
Model Transformation in the Large

Felix Klar, Alexander Königs, Andy Schürr
Technische Universität Darmstadt

Real-Time Systems Lab
Merckstr. 25

D-64283 Darmstadt, Germany
[klar|koenigs|schuerr]@es.tu-darmstadt.de

ABSTRACT
Current rule-based model transformation approaches as the
Query / View / Transformation (QVT) standard or Triple
Graph Grammars (TGGs) disregard means for structuring
model transformation specifications. As a result large scale
model transformation specifications are hard to understand
and to maintain. Furthermore, these specifications cannot
utilize reusing mechanisms which would reduce the size of
the specifications and improve their readability. In this pa-
per we discuss how to transfer means for structuring huge
metamodels and models as provided by common modeling
languages to the world of model transformation languages.
We focus on generalization issues as well as on package de-
pendencies. As a result we come up with an extension to our
TGG approach that enables the user to specify structured
bidirectional model transformations in a declarative way.

Categories and Subject Descriptors: D.3.3 [Program-
ming Languages]: Language Constructs and Features

General Terms: Languages

1. INTRODUCTION
Nowadays, the size of software systems increases dramat-

ically. In order to develop and maintain such systems effi-
ciently developers need appropriate modeling languages that
allow for the modularization of the systems into smaller and
more manageable subsystems as well as possibilities to reuse
and refine already existing software components. To this end
the current version of the infrastructure of the Unified Mod-
eling Language (UML) [20] provides support for modulariza-
tion by means of sophisticated model package dependencies
and generalization concepts to allow for the specification of
reusable and refineable software components. Moreover, ap-
proaches like the Model Driven Architecture (MDAR©) [8] of
the OMG envision to lift the development task to higher lev-
els of abstractions from which the desired implementations
can be generated automatically.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’07, September 3–7, 2007, Cavtat near Dubrovnik, Croatia.
Copyright 2007 ACM 978-1-59593-811-4/07/0009 ...$5.00.

In order to specify model transformation that translate
more abstract models to more specific models the OMG
asked in 2002 for proposals for a language that supports
queries and transformations on models as well as creating
views on metamodels [16]. Currently, the finalization of
such a Query / View / Transformation (QVT) [18] lan-
guage is pending and will presumably be adopted this year.
QVT suffers from the fact that its semantics is only infor-
mally given. Additionally, most common model transforma-
tion approaches in general and QVT in particular disregard
means for the modularization and reusability of their model
transformation specifications. Since such model transfor-
mation specifications themselves tend to be huge as well
they are hard to develop, maintain, and understand. This
problem currently is recognized and addressed by workshops
like GaMMa 2006 (1st International Workshop on Global
Integrated Model Management)1 and approaches like [12].
These approaches introduce the term Megamodeling for all
kinds of activities dealing with problems that arise when
the MDA approach is used in really large projects, where
thousands of models, metamodels, and model transforma-
tion specifications are under development. Right now Meg-
amodeling activities mainly address the development of ”x-
in-the-large” concepts for models and metamodels, whereas
most publications still neglect the needs for modularization,
composition, specialization, parametrization, and reuse con-
cepts for model transformations.

Therefore, this paper makes a first proposal how to adapt
package import and refinement (merge) concepts originally
developed for UML models and MOF metamodels to cre-
ate reusable and refineable model transformations. These
”model transformation in the large concepts” are added to
our Triple Graph Grammar (TGG) approach. TGGs com-
bine the world of precisely defined graph transformations
with a QVT-like functionality for the declarative visual def-
inition of bidirectional model transformations. Thereby, the
term schema from the world of graphs corresponds to the
term metamodel from the world of metamodeling. More-
over, the term graph matches the term model. Node types
and edge types correspond to classes and associations. Fi-
nally, nodes and edges match objects and links. Throughout
this paper we will use these terms interchangeably according
to the given context.

Due to lack of space we can only rely on the tedious toy ex-
ample of integrating class diagrams with database schemas
as a case study. Nevertheless, this case study allows us to
sufficiently demonstrate the usage of our proposed concepts.

1http://planetmde.org/gamma2006/

285

ClassToTable

SubClassToTable

AttributeToColumn

classes

tables

subclasses

subtables

a) class diagram schema b) correspondence link schema c) database schema

name : String

Association

is_persistent : bool

ClassPrimitiveDataType

name : String

Classifier

is_primary : bool
name : String

Attribute

name : String

Table

FKey

attrs *

type

src dest

parent

attributes
type : String
name : String

Column

pkey *

cols

*

cols *

fkeys *

references

columns

Figure 1: Example of a TGG schema

However, various real-world case studies (e.g. integrating
textual use case specifications in the requirements engineer-
ing tool Doors2 from Telelogic with use case diagrams in
Enterprise Architect3 from Sparx Systems) from our indus-
trial partners prove the need for dealing with large scale
model transformation specifications. Moreover, in the Tool-
Net project [1] in cooperation with DaimlerChrysler we are
facing the task of integrating a number of COTS (commer-
cial off the shelf) tools for embedded system development.
Due to their size the metamodels of these tools as well as
the specification of the needed model transformation rules
require means for modularization and reuse.

The remaining paper is structured as follows. In Section 2
we briefly introduce our model integration approach called
Triple Graph Grammars (TGGs) and provide a running ex-
ample that deals with the integration of class diagrams with
database schemas. After that we discuss means for modu-
larizing model transformations at package level in Section 3.
Means for supporting reuse and refinement of model trans-
formations by generalization is described in Section 4. Sec-
tion 5 illustrates the integration of the proposed features
into our existing TGG implementation as part of the meta-
CASE tool MOFLON4. We compare our approach with re-
lated ones in Section 6. Finally, Section 7 concludes this
paper and discusses open issues as well as future work.

2. TRIPLE GRAPH GRAMMARS
Triple Graph Grammars (TGGs) have been introduced in

1994 by Schürr [22]. TGGs as an extension of Pratt’s pair
grammar approach from 1971 [21] aim at the declarative

2http://www.telelogic.de/products/doors/index.cfm
3http://www.sparxsystems.com/products/ea.html
4http://www.moflon.org

specification of model to model integration rules. Pratt’s
approach implicitly couples two (graph or string) grammars
with each other in order to express simultaneous application
of grammar rules. The application of such a pair grammar
results in two graphs or strings that are said to be consis-
tent to each other. In addition TGGs explicitly maintain the
correspondence of two graphs by means of correspondence
links. These correspondence links play the role of traceabil-
ity links that map elements of one graph to elements of the
other graph and vice versa. Furthermore, each correspon-
dence link may carry additional information calculated dur-
ing rule application. As a running example we consider the
integration of a class diagram with a corresponding database
schema. This example is described in [18] in an extended
version and, thus, can be considered as a benchmark for
model integration approaches.

TGGs consist of a schema and a set of graph rewriting
rules. The schema declares the node and edge types of the
integrated graphs as well as of the correspondence graph. In
other words, a TGG schema consists of a pair of metamodels
of integrated models and the types of correspondence links
between them. Furthermore, each correspondence link type
owns a TGG rule. The TGG rules declaratively specify the
simultaneous evolution of the integrated graphs and the cre-
ation of the correspondence links. For a detailed description
of the formal semantics of TGGs the reader is referred to
[10].

Figure 1 gives an example of a TGG schema. The left-
hand side of the figure depicts a simplified graph schema
(or metamodel) of class diagrams. Basically, class diagrams
consist of Classes that are related to each other by Asso-
ciations. Furthermore, Classes can inherit from each other
by means of the parent relationship. Classes may own At-
tributes. Attributes carry a type which is a Classifier (i.e., a

286

c:Class

name := n

t:Table

name := n

ct:ClassToTable

<<create>>
<<create>>

<<create>>

ClassToTable(n : String) – Priority: 0

c:Class t:Table
ct:ClassToTable

SubClassToTable(n : String) – Priority: 1

c2:Class

name := n

parent

st:SubClassToTable

<<create>>
<<create>>

c:Class t:Table
ct:ClassToTable

AttributeToColumn(n : String) – Priority: 0

a:Attribute

name := n

attrs

ac:AttributeToColumn

<<create>>
<<create>>

col:Column

cols

name := n

<<create>>

<<create>>

Figure 2: Examples of TGG rules

PrimitiveDatatype or a Class). Correspondingly, the right-
hand side of the figure shows a simplified graph schema of
database schemas. A database schema consists of Tables
that own Columns. Some Columns may be marked as the
primary keys of the owning Table. Furthermore, a Table
may have Foreign Keys (FKeys) that refer to Columns of
a different Table. Finally, the center of Figure 1 introduces
the correspondence link types used in our example. Basi-
cally, Classes from class diagrams correspond to Tables in
database schemas. We keep track of these correspondences
by links of type ClassToTable. A special case are Classes
that inherit from a different Class. We link these Classes to
Tables using the link type SubClassToTable. Furthermore,
Attributes from class diagrams correspond to Columns in
database schemas. We represent these correspondences by
links of type AttributeToColumn. A more complete discus-
sion of this running example can be found in [9].

Besides a schema a TGG provides a set of TGG rules. In
our approach each correspondence link type is provided with
at most one TGG rule. Figure 2 shows some examples of
such rules. Each rule has a name and may be provided with
an arbitrary number of parameters which may be used in
the body of the rule. Furthermore, TGG rules additionally
carry priorities.

Priorities are used to resolve conflicts that occur in the
case that more than one rule is applicable at a certain point
of model integration. If multiple rules are applicable only
the rules with the highest priority are applied. That means

c:Class t:Table
ct:ClassToTable

performForwardTransformation(a : Attribute)

a

attrs

ac:AttributeToColumn

<<create>>

col:Column

cols

name := a.name

<<create>>

c:Class t:Table
ct:ClassToTable

performLinkCreation(a : Attribute, col : Column)

a

attrs

ac:AttributeToColumn

<<create>>

col

cols

c:Class t:Table
ct:ClassToTable

performConsistencyCheck(ac : AttributeToColumn)

a : Attribute

attrs

ac
col : Column

cols

name == a.name

name == a.name

Figure 3: Examples of operational rules

that during model integration the rule ClassToTable will
only be applied to a given Class or Table object if the rule
SubClassToTable is not applicable.

The rule ClassToTable simultaneously creates5 a Class
and a corresponding Table. The name attributes of both
objects are assigned to the parameter n of the rule. Fi-
nally, both objects are linked by a new correspondence link
of type ClassToTable. The rule SubClassToTable creates a
new Class c2 and links it to a parent Class. Furthermore,
the rule links c2 to the same Table to which its parent Class
c already is linked to. Observe that the rule requires c to
be linked to a Table by a link of type ClassToTable. Since
the link type SubClassToTable currently does not inherit
from the link type ClassToTable the parent Class c cannot
be a Class that itself has a parent Class. In common TGG
approaches we, therefore, need an additional rule that ex-
actly looks like the rule SubClassToTable and replaces the
link type ClassToTable by SubClassToTable. In Section 4
we introduce generalization on link types which allows for
a more elegant specification of TGG rules. Finally, rule At-
tributeToColumn simultaneously adds a new Attribute to an
already existing Class and a new Column to an already ex-

5Elements that are created by a rule are annotated with
create in contrast to elements that are matched.

287

Class

Attribute

C

Table

Column

D

T1

ClassToTable

T3

AttributeToColumn

T2

ClassToTable

SubClassToTable

<<import>><<import>>

<<import>>

<<merge>>

<<source>> <<target>>
T0

Figure 4: Package Dependency Example

isting Table that has been linked to the Class beforehand.
Usually, TGG rules are not intended to be applied as they

are. The simultaneous evolution of two graphs is rarely use-
ful in practice. Rather, one graph is given and the user wants
to transform it into a corresponding second graph. Another
scenario is that two graphs are given and the user wants to
calculate the correspondences between both graphs. To this
end TGG rules are regarded as merely a declarative specifi-
cation from which a number of operational graph rewriting
rules will be derived from. Figure 3 gives some examples
of such derived rules. For a more complete set of possible
rule derivations the reader is referred to [10]. Rule perform-
ForwardTransformation transforms a given Attribute a to a
corresponding Column and creates a correspondence link.
The Column will be attached to Table which corresponds
to the Class that owns a. Rule performLinkCreation links a
given Attribute with a given Column. The rule tests whether
the given Column is attached to the correct Table and has
the correct name. Finally, rule performLinkCreation checks
whether or not a given AttributeToColumnLink still is con-
sistent.

3. PACKAGE DEPENDENCIES
When specifying large models and transformations be-

tween these models, a packaging concept that allows for
structuring and reuse of existing elements in a model trans-
formation language is crucial. Applying these concepts one
may create rule libraries and reuse existing transformation
rules. The OMG has standardized a packaging concept in
the UML 2.0 Infrastructure Library [20]. In the following we
will adapt the concepts package import and package merge
described in this standard to our TGG approach and shortly
discuss nested namespaces. These concepts will be explained
on the basis of our running example. Therefore, we take the
TGG schema shown in Figure 1 and create a structured

TGG schema (Figure 4) from it using the concepts intro-
duced in this chapter. As packing concepts start to make
sense when dealing with larger specifications, it is obvious
that in our small example the application of these concepts is
of conceptual nature. For purposes of clarity Figure 4 does
not contain references between correspondence link types
and referenced classes (see Figure 1 for more details).

3.1 Nested Namespaces
Regarding the visibility of elements in nested namespaces

(TGG packages and integration link types are namespaces)
we adapt the semantics defined in [20]:

1. TGG elements defined in an enclosing namespace are
available using their unqualified names in the enclosed
namespaces.

This means, that all elements contained in a TGG package
will be visible to correspondence link types and rules con-
tained in a nested TGG package. As correspondence link
types are namespaces, rules that are declared in a link type
will see everything that is visible to the link type.

3.2 Package Import
Package import makes all elements of an imported pack-

age visible in the namespace of the importing package. So
it is possible to reference elements of the imported pack-
age without using the full qualified name of elements of the
imported package.

In our TGG approach package imports may be defined be-
tween TGG packages and packages of the integrated meta-
models, as well as between two different TGG packages. Im-
porting packages from one of the integrated metamodels and
of the imported TGG packages respectively makes elements
of these namespaces visible in the TGG package. Visible
classes from one of the integrated metamodels may be used
at schema level to create correspondence link types between
classes of the source and target metamodels. At rule level
those classes may be used to define how source and target
model are simultaneously changed and how correspondence
links are established between instances of these classes.

At schema level, correspondence link types that become
visible as a result of a package import may be used to es-
tablish generalization dependencies between link types that
are owned by the package in which the link types are visible
and the visible link types (see Section 4 for the description of
generalization dependencies between link types). Creation
of generalization dependencies between link types that be-
come visible due to a package import and link types of the
importing package are forbidden, as well as the creation of
generalization dependencies between two link types that be-
come visible due to a package import. At TGG rule level
imported link types may be used as context element in rules
of link types contained in the importing package. Whereas
creation of correspondence links of imported correspondence
link types in a TGG rule is forbidden. As shown in Figure 2,
rule AttributeToColumn uses link type ClassToTable as con-
text element. Thus the package import between T3 and T1
is necessary (cf. Figure 4).

[20] states that package import has either visibility of
“public” or “private”. In our example a “public” package im-
port is defined between T3 and T1 (“private” imports would
be denoted by an <<access>> label). Visibility determines
whether imported elements will be visible to packages that

288

use the importing package as imported package. If the vis-
ibility of a package import is “public” the elements will be
visible to the importing package and packages that import
the importing package. If it is “private”they will only be vis-
ible to the importing package but not to other packages that
import the importing package. Looking at our example, a
package that would import T3 would also see elements con-
tained in T1, because of the transitive nature of the“public”
import between T3 and T1. In our extended TGG approach
we offer both visibility options, as this gives more flexibility
specifiying a TGG.

We come up with the following statements, that are di-
rectly adopted from [20]:

2. A package import may be defined between a TGG pack-
age and a package of the integrated source or target
metamodel.

3. A package import may be defined between a TGG pack-
age and another TGG package.

4. A package import may have visibility “public” or “pri-
vate”.

In Figure 4 all elements contained in Packages C and D
will be visible to T0, because of the package imports defined
between T0 and C and D. In conjunction with the statement
of Section 3.1 all elements contained in Packages C and D
will also be visible to T1, T2 and T3, because they are en-
closed namespaces of T0 (T0 is the enclosing namespace).
The package import between TGG packages T3 and T1 is
required, because AttributeToColumn uses ClassToTable in
its TGG rule (see Figure 2). Without the package import
AttributeToColumn would only see T1 but not the elements
contained in T1.

3.3 Package Merge
A package merge is defined between a merged package and

a receiving package. The package merge allows to extend
elements of the merged package in the receiving package. In
our TGG approach we restrict the merged package and the
receiving package to be TGG packages and not packages
from the integrated metamodels. Additionally, we use a
slightly different semantics of package merge in contrast to
the semantics defined in [20].

In our approach we use the semantics of an older version
of the UML Infrastructure (cf. [17]), where the resulting
package is constructed as follows (see Figure 5):

• the package merge is resolved to a package import

• a generalization dependency is constructed between
matching correspondence link types of the merged and
the receiving package

• two correspondence link types match, if their name is
equal

• a package merge is invalid, if there are matching cor-
respondence link types for which the merged link type
is invalid as the parent of the receiving link type ac-
cording to the rules defined in Section 4

In our example shown in Figure 4 the package merge pro-
duces a generalization dependency that is established be-
tween T2::ClassToTable and T1::ClassToTable.

T1

ClassToTable
T2

ClassToTable

SubClassToTable

<<merge>>

T1

ClassToTable
T2

ClassToTable

SubClassToTable

<<import>>

Figure 5: Merge semantic by example

If we would adopt the new package merge semantics de-
scribed in [20], we would have a disadvantage which will be
explained using our example (Figure 4). With the new pack-
age merge semantics defined in [20] T1::ClassToTable and
T2::ClassToTable would be merged into the resulting cor-
respondence link type T1::ClassToTable@T2::ClassToTable
without having a generalization dependency between the re-
sulting link type and T1::ClassToTable. An integration rule
(AttributeToColumn(n:String)) that uses an integration rule
type from a merged package (T1::ClassToTable) would not
operate as desired, if the correspondence link type is merged
into another package (T2). The resulting correspondence
link type (ClassToTable in the resulting package) would re-
side in the resulting package (T2), but there would be no
generalization dependency between the resulting correspon-
dence link type and the merged link type (ClassToTable
in package T1). So the integration rule AttributeToCol-
umn(n:String) (Figure 2) would never match instances of
ClassToTable of the resulting package as it expects instances
of ClassToTable of the merged package T1.

We demand for package merge in the TGG schema:

5. A package merge may only be created between TGG
packages.

4. GENERALIZATION
According to [13] Generalization provides another means

for reusability in (object-oriented) software development. In
this section we transfer that concept to the area of model
transformation in general and our Triple Graph Grammar
approach in particular. To this end we have to investigate
in which way Generalization affects TGGs at schema level
as well as at rule level.

4.1 Schema level
At schema level TGGs basically declare types of corre-

spondence links between types of the integrated metamod-
els. Therefore, we have to investigate how to transfer the

289

ClassToTable

SubClassToTable

AttributeToColumn

classes

tables

subclasses
{{subsetssubsets classesclasses}}

subtables
{{subsetssubsets tablestables}}

a) class diagram schema b) correspondence link schema c) database schema

name : String

Association

is_persistent : bool

ClassPrimitiveDataType

name : String

Classifier

is_primary : bool
name : String

Attribute

name : String

Table

FKey

attrs *

type

src dest

parent

attributes
type : String
name : String

Column

pkey *

cols

*

cols *

fkeys *

references

columns

Figure 6: Using generalization on link types

concept of generalization to link types. Conceptually, in our
approach a link type is a combination of a class and an asso-
ciation as defined by [20]. Classes as well as associations are
classifiers. Classifiers may inherit from each other by means
of generalization. A generalization is owned by the more
specific classifier and references the more general classifier.
[20] demands that the classifiers referred to by the ends of a
more specific association must be more specific than or equal
to the classifiers referred to by the ends of the more general
association. Furthermore, this constraint is also postulated
by [13] which states that a more specific element must re-
fine the properties of a more general element. Consequently,
we demand this constraint for link types in our approach as
well:

6. Classifiers referred to by the ends of a more specific
link type must be more specific (or the same) than the
classifiers referred to by the ends of the more general
link type.

Additionally, [20] allows to mark association ends as subsets,
union, or redefines with roughly the following semantics.
The set of instances linked by an association end marked as
subsets of a more specific association is a subset of the set of
instances linked by the subsetted association end of the more
general association. The set of instances linked by an asso-
ciation end marked as union of a more general association
is entirely composed of the sets of all subsetting association
ends of all more specific associations, i.e. the more general
association is merely abstract. An association end of a more
specific association marked as redefines restricts the type of
linked elements to a more specific type than the correspond-
ing type of the redefined association end of the more general
association. We transfer these markings to our link types as
well:

7. The ends of link types in our TGG approach may be
marked as subsets, union, or redefines using the same
semantics as provided by [20].

8. Consequently, link types in our TGG approach may
be marked as abstract. An abstract link type still may
provide a TGG rule but cannot be instantiated directly.
(i.e., rules will never be applied, but may only be in-
herited and extended)

Moreover, using generalization as well as the markings of
association ends has the following consequences:

9. Correspondence link types constitute relations. A more
specialized link type constitutes a subrelation of the
more general link type. Thus, the ends of a more spe-
cialized link type must at least subset or redefine the
ends of the more general link type.

10. The priority of a more specialized rule must be higher
than the priority of the more general rule. Otherwise
the more specialized rule will never be applied as we
will see in the next subsection.

11. According to [20] redefinition means that the element of
a more specialized type at the redefined end of a more
specialized association may only be linked by this as-
sociation rather than by the more general association.
Therefore, in our approach the redefinition of link type
ends prevents the more general rule for being applied
if the more specialized rule fails to be applied.

Finally, [20] allows to provide multiplicities for association
ends. The multiplicity of an association end determines how
many instances of the classifier referred to by the regarded
association end has to be linked to an instance of the clas-
sifier referred to by the opposite association end. The lower

290

c:Class

name := n

t:Table

name := n

ct:ClassToTable

<<create>>
<<create>>

<<create>>

col:Column

ClassToTable(n : String) – Priority: 1

name := "id"

<<create>>

<<create>>

Figure 7: Refined TGG rule ClassToTable

bound of a more specific association end must be greater or
equal than the corresponding association end of the more
general association. The upper bound of a more specific as-
sociation end must be less or equal than the corresponding
association end of the more general association. Therefore,
we demand for TGG link types:

12. Ends of TGG link types may be provided with multi-
plicities as defined for associations in [20].

13. Multiplicities of TGG link type ends must adhere to the
same constraints as multiplicities of association ends
in [20].

Using our proposed extensions to TGG schemas we can now
come up with a more sophisticated schema (cf. Figure 6)
concerning our running example of integrating class dia-
grams with database schemas from Section 2. This time link
type SubClassToTable inherits from link type ClassToTable.
Consequently, the link end subclasses from SubClassToTable
subsets the link end classes from link type ClassToTable.
Accordingly, the link end subtables subsets the link end ta-
bles. This means that every correspondence link that will
be established between a Class that has a parentClass and a
Table will automatically be propagated to the set of links be-
tween any Classes and Tables. We will realize the resulting
benefit at rule level.

4.2 Rule level
We now investigate to which extent generalizations spec-

ified between correspondence link types in the schema have
consequences for their underlying TGG rules. Basically, cor-
respondence link types similar to QVT constitute relations
(i.e., sets of links between model elements). Each TGG rule
declaratively specifies the creation of new links of the link
type the rule is attached to. Since a generalization usually
means that a member of a more specialized type also is a
member of the more general type the set of links of a more
specialized link type should be a subset of the links of the
more general link type. In order to guarantee this, we must
ensure that each time a TGG rule of a more specialized type
is applicable, the TGG rule of the more general link type
would be applicable as well. Therefore, we demand that:

14. The TGG rule of the more specialized link type basi-
cally contains a copy of the TGG rule of the more gen-
eral link type.

Figure 8: Screenshot of the TGG-Editor

15. The user may now replace types of elements on the
left-hand side of the rule by specialized ones (i.e., sub-
classes for nodes, subsets or redefines on association
ends).

16. The user may choose to move elements from the right-
hand side of the rule to the left-hand side of the rule.
Thereby, the more specific rule requires the existence of
graph elements which would have been created by the
more general rule.

17. The user may add entirely new elements to the left-
hand side as well as to the right-hand side.

18. The user may add further attribute conditions and as-
signments.

As a consequence, a more general rule is always applicable
when the more specific rule can be applied and it always
creates a subset of the graph elements that do exist after
the more specific rule has been applied; i.e., the observable
effects of a more specific rule always imply the observable
effects of the more general rule. A formal proof of these
properties has to be omitted here due to lack of space.

Concerning our running example rule SubClassToTable in-
heriting from rule ClassToTable from Figure 2 satisfies our
demands. Moreover, rule SubClassToTable is applicable if
c itself is a Class that has a parent Class which has been
linked to Table t by a link of type SubClassToTable which
conforms to ClassToTable beforehand.

The rule ClassToTable from the merging package T2 (cf.
Figure 4) inherits from rule ClassToTable from the merged
package T1. This rule might look as depicted in Figure 7.
The rule basically looks like the inherited rule from pack-
age T1. Besides the Table this rule additionally creates a
Column in order to hold ids for each row of the Table.

5. IMPLEMENTATION
Currently, we are implementing the proposed concepts as

presented in this paper as part of our MOFLON TGG-Editor
plug-in (cf. Figure 8). The architecture of our TGG-Editor
is shown in Figure 9. Bascially, the TGG-Editor consists of

291

TGG Editor

Schema Editor

Rule Editor

MOFLON

<<depends on>>

to be integrated
metamodels as

MOF specification
<<requires>>

GeneratorMOF2.0 /
SDM Rule Set

<<generates>>

compiler

JMI compliant
integration rule code

<<generates>>

Rule Derivation Strategies

IntegratorSource
Model

Target
Model

Correspondence
Links

<<links>> <<links>>

Figure 9: Architecture of the TGG-Editor

a TGG schema editor, a TGG rule editor, and a generator
module. The TGG schema editor allows for the specification
of a package hierarchy that contains the declaration of corre-
spondence link types. To this end the TGG-Editor refers to
two MOFLON MOF 2.0 projects that constitute the meta-
models of the integrated models. These metamodels can be
specified by using MOFLON’s MOF 2.0-Editor plug-in or
can be imported from external tools (e.g. Rational Rose,
Magic Draw) using the XMI file format. The TGG rules
that are attached to the declared correspondence link types
can be specified by using the TGG rule editor. From the
declarative TGG model integration specification the gen-
erator module automatically generates a plain MOFLON
MOF 2.0 project by converting the TGG schema into a
MOF 2.0-compliant [19] metamodel (cf. Figure 10). The
generator maps TGG packages to MOF packages. Import
and merge relationships between TGG packages are mapped
to import and merge relationships between MOF packages.
TGG link types are mapped to MOF classes. Generaliza-
tions between link types are mapped to generalizations be-
tween MOF classes. Finally, operational graph rewriting
rules are derived from the declarative TGG rules as ex-
plained in Section 2 and attached to the mapping of the
owning TGG link type. From the resulting MOFLON MOF
2.0 project we can automatically generate JMI-compliant6

Java code using MOFLON’s code generation facility.
Finally, the generated Java code can be executed by our

6http://java.sun.com/products/jmi/

Figure 10: Generated MOFLON project

Integrator7. The Integrator is an application which is in-
dependent from MOFLON. Furthermore, the Integrator is
independent from the metamodels of the integrated mod-
els and the generated model integration Java code. Rather,
the Integrator relies on the reflective interfaces provided by
the JMI standard. In order to perform a model integration
the user of the Integrator must provide the metamodels of
the integrated models as well as the metamodel of the cor-
respondence link types. After that, the user must specify
the integrated models. The user can choose to access mod-
els by means of JMI-compliant tool adapters that directly
access models residing in tools through JMI-compliant in-
terfaces or to provide XMI files that contain the models.
Finally, the user must choose which model integration task
(e.g. Forward Transformation, Consistency Checking, and
so on) should be performed.

6. RELATED WORK
In this section we compare our extended TGG approach

with current model transformation approaches. Thereby, we
focus on the support for modularization and reuseability.
As we will see most approaches spend little regard to and
support for these issues.

OMG’s Query / View / Transformation (QVT) [18] stan-
dard has many similarities to TGGs in general [5] and our
approach in particular. As our approach does, QVT com-
plies to OMG’s MOF 2.0 [19] standard as demanded by
OMG’s corresponding request for proposal [16]. In fact the
metamodel of QVT is based on a part of MOF 2.0 called
Essential MOF (EMOF). In EMOF there is no concept As-
sociation. Consequently, QVT does not support subsets, re-
defines, and union for its transformations. Furthermore, in
EMOF packages can only be nested but not be imported or
merged. One basic concept of QVT is Transformation. A
transformation defines the mapping between two models. To
this end a transformation owns a set Rules. Furthermore, a
transformation syntactically inherits from Class and Pack-
age as defined in EMOF. As a package, a transformation

7http://gforge.echtzeitsysteme.org/projects/
integrator/

292

Figure 11: Screenshot of the Integrator

provides a namespace for its rules. As a class, a transforma-
tion allows for the definition of configuration values and util-
ity functions. A transformation can be extended by another
transformation. Thereby, the rules of the extended transfor-
mation are transitively included in the extending transfor-
mation. Since a transformation inherits from package it is
possible to nest transformations in each other. To the best
of our knowledge [18] disregards this possibility and provides
no semantics for that. A rule in QVT roughly corresponds
to a rule in our TGG approach. In QVT a rule may override
other rules if certain overriding constraints are satisfied. To
conclude the QVT standard provides some limited not very
well-specified means for reuseability and modularization.

[12] discusses rule-based modularization support in model
transformation languages in general and the ATLAS Trans-
formation Language (ATL) [7] in particular. Although this
paper identifies and addresses the same issues than we do
the presented approach proposes an entirely different solu-
tion. In order to support reuseable model transformation
specifications [12] demands to tweak the metamodels of the
integrated models in a way that allows for the application
of more generic model transformations. The authors argue
that commonly metamodels do not properly separate dif-
ferent dimensions of concerns from each other. Therefore,
model transformations tend to mix up these different dimen-
sions, too. [12] concludes that this fact hinders the reuse
of model transformation rules and demands the decomposi-
tion of the metamodels as well as the model transformation
rules along the different dimensions of concerns. Although
we could tweak the metamodels of integrated models as pro-
posed as well we usually assume that source and target meta-
models are immutable (e.g. metamodels of commercial-off-
the-shelf (COTS) tools).

According to [23] the Programming with Graph Rewriting
System (PROGRES) provides a package concept for modu-
larizing graph rewriting specifications. The package concept
supports nesting of packages as well as import dependen-
cies. An import dependency enables the importing package
to refer to any visible element from the imported package.
Thereby, an import dependency may reduce the visibility
of the imported elements. Additionally, PROGRES defines
generalization on packages which is required in PROGRES
when a class from one package inherits from a class of an-
other package. PROGRES does not support more sophisti-
cated package concepts as package merge. Moreover, PRO-
GRES supports generalization on graph rewriting rules that
represent methods of node classes and types [14]. PRO-
GRES demands that a graph rewriting rule of a more spe-
cialized class or type that overrides a graph rewriting rule of

a more general class must maintain the parameter type pro-
file of the overridden rule but may change parameter names.
There are no further restrictions concerning the shape of the
specified graph transformations.

The TGG approach [4] as implemented as a plug-in for the
FUJABA toolsuite [24] allows for the specification of a dedi-
cated TGG schema and a set of declarative TGG rules as our
approach does. On the one hand FUJABA relies on version
1.3 of the UML [15]. This version does not provide the so-
phisticated merge package dependency. On the other hand
FUJABA itself provides little support for the specification
of package hierarchies at all. Furthermore, FUJABA’s TGG
schema editor is in fact FUJABA’s class diagram editor and
does not properly separate the integrated metamodels as
well as the link type metamodel from each other. The edi-
tor allows for the specification of multiplicities for link types
as we do but does not support concepts like subsets,union,
and redefines since they are not included in [15]. The TGG
rules in FUJABA are not attached to the link types declared
in the TGG schema. Rather, TGG rules exist more or less
separately from the link types and, thus, do not regard inher-
itance on link types by means of the shape of the specified
graph transformations. The same drawbacks apply to the
TGG approach as implemented in the IMPROVE project
[2].

Finally, AToM3 [3] also relies on an older version of UML
and, thus, does not provide merge, subsets, union, and re-
defines. Again, the graph rewriting rules in AToM3 are not
attached to link types and are, therefore, not subject to gen-
eralization issues. There are lots of further tools dealing with
model transformation each of which providing only limited
if any support for modularization and reuseability. To the
best of our knowledge no related approach provides both
sophisticated modularization support by means of package
dependencies as defined by [20] and reuseability and refine-
ment support by means of generalization.

7. CONCLUSION
In this paper we have motivated the needs to lift modular-

ization and refinement concepts developed for (meta)models
to model transformations. We have emphasized that most
common model integration approaches currently disregard
these features and provide little to no support. In particular
we have discussed how to transfer package dependencies and
generalization concepts as defined by the UML infrastruc-
ture to our TGG approach which is implemented as part of
the MOFLON meta-CASE tool. It would be possible for the
QVT standard to easily adopt our proposed concepts as well.
The price is that the QVT standard which currently relies
on EMOF, consequently would have to switch to complete
MOF (CMOF).

Currently, our approach supports only single inheritance
on correspondence link types. To improve the expressiveness
of our approach we plan to adopt multiple inheritance on link
types as well. Since this will require sophisticated analysis
and merging algorithms for TGG rules of the more general
link types, this is ongoing work.

The creation of views on metamodels would allow to spec-
ify more readable and maintainable model integration speci-
fications. Furthermore, the QVT-RFP of the OMG demands
the possibility for view creation as well. The current QVT
standard intentionally disregards this demand. Therefore,
we plan to provide means for view creation on metamodels.

293

We have already presented ideas for the specification of up-
dateable model views with a specific variant of TGGs that
avoid the materialization of model views in favor of trans-
lating transformations on views into transformations on the
underlying models directly in [6].

Furthermore, we are interested in the development of new
model transformation composition concepts that lift rule
regulation mechanisms developed for controlling the appli-
cation of in-place model transformations on one model to
model-to-model translations that have m models as input
and n models as output [11].

Finally, we want to adopt parametrized polymorphism to
our TGG approach as realized in PROGRES [14] or by the
generics concept of Java for instance. This enables the user
to specify abstract model transformations with abstract type
parameters which will be provided at design- or even at run-
time with concrete types.

8. REFERENCES
[1] F. Altheide et al. An Architecture for a Sustainable

Tool Integration. In A. Schürr and H. Dörr, editors,
Workshop on Tool Integration in System Development,
pages 29–32, 2003. http://www.es.tu-
darmstadt.de/english/events/tis/.

[2] S. Becker, T. Haase, and B. Westfechtel. Model-Based
A-Posteriori Integration of Engineering Tools for
Incremental Development Processes. Journal of
Software and Systems Modeling, 4(2):123–140, 2005.
Springer Verlag.

[3] J. de Lara and H. Vangheluwe. AToM3: A Tool for
Multi-formalism and Meta-modelling. In FASE ’02:
Proceedings of the 5th International Conference on
Fundamental Approaches to Software Engineering,
pages 174–188, London, UK, 2002. Springer-Verlag.

[4] H. Giese and R. Wagner. Incremental Model
Synchronization with Triple Graph Grammars. In
O. Nierstrasz, J. Whittle, D. Harel, and G. Reggio,
editors, Proc. of the 9th International Conference on
Model Driven Engineering Languages and Systems
(MoDELS), Genova, Italy, volume 4199 of Lecture
Notes in Computer Science (LNCS), pages 543–557.
Springer Verlag, October 2006.

[5] J. Greenyer. A Study of Model Transformation
Technologies: Reconciling TGGs with QVT. Master’s
thesis, Universität Paderborn, Germany, 2006.
http://wwwcs.uni-paderborn.de/cs/ag-

schaefer/Veroeffentlichungen/Quellen/Diplom/

2006/DiplomarbeitJGreenyer.pdf.

[6] J. Jakob, A. Königs, and A. Schürr. Non-materialized
Model View Specification with Triple Graph
Grammars. In A. Corradini, editor, International
Conference on Graph Transformations, volume 4178 of
Lecture Notes in Computer Science (LNCS), pages
321–335, Heidelberg, 2006. Springer Verlag.

[7] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, and
P. Valduriez. ATL: a QVT-like transformation
language. In OOPSLA ’06: Companion to the 21st
ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications,
pages 719–720, New York, NY, USA, 2006. ACM
Press.

[8] A. Kleppe, J. Warmer, and W. Bast. MDA Explained.
Addison-Wesley, 2003.

[9] A. Königs. Model Transformation with Triple Graph
Grammars. In Model Transformations in Practice
Satellite Workshop of MODELS 2005, Montego Bay,
Jamaica, 2005.

[10] A. Königs and A. Schürr. Tool Integration with Triple
Graph Grammars - A Survey. In R. Heckel, editor,
Proceedings of the SegraVis School on Foundations of
Visual Modelling Techniques, volume 148 of Electronic
Notes in Theoretical Computer Science, pages
113–150. Elsevier Science Publ., 2006.

[11] H. Kreowski, S. Kuske, and A. Schürr. Nested Graph
Transformation Units. Int. Journal on Software and
Knowledge Engineering and Special Issue on Graph
Grammar-based Specifications, 7(4):479–502, 1997.

[12] I. Kurtev, K. van den Berg, and F. Jouault.
Evaluation of Rule-based Modularization in Model
Transformation Languages illustrated with ATL. In
SAC ’06: Proceedings of the 2006 ACM symposium on
Applied computing, pages 1202–1209, New York, NY,
USA, 2006. ACM Press.

[13] B. Meyer. Object-Oriented Software Construction.
Prentice Hall PTR, 2. edition, 1997.

[14] M. Münch. Generic Modelling with Graph Rewriting
Systems. Berichte aus der Informatik. Shaker Verlag,
Aachen, 2003. PhD thesis (RWTH Aachen).

[15] OMG. Unified Modeling Language version 1.3, 2000.
http://www.omg.org/cgi-bin/doc?formal/00-03-01.

[16] OMG. Request for Proposal: MOF 2.0 Query /
Views / Transformations RFP, 2002.
http://www.omg.org/cgi-bin/doc?ad/02-04-10.

[17] OMG. UML 2.0 Infrastructure Specification, 2003.
http://www.omg.org/docs/ptc/03-09-15.pdf.

[18] OMG. MOF QVT Final Adopted Specification, 2005.
http://www.omg.org/cgi-bin/doc?ptc/2005-11-01.

[19] OMG. Meta Object Facility (MOF) Core Specification
version 2.0, 2006. http://www.omg.org/cgi-
bin/doc?formal/2006-01-01.

[20] OMG. Unified Modeling Language: Infrastructure
version 2.0, 2006.
http://www.omg.org./docs/formal/05-07-05.

[21] T. W. Pratt. Pair Grammars, Graph Languages and
String-to-Graph Translations. Journal of Computer
and System Sciences, 5:560–595, 1971. Academic
Press.

[22] A. Schürr. Specification of Graph Translators with
Triple Graph Grammars. In G. Tinhofer, editor,
WG’94 20th Int. Workshop on Graph-Theoretic
Concepts in Computer Science, volume 903 of Lecture
Notes in Computer Science (LNCS), pages 151–163,
Heidelberg, 1994. Springer Verlag.

[23] A. J. Winter. Visuelles Programmieren mit
Graphtransformationen, volume 27 of Aachener
Beiträge zur Informatik. Wissenschaftsverlag Mainz in
Aachen, 2000. PhD thesis in German (RWTH
Aachen).

[24] A. Zündorf. Rigorous Object Oriented Software
Development. University of Paderborn, 2001.
Habilitation Thesis.

294

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

