in which overall pre-
cision of the points-to analysis starts to decrease, reflected
as the “jumps” in terms of the overall points-to size in Fig-
ure 2. Second, we use the history information of points-to
propagations and the incomplete points-to results to locate
the program constructs that are root causes of imprecision.
Intuitively, two conditions should be met: (i) the program
construct has a wide reach within the propagation system
(e.g., the values of the property access source[name] are as-
signed to target[name] at line 5 and are transitively prop-
agated to about 500 other program variables or reference
properties), and (ii) the impact of its wide reach is signifi-
cant (e.g., looking up the property name of source at line 5
produces the points-to size of 150). Therefore, the impreci-
sion of this property access results in the overall imprecision
of the 0-1-CFA analysis when analyzing jQuery applications,
becoming a root cause of imprecision.

In addition, to further assist in the process of remedying
static analysis, we design an improvement suggestion algo-
rithm that uses dynamic information to suggest appropriate
context sensitivity to improve the analysis precision on the
identified root causes. Dynamic information is used to sim-
ulate the benefits of different context-sensitive analyses, a
generally applicable idea to quantify the potential precision
of a specific context sensitivity.

3. TECHNICAL OVERVIEW
Figure 4 summarizes the root-cause localization and reme-

diation process. We first run the static analysis in its initial
configuration, which may lead to performance and/or preci-
sion issues. To monitor the behavior of the analysis, we run
it in diagnostic mode by instrumenting the propagation sys-
tem with labels (i.e., labeled propagation system) that keeps
track of the history of points-to propagations by saving the
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Figure 4: Overview of the root-cause localization

and remediation process.

origins of points-to relations. We avoid the common situa-
tion that the analysis crashes (i.e., runs out of time/space
budget), causing the loss of the metadata for root-cause lo-
calization, by obtaining periodic snapshots of the analysis
state.

In Section 4, we describe and motivate our heuristics to de-
termine whether the observed propagation behavior is anoma-
lous. Intuitively, an anomaly is flagged if a given variable
or reference property, collectively referred to as a program
pointer, is associated with a large points-to set, and the la-
bel corresponding to the pointer propagates to many other
pointers within a small number of evaluations of the propa-
gation system. The labels record the transitive propagation
of abstract objects across pointers. Our identification algo-
rithm ranks the results by order of their impact on precision,
thereby reflecting how likely they are to be among the root
causes of imprecision.

For root-cause remediation, the optional improvement sug-
gestion step that provides recommendations for improve-
ment accepts as input (i) the candidate root causes, (ii) a
set of context sensitivity policies, and (iii) one or more dy-
namic execution traces of the program. The dynamic traces
provide precise points-to information, such that the effect of
different sensitivity policies can be evaluated.

Intuitively, the improvement suggestion process maps be-
tween the root causes identified statically and the concrete
points in the trace t, and simulates the effect of different con-
text sensitivity policies on t. For example, given statement
ℓ : y = x[p] in method m as the root cause, the first step is to
simulate the least precise treatment of ℓ by merging together
concrete points-to information from all its occurrences in t.
What follows is an iterative process, wherein different kinds
of context sensitivity and combinations thereof are applied,
and their effects are simulated. A suggestion is output for ℓ
to utilize a certain combination C of context-sensitive anal-
yses if (i) C partitions the points-to set of x[p] effectively,
and (ii) other combinations are only marginally better.

The final step is for the user (i.e., either the analysis
designer or an end user capable of configuring the analy-
sis) to manually adjust the analysis configuration based on
the localization results and/or the improvement suggestions.
Upon doing so, the analysis can be rerun under the adjusted
configuration to observe if the performance and/or precision
issues have been resolved. The same process can be per-
formed iteratively to locate all the root causes, thereby lead-
ing to a specialized analysis that meets the performance/-
precision requirements of the user.

In the next two sections, we describe the details of the two
automatic algorithms: root-cause localization and improve-
ment suggestion. We discuss each in turn.

4. ROOT-CAUSE LOCALIZATION
First we explain more technically how the labeled propa-

gation system is implemented. Then we describe our indica-
tors based on the labels, which tell if anomalous propagation
behavior is occurring. The workflow of root-cause localiza-
tion is shown in Procedure 1.

Proc 1 Root-cause localization workflow.
Input: config: analysis configuration
Input: i: evaluation interval
Output: R: set of root causes
1: sys ← initialize propagation system with config

2: while (c ← sys.<next constraint>) != NULL do

3: for each assignment v1 = v2 from c do

4: ptsv1= ptsv1
⋃

ptsv2 //points-to propagation
5: lv1 = lv1

⋃
lv2

⋃
{v2} //label propagation

6: end for

7: if (k ← # of evaluations) mod i = 0 then

8: grow ← points-to size growth in past i evaluations
9: if grow > threshold then

10: g ← intermediate static labelled points-to graph
11: for each pointer node n in g do

12: impactn ← compute the impact of n on g

13: end for

14: R ← high impact nodes in g

15: return

16: end if

17: end if

18: end while

4.1 Labeled Propagation System
A propagation system for the points-to analysis solves the

constraints to reach a fixed point, propagating the points-to
relations of the variables and reference properties in the pro-
gram. A majority of the constraints that exist in the prop-
agation system are assignments. For example, to process an
invoke instruction, the generated constraints include assign-
ments from the actual arguments to the formal parameters,
from the callee’s return values to the left-hand side variable
of the invoke instruction, etc.

We assume a subset-based (aka inclusion-based) propaga-
tion system [1], which means that the system solves a con-
straint that assigns a program pointer v2 to another pointer
v1 by adding the points-to set of v2 to that of v1. In a
standard propagation system, there is no provenance. The
points-to set associated with a pointer may be the result
of direct or transitive assignments, and there is no telling in
general how it evolved to its current state. Such information
is critical, however, to identify root causes, since frequent as-
signments involving an inaccurate points-to set may pollute
the overall precision of the points-to solution as depicted in
Figures 2 and 3.

To address this loss of information, in our labeled propa-
gation system each constraint that assigns the values of v2
to v1 results in changes to v1’s points-to relations. More-
over, a label v2 is associated with the points-to set of v1 that
indicates (some of) the points-to relations of v1 were propa-
gated through v2 (lines 3-6 in Procedure 1). As an example,
in WALA [22] intermediate representation (IR), which is in
SSA form [3], the statement at line 5 in Figure 1 reduces
to (a) vtmp = source[name] and (b) target[name] = vtmp,
where vtmp, source, target and name are all local variables
of the function.
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For the property read instruction (a), the analysis would
first query the points-to set of source, Psource, and the points-
to set of name, Pname. The pairs of each element in Psource and
Pname (e.g., psource_i.pname_j) are returned as the results of
looking up the reference properties of source[name]. Note
that the values of name iterate over all the property names
of source; in the extend function, these values are the large
set function names loaded in jQuery. This ultimately results
in a large points-to set for vtmp due to multiple assignments
from various reference properties. We retain all these refer-
ence properties (e.g., psource_i.pname_j) as labels attached to
the points-to set of vtmp.

For the property write instruction (b), the analysis simi-
larly looks up the reference properties of target[name] (e.g.,
ptarget_i.pname_j) and adds the points-to relations of vtmp to
each of these reference properties, resulting in an overly ap-
proximated points-to set for each function name in jQuery.
We retain both vtmp and the existing transitive labels from
vtmp (e.g., psource_i.pname_j) in the points-to set of each refer-
ence property of target[name].

In addition to tracking the set of labels that are imme-
diately or transitively propagated to the points-to set of a
given pointer, we generate a propagation-history graph for
the points-to set of that pointer, which organizes the points-
to propagation history into a hierarchical structure. Intu-
itively, a node in the propagation-history graph is a pro-
gram pointer that has bearing on the specific points-to set.
An edge from node n1 to another node n2 represents that the
points-to set of n2 was explicitly added to that of n1. The
entry points of the graph are the program pointers whose
points-to sets are directly propagated into the correspond-
ing points-to set.

For the same example in Figure 1, the propagation-history
graph for the points-to set of vtmp consists of all the refer-
ence properties of source[name] as entry points. vtmp is
the entry point of the propagation-history graph for the
points-to set of each reference property of target[name]

(e.g., ptarget_i.pname_j), while there also are edges from vtmp
to the properties of source[name].

As motivated above, during the propagation process, the
labeled system is paused regularly upon completing cycles
of i evaluations, for a fixed value of i (line 7 in Procedure
1). We base our analysis of root causes of precision on the
resulting intermediate states.

Specifically, we count the total number of points-to re-
lations (i.e., edges) in the intermediate points-to graph for
the kth pause (i.e., after n×k evaluations), actual(k). We
then compare the value of actual(k) with the value of pre-
dict(k) to decide whether to perform root-cause identifica-
tion.

For meaningful comparison, we utilize the results from the
previous k-1 pauses in performing linear regression analysis
to find the fitted line y = intercept + slope × x, where
x is the number of evaluations and y is the total number
of points-to relations. The number of points-to relations of
the kth pause can then be predicted: predict(k) = inter-

cept + slope × kn. If actual(k) > threshold × pre-

dict(k), then we perform the root-cause identification at
the kth pause; otherwise, we continue the points-to analysis
under the labeled propagation system. In practice we use
threshold = 110%, effective for our evaluation in Section 6.
Figure 5 shows this prediction model when running the

0-1-CFA analysis on a jQuery application. The analysis is
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Figure 5: Prediction via linear regression.

paused every 1000 evaluations and the fitted line in Figure
5 is calculated from the results of the first 23 pauses (i.e.,
1000 to 23,000 evaluations). The predicted total points-to
edges at the 24,000 evaluations is 16,234, while actual(24)

is 88,857, significantly passing the threshold to perform root-
cause identification. This prediction model can capture the
“jump” phase of the points-to analysis shown in Figure 2,
which is important to localize the root causes accurately.

If localization is performed too early, the over-approximate
results may not have surfaced yet. If localization is per-
formed too late during the analysis, then the over-approximate
results may have polluted a large portion of the overall
points-to results, making it difficult to identify the root
causes of imprecision. Moreover, the evaluation interval to
pause the analysis, i, as well as the decision threshold, may
be tuned based on the budget and goals of root-cause local-
ization.

4.2 Identifying Root Causes for Divergence
When performing root-cause identification, we use the in-

termediate points-to graph and the associated labels to iden-
tify possible root causes (line 10 in Procedure 1). For each
variable or reference property v, we count (i) its points-to
size, |Pv|, as well as (ii) its number of occurrences as la-
bels in the points-to sets of other variables and/or reference
properties, |Lv|. |Lv| measures how widely v reaches within
the propagation system, and |Pv| measures if the impact of
its wide reach is significant. We therefore use the scoring
heuristic Sv=|Pv|×|Lv| as a measurement of the possibility
of v being a root cause (lines 11-13 in Procedure 1).

The root-cause identification stage reports a set of vari-
ables as root causes in descending order of their scores. For
example, vtmp, the result of the property read instruction at
line 5 in Figure 1, achieves an extremely high score (73,950)
with |Pvtmp|=150 and |Lvtmp|=493 when localization is per-
formed after 24,000 evaluations. Its score is x75 higher than
the variable with the second highest score (990), rendering it
the only root-cause candidate for imprecision of the 0-1-CFA
analysis for this jQuery application. We report the variables
and/or reference properties whose scores are at least half the
highest score as candidate (or suspicious) root causes.

5. IMPROVEMENT SUGGESTION
The next step is to automatically compute suggestions for

how to improve the analysis per the program, configuration
and context sensitivity at hand. This is the focus of this
section, whose workflow is shown in Procedure 2.
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Proc 2 Improvement suggestion workflow.

Input: R = {r1, ..., rn}: root causes
Input: CS: context sensitivity policies
Output: <V, S>={(r1, s1),...,(rn, sn)}: suggestions
1: t ← collect a dynamic trace
2: for each cs ∈ CS do

3: G = G
⋃

{gen(t, cs)}

4: end for

5: for each r ∈ R do

6: A<r, G> ← ∅

7: for each g ∈ G do

8: a<r, g> ← query r’s points-to size in g and measure
its accuracy corresponding to g’s context sensitivity

9: A<r, G> = A<r, G>

⋃
{a<r, g>}

10: end for

11: a<r, gmin> ← min(A<r, G>)

12: <V, S> = <V, S>
⋃

{<r, gmin.cs>}

13: end for

First, the target program is executed to collect a dynamic
trace (line 1 in Procedure 2), recording the following run-
time artifacts in order of occurrence: (i) function entries and
exits; (ii) invocations; and (iii) property reads and writes.
At a property read/write instruction, we record (i) the in-
struction location in the program; (ii) the allocation site of
the base object (as its program location); (iii) the property
name, and (iv) the allocation site of the value, if it is a ref-
erence object, or the type of the value, if it is a primitive
value. At an invoke instruction, we record (i) the location of
the call site; (ii) the location of the target function; (iii) the
allocation site of the receiver object; and (iv) the allocation
sites and/or the types of the actual arguments.

Second, dynamic points-to graphs based on the dynamic
trace are generated for the available kinds of context sensi-
tivity (lines 2-4 in Procedure 2). Procedure 3 captures the
algorithm that produces a dynamic points-to graph with re-
spect to a specific context-sensitive analysis (e.g., 1-CFA,
1st-argument-sensitive [23], or context-insensitive analysis).
The inputs are the dynamic trace, trace, and the kind of
context sensitivity, cs. The algorithm iterates through each
instruction i recorded in the dynamic trace. If i is an in-
voke instruction, at line 5 the call site and the argument are
pushed into the call stack, stack. If i exits a function, then
top element of stack is removed at line 7.

If i is a property read or write instruction, then lines 9 to
15 show how the appropriate calling context is determined;
the calling context is everywhere for context-insensitive anal-
ysis. In the dynamic points-to graph, a variable is repre-
sented by (i) the location of the instruction, (ii) the part of
the instruction (i.e., base, property or value), and (iii) the
calling context. At lines 16 to 18, the object allocation site,
represented by program location, of each part of the instruc-
tion collected at runtime is assigned to the corresponding
variable node in the dynamic points-to graph.

This algorithm is general in that various dynamic points-
to graphs can be generated under different context sensitiv-
ity policies. Now that we have obtained different context-
sensitive dynamic points-to graphs, we can determine which
of the policies (including combinations thereof) are benefi-
cial. For a program pointer r that is identified as a root
cause, we locate its corresponding nodes via its program
location in each dynamic points-to graph, and collect (i)
the number of calling contexts associated with r, ccr, and

Proc 3 Dynamic points-to graph generation, gen(t, cs).

Input: t: dynamic trace
Input: cs: context sensitivity policy
Output: g: dynamic points-to graph
1: stack ← ∅

2: while (i ← next(t)) != NULL do

3: switch (kindOf i)
4: case INVOKE:

5: stack.push(call site and first arg of i)
6: case FEXIT:

7: stack.pop

8: case PREAD || PWRITE:

9: if cs = 1-CFA then

10: context ← immediate call site on stack

11: else if cs = 1st-argument-sens then

12: context ← immediate argument on stack

13: else if cs = context-insens then

14: context ← everywhere

15: end if

16: g(iloc,base,context) → ibase
17: g(iloc,property,context) → iproperty
18: g(iloc,value,context) → ivalue
19: end switch

20: end while

(ii) the sum of points-to sizes under all calling contexts,
∑

|pr|. We then count ar =
∑

|pr|
ccr

, the average dynamic
points-to size per calling context, to measure the accuracy
of the points-to relations of v under the given context sensi-
tivity (line 8 in Procedure 2). The context sensitivity with
the smallest ar is chosen for the function that contains r as
the improvement suggestion (lines 11 and 12 in Procedure
2).

6. EVALUATION
We have implemented our root-cause localization and re-

mediation algorithms, and conducted experiments to assess
their efficacy. In this section, we present the experimental
results of our analysis on various JavaScript benchmarks.

6.1 Experimental Setup

6.1.1 Metrics

In our evaluation, we compared the performance and pre-
cision of points-to analysis that usually constructs a call
graph as well as a points-to graph. For precision on a call
graph, we measured (i) HIGH_POLY: the number of highly
polymorphic call sites (i.e., call sites with more than 5 tar-
gets), (ii) AVG_TARG: the number of targets averaged over
all call sites, and (iii) REAC_FUNC: the number of reachable
functions, as in [20]. For precision on a points-to graph, we
measured PTS_SIZE: the overall points-to size. This is the
total number of points-to set sizes summed over all local
variables in the program. The points-to set of a variable
is the set of abstract objects (i.e., allocation sites) it refers
to, representing the set of values it may have at runtime.
In addition, we measured the performance of the points-to
analysis with its running time (in seconds).

6.1.2 Benchmarks

We use two sets of JavaScript benchmarks.
Benchmarks I. Benchmarks I consists of applications

that use JavaScript libraries, generated by Sridharan et al.
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Table 1: Benchmarks I precision and performance results.

library 1-CFA 1-CFA + 1st-arg-sens 1-CFA + selective 1st-arg-sens

(whole-combined) (selective)

REAC_

FUNC

AVG_

TARG

HIGH_

POLY

REAC_

FUNC

AVG_

TARG

HIGH_

POLY

REAC_

FUNC

AVG_

TARG

HIGH_

POLY

time
(sec)

jQuery 312 2.2 441 206 25.0 1235 206 1.2 16 16.3

prototype.js 451 12.9 259 170 3.3 124 170 1.5 39 2.9

script.aculo.us 617 14.4 188 179 2.7 145 179 1.4 47 4.6

[20]. Included are 11, 5 and 1 simple web applications that
invoke jQuery, prototype.js and script.aculo.us libraries, re-
spectively. These libraries are among the most popular
JavaScript libraries for developing real-world web applica-
tions, especially jQuery [21]. Sridharan et al. [20] performed
manual code rewriting for improving precision and perfor-
mance of their specialized analysis on these libraries. In our
experiments, we reuse these manual transformations.

Benchmarks II. Benchmarks II are JavaScript applica-
tions collected by Kashyap et al. [9]. Twelve out of the
28 programs from the original benchmarks were selected for
our evaluation. These programs are collected from open-
source JavaScript repositories, standard JavaScript bench-
marks (e.g., SunSpider3), and the Emscripten LLVM test
suite4, the results of which benefit from various context-
sensitive analyses [9, 23].

6.1.3 Experimental Design

Root-cause localization. We performed experiments
on Benchmarks I to illustrate the accuracy of the root-cause
localization algorithm. In this experiment, we used WALA’s
whole-program 1-CFA analysis as the baseline analysis, which
experiences scalability and precision problems for JavaScript
library applications. For each of the Benchmark I programs,
we performed the localization algorithm on the 1-CFA anal-
ysis, finding a set of functions that contain the root causes.
Then for the root-cause functions, we applied additional ar-
gument sensitivity on the first arguments (i.e., 1st-argument
sensitivity [23]). For the rest of the functions, 1-CFA anal-
ysis was performed, resulting in a 1-CFA and selective 1st-
argument-sensitive analysis. We compare the precision re-
sults among the 1-CFA, the whole-program 1-CFA and 1st-
argument-sensitive analysis, and the selective analysis using
the call graph metrics for Benchmarks I. We also compare
the differences in terms of analysis performance.

Improvement suggestion. For the programs in Bench-
marks II, we applied the root-cause localization as well as
improvement suggestion algorithms on the baseline 0-1-CFA
analysis. For the root-cause functions, we applied the sug-
gested context sensitivity and for the rest of the functions,
the 0-1-CFA analysis was performed, comprising an auto-
selective analysis. Possible suggestions for root-cause func-
tions include: (i) a context-insensitive analysis, (ii) a single
context-sensitive analysis (i.e., 1-CFA or argument sensitiv-
ity on any argument of the function5), and (iii) a combined
context-sensitive analysis (e.g., 1-CFA + 1st-argument sen-
sitivity). We compare the performance and precision of

3https://webkit.org/perf/sunspider/sunspider.html
4http://kripken.github.io/emscripten-site/
5Object sensitivity [13] applies calling contexts on the re-
ceiver argument.

the auto-selective analysis with the 0-1-CFA analysis and
the full-sensitive analysis (i.e., a whole-program combined
context-sensitive analysis that applies 1-CFA and argument
sensitivity on all arguments) for Benchmarks II to illustrate
the effectiveness of the improvement suggestion.

Our comparison experiments explored the following two
hypotheses:

Hypothesis I: The root-cause localization algorithm can
accurately identify a small set of program constructs as the
root causes of imprecision.

Hypothesis II: Guided by the root causes identified by
the localization algorithm, the improvement suggestion al-
gorithm can recommend appropriate kinds of context sensi-
tivity to significantly improve the analysis precision.

The experimental results were obtained on a 2.5 GHz Intel
Core i5 MacBook Pro with 16 GB memory running the Mac
OS X 10.11 operating system.

6.2 Benchmarks I Results
Tables 1 and 2 show the experimental results of Bench-

marks I. For each JavaScript library, the results are arith-
metically averaged over all the applications that use the spe-
cific library. For example, the 312 reachable functions of
jQuery library from the 1-CFA analysis (i.e., column 2 of
the jQuery row in Table 1) is calculated by averaging the
number of reachable functions the 1-CFA analysis obtained
for all 11 jQuery applications.6

Precision and performance. Table 1 shows the preci-
sion and performance results of the analyses on Benchmarks
I. Columns 2-4, 5-7, and 9-11 show the results of call graph
precision metrics for the 1-CFA analysis, the whole-program
combined 1-CFA and 1st-argument-sensitive analysis (i.e.,
whole-combined analysis), and the 1-CFA and selective 1st-
argument-sensitive analysis, respectively. For each analysis,
we present its number of reachable functions (i.e., columns
2, 5, and 8), average number of targets per call site (i.e.,
columns 3, 6 and 9), and the number of highly polymorphic
call sites (i.e., columns 4, 7, and 10). In addition, column
11 shows the points-to analysis time in seconds of the se-
lective analysis. Given the time budget of 10 minutes, both
the 1-CFA analysis and the whole-combined analysis failed
to complete analyzing each of the programs in Benchmarks
I; therefore, their precision results were calculated from the
incomplete call graphs obtained after the timeout.

The REAC_FUNC results of the whole-combined and the se-
lective analyses in Table 1 are the same for all three libraries;

6Because the applications in Benchmarks I are relatively
simple programs that use the JavaScript libraries, the anal-
ysis performance and precision results of these programs are
dominated by the underlying libraries. Therefore, we report
the average results based on the corresponding libraries.
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they are significantly more precise than those of the 1-CFA
analysis. Only 29% (for script.aculo.us) to 66% (for jQuery)
functions considered reachable by the 1-CFA analysis are
produced by the whole-combined and the selective analyses.
Interestingly, the number of highly polymorphic call sites is
below 50 for the selective analysis for all three libraries, while
the 1-CFA analysis produces 188 (for script.aculo.us) to 441
(for jQuery) and the whole-combined analysis results in 145
(for script.aculo.us) to 1235 (for jQuery) highly polymorphic
call sites. This result suggests that (i) 1-CFA analysis is im-
precise to resolve the call targets in many cases, and (ii)
because the whole-combined analysis applies 1st-argument
sensitivity over all the program, it may create many call-
ing contexts for the functions that are not identified as root
causes which may not significantly increase the analysis pre-
cision (e.g., in terms of the REAC_FUNC metric). The average
number of targets per call site from the selective analysis
ranges from 1.2 (for jQuery) to 1.5 (for prototype.js), in-
dicating the selective analysis precisely resolves the targets
for most call sites. Although the whole-combined analysis
reduces the AVG_TARG of the 1-CFA analysis from 12.9 to
3.3 and from 14.4 to 2.7 for prototype.js and script.aculo.us,
respectively, it still results in a higher average number of
targets per call site comparing to the selective analysis. For
jQuery library, applying argument sensitivity over the entire
program results in significant increase of AVG_TARG (i.e., on
average 25 targets per call site) and HIGH_POLY (i.e., 1235
highly polymorphic call sites) due to the additional calling
contexts.

The last column in Table 1 shows that the selective anal-
ysis finishes analyzing the libraries on average between 3
seconds (for prototype.js) and 16 seconds (for jQuery). Due
to the fact that the 1-CFA analysis could not finish analyz-
ing any of these libraries in under 10 minutes, we claim that
the selective analysis has significantly better performance
because of the precision gained by applying 1st-argument
sensitivity to the root-cause functions. The whole-combined
analysis also could not complete within the 10-minute time
budget. Applying 1st-argument sensitivity over all the pro-
gram generates too many calling contexts for the propaga-
tion system to quickly converge.

Table 2: Localization results of Benchmarks I.

library

no. of

localized

functions

no. of

evaluations
slope

jQuery 2 25000 3.7

prototype.js 4 72000 5.1

script.aculo.us 4 96000 4.9

Root-cause localization characteristics. Table 2 shows
additional information that characterizes the results of the
root-cause localization algorithm. For the experiments on
Benchmarks I, we paused the 1-CFA analysis every 1000
evaluations to decide if the root-cause localization algorithm
should be performed. Columns 2, 3, and 4 present the num-
ber of functions identified as root causes, the number of
evaluations until performing root-cause localization, and the
slope of the last 1000 evaluations (i.e., the increase in the
total number of points-to relations divided by 1000), respec-
tively.

Our algorithm identifies 2, 4 and 4 functions as root causes
for jQuery, prototype.js, and script.aculo.us, respectively.
Comparing to the number of reachable functions computed
by any analysis in Table 1 (i.e., more than 150 functions),
very small fractions of these functions were identified as root
causes. This result combined with the good precision and
performance of the selective analysis support our intuition
that a small number of complex constructs in the programs
may contribute to significant loss of analysis performance
and precision if not handled accurately. Therefore, it is ex-
tremely useful for our automated localization algorithm to
pinpoint these root causes, as shown.

Column 4 shows that the slopes of the last 1000 evalua-
tions range from 3.7 (for jQuery) to 5.1 (for prototype.js).
For example for prototype.js, the large slope indicates that
the precision of the 1-CFA analysis significantly decreases
during this period (i.e., about 5 new points-to relations per
constraint), while the slope of the simple linear regression
for all previous evaluations is 0.9. This result suggests that
our heuristics accurately decided when to perform the root-
cause localization for JavaScript libraries.

Summary. The results of Benchmarks I suggest that (i)
our root-cause localization algorithm is capable of locating a
small number of functions where the 1-CFA analysis experi-
ences significant precision and performance loss, and (ii) be-
cause the root causes are highly clustered in these JavaScript
libraries, applying the selective 1st-argument-sensitive anal-
ysis only on the localized functions achieved a much better
balance between precision and performance comparing to
the whole-combined analysis. The above observations sup-
port Hypothesis I.

6.3 Benchmarks II Results
Figures 6 and 7 show the precision and performance re-

sults of Benchmarks II, respectively. Because the 0-1-CFA
analysis finishes analyzing all 12 programs in Benchmarks II
within the time budget of 10 minutes, the root-cause local-
ization was performed after the 0-1-CFA points-to analysis
completed on each program.

Figure 6 presents the PTS_SIZE precision improvement
of the full-sensitive analysis (i.e., grey bars) and the auto-
selective analysis (i.e., patterned bars) over the 0-1-CFA
analysis. Because the full-sensitive analysis applies 1-CFA
and argument sensitivity of all arguments over all the func-
tions, its results are at least as precise as the selective analy-
sis. In Figure 6, the y axis shows the precision improvement
of the corresponding analysis Y over the 0-1-CFA analysis,
calculated as follows

IMPY =
PTS SIZE0−1−CFA − PTS SIZEY

PTS SIZE0−1−CFA

× 100%

Therefore, IMPY measures the precision of analysis Y in terms
of removing the false positives from the 0-1-CFA analysis
results. In Figure 6, the full-sensitive analysis improves
the PTS_SIZE precision over the 0-1-CFA analysis by be-
tween 9% (for sgefa) to 65% (for cryptobench). For all but
five programs (i.e., fourinarow, cryptobench, linq functional,
linq aggregate and linq enumerable), the differences in pre-
cision improvement percentages are within 3.5% between
the full-sensitive and the auto-selective analyses, indicat-
ing that the auto-selective analysis produces similar results
to the full-sensitive analysis for most programs. The re-
sults of the linq aggregate program exhibit the largest differ-
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Figure 6: Benchmarks II precision results.

ence in terms of precision improvement (i.e., 17%) between
the full-sensitive 35%) and the auto-selective (18%) analy-
ses. The points-to relations in the 0-1-CFA solution that do
not appear in the full-sensitive solution are false positives.
More than 50% of these relations also did not appear in the
auto-selective solution for linq aggregate, demonstrating its
greater accuracy over the 0-1-CFA analysis.

Figure 7 presents the performance results of the full-sensitive
(i.e., grey bars) and the auto-selective (i.e., patterned bars)
analyses comparing to the 0-1-CFA analysis performance.
The y axis (in logarithmic scale) shows the overhead of the
corresponding analysis Y’s time cost comparing to the 0-1-
CFA analysis time (i.e., TIMEY

TIME0−1−CFA
). The performance of

an analysis on each benchmark program was obtained by
averaging over 30 repeated executions.

In Figure 7, the full-sensitive analysis performs signifi-
cantly worse than the 0-1-CFA analysis for all the bench-
mark programs. It could not finish analyzing linq aggregate
and linq enumerable under the time budget of 10 minutes;
therefore, the incomplete points-to results of these two pro-
grams were obtained after the timeout for comparison. The
full-sensitive analysis is at least two orders of magnitude
slower for another three programs (i.e., linq functional, aha,
and linq dictionary) and is between 23 (for fannkuch) and
60 (for llubenchmark) times slower for six programs than the
0-1-CFA analysis. For example, it takes less than one second
for the 0-1-CFA analysis to finish analyzing linq functional,
while the full-sensitive analysis needs almost 7 minutes to
complete analyzing the same program. Despite of the fact
that the full-sensitive analysis often results in relatively sig-
nificant precision improvement (e.g., 28% for linq functional),
the performance issues outweigh the benefits of this whole-
program combined context-sensitive analysis in many cases.

On the other hand, the auto-selective analysis is capable
of analyzing the benchmarks under the same order of mag-
nitude as the 0-1-CFA analysis for all but three programs
(i.e., fourinarow, aha and linq dictionary). For example,
the auto-selective analysis improves the precision over the
0-1-CFA analysis by 59% for cryptobench and it also fin-
ishes analyzing this program almost as fast as the 0-1-CFA
analysis. In most cases, the auto-selective analysis results
in a much better balance between performance and preci-

sion than the full-sensitive analysis (e.g., the full-sensitive
analysis is 65% more precise but performs 5 times slower
than the 0-1-CFA analysis for cryptobench). For three pro-
grams the auto-selective analysis performs more than 10
times slower than the 0-1-CFA analysis (i.e., 10, 15 and 143
times slower for aha, fourinarow and linq dictionary, respec-
tively), the auto-selective analysis is still an order of magni-
tude faster than the full-sensitive analysis for aha and about
3 times faster than the full-sensitive analysis for fourinarow.
An outlier is the auto-selective analysis for linq dictionary,
whose performance is similar to the full-sensitive analysis.
The auto-selective analysis applied combined context sen-
sitivity on 15 out of 84 (i.e., 18%) reachable functions of
linq dictionary, resulting in both precision improvement and
performance overhead. Nevertheless, the auto-selective anal-
ysis has achieved significantly better performance than the
full-sensitive analysis for most of the programs in Bench-
marks II.

Our localization algorithm identifies between 6% (for fouri-
narow) to 27% (for linq aggregate) of the functions as the
sources of precision loss, with an average of 13% of the func-
tions over all the programs in Benchmarks II, a relatively
small fraction. Our improvement suggestion algorithm rec-
ommends combined context sensitivity on 72%, single con-
text sensitivity on 25%, and context insensitivity on 3% of
all the root-cause functions in Benchmarks II, respectively.

Summary. The auto-selective analysis obtains similar
precision results to the full-sensitive analysis that improves
the precision of the 0-1-CFA analysis. Moreover, the auto-
selective analysis’ performance is significantly better than
the whole-program combined fully context-sensitive analy-
sis. This result supports Hypothesis II that our improve-
ment suggestion algorithm can choose the appropriate con-
text sensitivity that benefits the results both in performance
and precision for Benchmarks II.

6.4 Threats to Validity
Although we used benchmarks collected by Sridharan et

al. [20] and Kashyap et al. [9] in our experiments, the
representativeness of these benchmarks might threaten the
validity of our conclusions as applicable to all JavaScript
programs. (i) The simple web applications invoking the li-
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Figure 7: Benchmarks II performance results.

braries (i.e., Benchmarks I) may not be representative of
later JavaScript library versions or the behavior of real-
world JavaScript websites. (ii) Benchmarks II, consisting
of small and dated JavaScript programs in standard bench-
marks, may not be representative of non-website JavaScript
applications.

7. RELATED WORK
To the best of our knowledge, we present the first work

that focuses on automating the process of localizing and
remedying the root causes when a JavaScript analysis is un-
scalable or too imprecise on a program. Nevertheless, our
work is related to (i) recent context-sensitive static analyses
that unveiled difficult JavaScript program constructs, and
(ii) static analyses that identify the causes of precision loss
for refinement.

7.1 JavaScript Context-sensitive Analysis
Sridharan et al. identified correlated dynamic property

accesses (e.g., x[p] = y[p]) as a hard-to-analyze JavaScript
code pattern and presented a specialized argument-sensitive
analysis along with program transformation that dramati-
cally improves analysis scalability and precision on JavaScript
libraries [20]. This work motivated us to design an auto-
matic localization algorithm that identifies such program
constructs causing the analysis imprecision. We also have
reused the library benchmarks collected by Sridharan et al.
[20] as Benchmarks I in the evaluation.

Esben et al. inferred determinacy information (i.e., a vari-
able and expression always has the same value at a given
program point [15]) and improved static analysis precision
on JavaScript libraries via various techniques [2]. For ex-
ample, argument sensitivity was selectively applied for the
arguments whose abstract value was a concrete string or a
single object address. This specialized context sensitivity
was proposed as a result of manually inspecting imprecise
portions of an incomplete call graph obtained after a fixed
number of evaluations. In our work, root causes of analysis
imprecision are automatically localized and corresponding
focused program constructs are provided for inspection.

Wei and Ryder presented a two-stage context-sensitive
analysis for JavaScript that selectively applied specific kinds

of context sensitivity on the function level [23]. Heuristics
were used to choose the context sensitivity based on function
characteristics extracted from the results of a pre-analysis.
Our improvement suggestion may also result in applying dif-
ferent kinds of context sensitivity to the root-cause func-
tions. However, the adaptive analysis in [23] required a pre-
analysis that could finish analysis of the target program,
while our approach does not. In addition, our goal is to ap-
ply the specialized context sensitivity only on the root-cause
functions that may significantly improve the overall analysis
scalability and precision, while adaptive analysis selects a
specific context sensitivity for each of the functions..

Park and Ryu presented another JavaScript static anal-
ysis that improved precision via loop sensitivity [14]. The
authors identified one root cause of scalability problems with
JavaScript analysis as the combination of imprecise results
in loops and in dynamic property accesses. Their analysis
improved precision in loops by distinguishing each iteration
of a loop with different contexts based on the analysis re-
sults of loop conditional expressions. Our approach system-
atically assists in the process of locating such code patterns
as root causes of analysis scalability problems.

Madsen et al. presented a static analysis for event-driven
Node.js applications, extending the traditional call graph
with nodes and edges that reflect the flow of control due to
event handling [11]. Three context sensitivity policies, vary-
ing in precision and cost, were introduced for constructing
event-based call graphs. It would be interesting to explore if
our root-cause localization technique may generally be ap-
plied to this work.

7.2 Refinement-based Analysis
Smaragdakis et al. presented introspective analysis that

aimed to improve the performance of a context-sensitive
analysis for Java [18]. Introspective analysis used heuris-
tics to decide whether to refine an allocation site or a call
site with context sensitivity, based on the metrics computed
from context-insensitive points-to results. The heuristics fo-
cused on reasoning about the cost of applying additional
context sensitivity. Instead, we focus on identifying the con-
structs that originate significant loss of performance and/or
precision of an analysis. Therefore, applying more accurate
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but expensive analysis techniques only on these constructs
may result in the improvement of the overall analysis per-
formance and precision.

Sridharan and Bod́ık presented a refinement-based points-
to analysis for Java that refined sensitivity for heap accesses
and method calls [19]. The analysis was demand-driven and
client-driven in that it focused on refining the analysis of rel-
evant code. We focus on improving overall points-to analysis
precision in terms of all possible queries for points-to sets of
program variables, instead of precisely answering a specific
query.

Guyer and Lin presented a client-driven analysis for C that
automatically adjusted its precision in response to the needs
of client analyses [7]. This client-driven analysis monitored
polluting assignments (i.e., the program points that result
inaccuracy in the analysis) and tuned context as well as flow
sensitivity to improve precision. Our heuristics to locate
the root causes consider not only the inaccurate results at
a program point but also its impact on the overall points-to
analysis precision by tracking the labels in the propagation
system.

Liang et al. found minimal abstractions needed to prove a
set of queries using machine learning algorithms and showed
that very few components of an abstraction were needed to
prove a query [10]. Our improvement suggestion, in contrast,
is not driven by queries but rather by localization of the
sources of imprecision.

8. CONCLUSIONS & FUTURE WORK
Static analysis of JavaScript is a challenging problem given

the dynamic nature of this language. Hence, as we demon-
strated experimentally, neither coarse nor precise analyses
are able to cope with JavaScript applications with accept-
able precision and performance. We have developed a tech-
nique to systematically identify root causes of analysis im-
precision. Over root causes, we built an algorithm that auto-
matically suggests a specific context sensitivity for a small
fraction of the functions (i.e., root-cause functions). The
results on library applications show that applying context
sensitivity to a small set of root-cause functions resolves the
scalability problems that occur on both coarse and precise
analyses. The analysis that automatically applies the sug-
gested kind of context sensitivity to the root-cause functions
achieves a better balance between precision and performance
for most programs in Benchmarks II, demonstrating the ef-
fectiveness of the improvement suggestion algorithm.

In the future, we intend to improve the usability of our
approach, and make it more interactive, by enabling a vi-
sual interface to review root causes, etc. We also intend
to extend our recommendation algorithm to support more
forms of static analysis techniques (e.g., the ability to per-
form semantics-preserving transformations on the subject
program for analysis purposes).
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