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ABSTRACT

Providing proper support for debugging models at model-level is
one of the main barriers to a broader adoption of Model Driven De-
velopment (MDD). In this paper, we focus on the use of MDD for the
development of real-time embedded systems (RTE). We introduce
a new platform-independent approach to implement model-level
debuggers. We describe how to realize support for model-level de-
bugging entirely in terms of the modeling language and show how
to implement this support in terms of a model-to-model transfor-
mation. Key advantages of the approach over existing work are that
(1) it does not require a program debugger for the code generated
from the model, and that (2) any changes to, e.g., the code generator,
the target language, or the hardware platform leave the debugger
completely unaffected. We also describe an implementation of the
approach in the context of Papyrus-RT, an open source MDD tool
based on the modeling language UML-RT. We summarize the re-
sults of the use of our model-based debugger on several use cases
to determine its overhead in terms of size and performance. Despite
being a prototype, the performance overhead is in the order of
microseconds, while the size overhead is comparable with that of
GDB, the GNU Debugger.
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1 INTRODUCTION

Due to the growing complexity of Real-Time and Embedded (RTE)
systems, the need for development methods and tools that provide
effective means for the efficient development of correct embedded
software is increasing. To meet these demands, Model-Driven De-
velopment (MDD) has been proposed. MDD uses models rather
than source code as primary development artifact in an attempt to
raise the level of abstraction. MDD supports the generation of code
and can facilitate testing and verification activities [4].

Typically, developers spend a significant part of their time debug-
ging applications and fixing bugs [31] supported by sophisticated
program debugging tools. However, modelling tools currently do
not provide proper support for debugging and understanding the
run-time behaviour at model-level [19, 20, 39]. Instead, developers
must use a program debugger on the generated source code to
debug their models, which contradicts MDD principles and goals
because many of the benefits of the abstraction are lost. Addition-
ally, understanding the generated source code can be challenging
and error prone for developers who use only models for develop-
ment and are not versed in the target language, i.e., the language
the generated code is in [39]. Inadequate debugging support is one
of the central barriers to a broader adoption of MDD.

Recent efforts have provided a good starting point for under-
standing the challenges and requirements for model-level debug-
ging [7, 8, 11, 12, 15, 19, 20, 43, 49]. The most frequent proposals
are to (1) realize model-level debugging through a model inter-
preter, or to (2) maintain traceability information between model
and code and leverage an existing program debugger. Interpreter-
based proposals require the implementation of an interpreter for the
modeling language, the action language, and the run-time services
library; this is not only time-intensive, but also creates a potentially
harmful discrepancy between the environment that the model is
debugged in and the environment that the code generated from
the model will execute in; this discrepancy might create spurious
bugs or mask real bugs that depend on, e.g., the choice of target
language or hardware platform; also, we would not expect a large
degree of portability of the debugger from one MDE tool to the next.
Program debugger-based approaches are very dependent on the
target language, the operating system, and the hardware platform,
meaning a change in any of these is likely to necessitate substantial
changes to the debugger.

In this paper, we propose a novel approach for realizing model-
level debugging of models of RTE systems. Our approach over-
comes the above-mentioned limitations of existing proposals by
being completely platform-independent, i.e., it does not depend
on any architecture-specific program debugger. Instead, our ap-
proach relies on model transformation to instrument the model to
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be debugged with information that allows it to support debugging
activities. Since the debugging support is realized on the model
level, debuggable code can be generated from the model with the
standard code generator and without the need for additional, code-
level instrumentation or a program debugger.

We have implemented our approach in a model-based debugger
called MDebugger. To maximize the impact of our work, our imple-
mentation only uses open source tools including the Papyrus-RT
MDE tool for modelling and code generation, and the Epsilon tools
for model instrumentation. Just like Papyrus-RT, MDebugger is ap-
plicable to models expressed in UML for Real-Time (UML-RT) [38].
However, our approach is transferable to other modeling languages
and tools used for the MDD of RTE systems.

The remainder of this paper is organized as follows. The next
section reviews the most relevant parts of UML-RT and the current
practices in model-level debugging; Section 3 presents our approach;
Section 4 describes our implementation; Section 5 evaluates our ap-
proach using performance and code size metrics; Section 6 presents
related work and compares our approach; Section 7 concludes.

2 BACKGROUND

The objective of this section is twofold. First, it outlines current
research in model-level debugging and its limitations. Second, it
introduces UML-RT using a running example.

2.1 Model-Level Debugging

Over the past years, several approaches have been proposed to
improve the current state of support and integration of debugging
features in MDD tools [7, 8, 11, 12, 15, 19, 20, 43, 49]. The most
advanced proposals implement model-based debugging features on
top of an existing program debugger (e.g., GNU Debugger) as shown
in Fig. 1. These approaches usually rely on code instrumentation in
order to generate the meta-data required to keep a bi-directional
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Figure 1: Model-Level Debugging Workflow
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mapping between code artifacts and model elements (states, transi-
tions, etc.) [8, 47]. Binary code is then generated which contains
debugging symbols used by existing program debuggers to debug
the application. An additional component at model-level interfaces
with the program debugger in order to display the debugging infor-
mation directly on the model and to trigger debugging commands
from the modeling tool.

While this solution works in practice, it suffers from several
limitations. The most important one is caused by the need to inte-
grate the model debugger with different program debuggers that
are specific to a target language. For instance, at least three different
integrations with program debuggers are required for supporting
three different target languages (C++, Java, etc.). The definition
of different mappings is furthermore impacted by the number of
architectures (Intel x86, ARM, etc.) to support. The resulting depen-
dencies make the task of maintaining comprehensive debugging
capabilities at model-level difficult and time-intensive for tool ven-
dors.

A second limitation is the lack of reusability. Existing approaches
focus on instrumenting the code instead of the modeling language
which introduces a dependency on the MDE tool. For instance, UML-
RT is supported by IBM RSA-RTE and Papyrus-RT. However, the
need for instrumenting the code generator for debugging purposes
would prevent a model-based debugger used in one tool from being
easily reused in the another tool. Consequently, proposed solutions
for model-level debugging are hard to port from one MDE tool to
another.

A third limitation is due to the semantic gap between model and
code elements, making the translation of debugging information to
the model-level difficult. In the context of UML-RT, the following
concrete example can be given: According to the UML-RT execu-
tion semantics, a capsule (i.e., component) instance executes in its
own logical thread, i.e., even if the capsule code is not assigned
to a physical thread in the target language, the controller in the
UML-RT run-time system will create the illusion to the user that the
instance is executing concurrently; however, since the notion of log-
ical threads is not supported by the program debugger, debugging
capsule instances using program debuggers becomes unnecessarily
complicated.

Overall, given its significance, debugging appears to be an insuf-
ficiently researched topic, not just in the MDD context, but also for
more traditional software development using general-purpose or
domain-specific languages.

2.2 UML for Real-Time

UML for Real-Time (UML-RT) [34, 40] is a language specifically
designed for RTE systems with soft real-time constraints. Over
the past two decades, it has been used successfully in industry
to develop several large-scale industrial projects, and has a long,
successful track record of application and tool support, via, e.g.,
IBM RSA-RTE [17] and Papyrus-RT [10]. UML-RT is designed as a
UML profile with a simplified notation. It only provides two kinds
of diagrams: capsule and state machine diagrams.
The central modelling entity in UML-RT is called capsule (cf. Fig. 2).

A capsule is similar to an active class in object-oriented program-
ming languages or to a process in process algebra. Being active
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implies that each capsule may have autonomous behaviour. Cap-
sules own a set of internal and external ports that are typed with
protocols. A protocol defines the different incoming and outgoing
messages a capsule can receive or send through its ports. A port
is the sole interface for the communication between the capsules
which guarantees high encapsulation. Ports of two capsules can be
connected through connectors only if they are typed with the same
protocol. Furthermore, capsules can have attributes, operations, and
parts (aka. sub-capsules) [38, 40].

Fig. 2 shows a simple Client-Server system modeled with UML-
RT. The top capsule is composed of two capsule parts, client and
server. Both are connected through their ports SND and RCV, typed
with the protocol comms.

Capsule behaviour is modeled using hierarchical state machines.
A UML-RT state machine consists of several states connected with
transitions. States can be of three kinds: basic states, composite
states (containing sub-states), and pseudo-states (e.g., initial pseudo-
state, choice point). A basic or composite state can have entry and
exit action code that is executed when the state is entered or left,
respectively. A transition connects a source state to a target state. It
may contain a triggering event, a guard, and an effect. A transition
is taken when the triggering event is fired and the guard evaluates
to true. When it is taken, the code representing the transition effect
is executed.

Fig. 2 illustrates the state machines of the server and the client
capsules. The server state machine only contains a pseudo-state
p1 and a basic state s1. A regular transition t1 connects both states,
and an external self-transition t2 loops around s1. The client
state machine contains a composite state c1, which is entered when
the transition t2 is taken.

The semantics of UML-RT state machines is similar to that of
UML state machines with some restrictions, including: (1) there
is no AND-state (orthogonal regions), (2) the UML concepts fork,
Jjoin, shallow history, and final states are prohibited in UML-RT, (3)
transitions cannot cross state boundaries, and (4) states do not have
idle (do) actions [34]. In addition, the execution semantics of UML-
RT is managed by a Run-Time System (RTS) library, which defines
one or more controllers to monitor the concurrent execution of each
capsule. A controller is assigned to a physical thread and controls
the execution of a set of capsules. An important characteristic
related to the execution semantics of UML-RT is run-to-completion,
which guarantees that an incoming message will be fully processed
before the processing of the next message starts.

As an example, the server state machine (cf. Fig. 2) contains
two transition chains. When the server starts, the transition t1 is
taken. The transition effect of t1 and the entry action code of s1
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are executed in this order. State s1 remains active until an event
matching the trigger of transition t2 is fired. When this event is
fired, t2 is taken and the full transition chain, consisting of the
exit action code of s1, the transition effect of s2, and the entry
action code of s1, is executed. Run-to-completion guarantees that
the execution of the entire transition chain is not interrupted.

In our approach, we classify transitions based on whether or
not their source or target states are pseudo-states. We distinguish
the following four groups of transitions: (1) P2P: transitions in this
group connect two pseudo-states. Assuming that there is not any
guard associated with the transition, a P2P transition is taken as
soon as its source state becomes active. (2) P2N: transitions in this
group connect a pseudo-state to a non-pseudo state (e.g., t1 from
server state machine). Similar to P2P transitions, a P2N transition
is taken as soon as the source state becomes active. (3) N2N: tran-
sitions in this group connect two non-pseudo states (e.g., t2 from
server state machine). In contrast to P2P and P2N transitions, an
N2N transition is only taken when an event matching its trigger
is raised by the RTS or another capsule. (4) N2P: transitions in
this group connect a non-pseudo state with a pseudo-state (e.g., t2
from the client state machine). Similar to N2N transitions, an N2P
transition is only taken when it has been triggered and its guard
holds.

3 APPROACH

As stated before, existing approaches suffer from several limitations
many of which result from the dependency on program debuggers
specific to a particular language or architecture. For instance, in
addition to having to generate the code for different configurations,
existing model-level debuggers have to provide wrappers for each
program debugger.

Our approach relies on a model instrumentation process which
is completely platform-independent, as shown in Fig. 3. Differences
with existing approaches (cf. Fig. 1) are highlighted in the figure.
The first difference is that our approach uses Model-to-Model (M2M)
transformation techniques for creating an instrumented version
of the user-defined model supporting debugging activities. This
support is added via model transformation rules that are defined
for each construct of the modelling language. This step is essen-
tial to our approach. It allows, without having to instrument the
code, the generation of applications providing debugging services
by themselves, i.e., without having to rely on a program debugger.
The fine control provided by the model transformation techniques
allows us to implement at model-level not only the communica-
tion between the debuggable system and the model debugger, but
also advanced capabilities such as component introspection and
attribute value change. Finally, as the generated code is debuggable,
the compilation step does not require the addition of language-
or architecture-specific debugging symbols into the binary files,
reducing their size.

Compared to existing approaches, ours is more general, less
dependent of the specifics of code generators or deployment con-
figurations. As model instrumentation is done at model-level, the
resulting debugger is easier to port from one tool to another. In ad-
dition, there is no gap between debug information provided at code-
and model-level as the debugger does not rely on any program
debuggers.
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The remainder of this section shows how models are instru-
mented with respect to them. It then gives an example of an appli-
cation and discusses to what extent our approach guarantees the
preservation of behaviour.

3.1 Model Instrumentation

Model-level debuggers should provide a wide range of operations,
such as attribute view and change and crash analysis. These op-
erations can be built upon three composite operations including;:
(1) stop and resume operations for controlling the execution of the
system via breakpoints, pause, resume, step in, and so on; (2) view
and change attribute operations to inspect and modify the system
status; (3) detailed tracing operations providing a foundation for
crash analysis, event chain analysis, punctuality analysis, utilization
analysis, and so on.

To formalise our approach, we first observe that instrumentation
can be strictly bounded to transition chains as computation only oc-
curs in three places: transition effects, state entry actions, and state
exit actions. Indeed, the semantics of UML-RT state machines ex-
cludes any do activities. Therefore, we define a transition chain of a
transition t; between two states s; and s as the sequence of actions
that is executed when the transition is fired. Since pseudo-states do
not contain exit or entry actions, the actions in the transition chain
of a transition thus depend on which one of the four groups defined
at the end of the previous section the transition is in. Let tpyp, tpaN,
tN2p, and ty2N denote transitions with source state s; and target
state sy in each of these four groups. Then, their transition chains
are given by

chain(tpap) = (effect(tpzp))

chain(tpoy) = (effect(tpan), entry(sz))
chain(tny2p) = (exit(sy), effect(tn2p))
chain(tnon) = (exit(sy), effect(tn2n), entry(sz))
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The execution of a capsule in UML-RT can be entirely repre-
sented by the composition of all transition chains that lead the
system from one state to another. Consequently, by focusing on
transition chains only, our approach supports the instrumentation
of the entire model for debugging purposes.

The following shows the formalisation of different transforma-
tion rules we use. We formulate them at the model-level and then
employ model query and transformation techniques to refine the
user-defined model. Fig. 4 shows how a N2N transition #; between
states s and sy is instrumented in order to provide debugging sup-
port for the transition chain. The left side of the figure shows the
original transition t;. The right side shows the refined transition
after instrumentation. The refined model introduces a choice point
and a composite state a capsule may enter whenever a breakpoint
is reached. We will now describe how the refined model allows the
three different kinds of debugging operations mentioned above.

Suspend and Resume Operations. Fig. 4 shows how a capsule
execution can be suspended and resumed. The presence of the
choice point allows the application to check whether a breakpoint
on the transition is set or not. If it is not set, the execution continues
normally by executing the transition chain. Otherwise, it enters the
composite debugging state and the transition chain is executed step-
by-step. To do so, a mapping is created between the different actions
composing the initial transition chain and the local transitions in
the composite debugging state. It provides support for common
stop and resume operations such a resume and step over. Stepping
over the transitions exit_s1, effect_t1, and entry_s2 allows for
executing the different actions (exit action of s1, transition effect
of t1, entry action of s2) of the transition chain separately.

Initially, the execution goes into the debugging state D_s1, where
it is suspended before the exit action code of the original state s1
is executed. In this state, the execution is pending, waiting for com-
mands from the model debugger to resume its execution. When the
command is received, the transition exit_s1 is taken, causing the
original exit action code to be run, and suspending the execution in
D_s2. Another command results in taking the transition effect_t1
associated with the execution of the transition effect of t1 and in
suspending the execution in D_s3. A third command causes the
execution of the entry action of the original state s2 associated
with the transition entry_s2. A last command is required to leave
the composite state and resume the regular execution.

Attribute View and Change Operations. In addition to providing
support for controlling the execution of a capsule, the transforma-
tion rule also adds one self-transition dbg_t1. It provides a support
for inspecting and changing the system status at run-time. Pro-
gram debuggers such as GDB directly access the program stack and
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heap to provide these operations, which results in a tight coupling
with the architecture. In contrast, our implementation relies on
self-reflection techniques [25]. Therefore, when the execution is
suspended, the model debugger can directly inspect and change the
attributes of the suspended capsule. Note that certain languages,
such as C++, provide limited, if any, support for self-reflection (in
contrast with, e.g., Java [30]). However, this limit is overcome by
our approach as the support for self-reflection is directly provided
by the instrumented model.

Detailed Tracing Operations. Having access to the history of the
system execution during the debugging process is important for
localizing bugs efficiently. For example, analysing execution traces
can help to find the root cause of an unexpected behaviour. Execu-
tion traces can also provide information for other analysis activities
which are crucial for RTE systems (e.g., Worst Case Execution Time
analysis, Run-time verification). To support execution traces, we
add tracepoints to capture all possible events generated by the sys-
tem. Similar to the work on schedulability analysis in [13, 29], we
define an event class and event type so that the captured execution
traces contain the necessary information.

Coverage of all Transitions. To cover the transformation of all
transition types (i.e., N2N, N2P, P2N, P2P) discussed in Section 2,
we define a transformation rule per each transition type. The trans-
formation rule illustrated in Fig. 4 is applied to N2N transitions;
since the chain of N2N transitions contains all possible action code
four debugging substates and related transitions are required. Fig. 5
shows the transformation rules for the other three transition types.
In other words, the rules in Figs. 5a, 5b, and Fig. 5c are applied to
P2N, N2P, and P2P transition respectively.

3.2 Example

Fig. 6 shows how model instrumentation is applied to the running
example. The server state machine contains two transition chains
to be instrumented involving two out of the four transformation
rules shown in Fig. 4 and 5. The nominal transformation rule is
applied to the self-transition t2 where s1 is both the source and the
target. The transformation rule in Fig. 5a is applied to the initial
transition.

3.3 Behaviour Preservation

Behaviour preservation is an important concern to address when
developing debuggers. While debuggers always impact the perfor-
mance on a debugged application, the added overhead resulting
from in their use should be minimized as much as possible in order
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to prevent a significant change in the system behaviour. In this part,
we discuss in which sense our approach to debugging is behaviour
preserving.

Fig. 7 shows how an execution trace is altered when using our
approach. Top and bottom parts respectively show the execution
trace of the transition t1 before and after model instrumentation.
Nominal and debugging paths are respectively shown with solid
(—) and dashed lines (- -»). In both cases, the transition chain is
started when the event triggering the transition t1 is fired. In the
instrumented model, the capsule checks (isDebug) if the debugging
mode is set. In that case, the execution follows the debugging path.
As explained before, states D_s1 to D_s4 are states in which the
capsule waits for debugging commands for resuming its execu-
tion or changing its state. Stepping over these states is done when
receiving the step command from the model debugger. Each step
results in the execution of a part of the transition chain of t1. After
executing the entire transition chain, the execution is resumed.

When the debugging mode is not active (isDebug returns false),
we can observe that the instrumented transition chain executes the
same sequence of actions as the original. The isDebug function is
only used to check whether the system is in or should enter the
debugging mode (e.g., after reaching a debugging breakpoint). It
is read-only, very small (1 line of code) and executes very quickly.
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Unless the system is sensitive to very slight delays, the execution of
the isDebug function will not change the behaviour of the debugged
system.

In debugging mode (isDebug returns true), the execution can
be delayed or modified with the help of inspection and step com-
mands. However, the order in which the steps in the transition
chain are executed is preserved. Moreover, unless the user alters
the system state (by, e.g., changing attribute values), the execution
of the transformed transition chain will terminate in the exact same
state as the original transition chain. Stepping operations from the
model debugger do not alter the system state, and are only used for
advancing through the original transition chain.

In the context of concurrent executions, delays introduced by the
debugger can have serious side-effects in the system behaviour and
its preservation cannot be guaranteed. Indeed, while the execution
of a debugged component is interrupted after, e.g., a breakpoint is
reached, other components are still running and may send messages
to it. It may result in a loss of messages or timeout errors, and thus
makes the debugged and suspended component unable to process
incoming messages.

While there is no universal solution in existing approaches, this
issue is partially addressed in our approach. By relying on the defer
and recall mechanism of UML-RT, our approach prevents messages
from being lost. To do so, we modeled a transition defer_t1 (cf.
Fig. 4) which captures all incoming messages sent by other capsules
to recall them after the debugged capsule returns to its nominal
execution. This mechanism preserves the order of the received
messages. Therefore, the transition rec_t1 helps ensure that the
behavior of the debugged capsule is preserved. However, it does not
guarantee that the behavior is preserved for time-sensitive systems.
Note that the debugging of timed distributed systems suffers from
this problem in general.
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4 IMPLEMENTATION

This section describes our current implementation. We use Papyrus-
RT as the primary tool for modelling UML-RT models and Ep-
silon [24] to implement the transformation rules required for in-
strumenting the models. This section is divided into two parts. The
first part details the implementation of the transformation rules.
The second part details the prototype implementation of a model-
level debugger called MDebugger.

4.1

Transformation rules used for instrumenting the models are imple-
mented using the Epsilon Object Language (EOL). It supports a set
of instructions to create, query, and modify models expressed in lan-
guages described with the Eclipse Modeling Framework (EMF) [22].

Listing 1 is an example of a transformation rule written in EOL.
It shows the main function for instrumenting the state machine
of all capsules of the user-defined model. The addGateway func-
tion is responsible for enabling the model to interface with the
debugger. It adds a UML-RT port to each capsule. These ports are
typed with a specific protocol used for debugging purposes. The
refineStructure function adds required attributes and methods
to each capsule to support debugging. An example of an added
attribute is a map used for maintaining breakpoint information,
required by the isDebug method during debugging. Examples of
methods added are the isDebug method and a set of methods for
supporting attribute view and change operations. The isDebug
method returns a boolean value indicating whether a debugging
session is opened or needs to be opened according to the current
state and the next transition about to be taken. The generation of
self-reflection methods was inspired by work on physics engine
development [27]. These methods provide support for viewing and
changing attribute values. To do so, the refineStructure func-
tion iterates over all attributes of each capsule and generates the
corresponding helper functions, such as getters and setters. The
refineForSRO function applies the four transformation rules ex-
plained in Section 3. For each transition chain, a helper function is
used in order to determine which instrumentation rule needs to be
applied, based on the kinds of source and target states. Based on the
result, the refineForsSRO calls the proper transformation rule. The
addTrace function adds support for detailed tracing operations to
each state. Finally, the guardCodes function adds a guard to every
entry and exit code to prevent them from being executed when the
capsule is being debugged.

Model Instrumentation using Epsilon

addGateWay () ;
refineStructure();

; for (SM in allStateMachines){
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refineForSRO(SM);

for (s in allStates){
s.addTrace(traceType);
s.guardCodes () ;
}

Listing 1: Main Transformation Functions
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4.2 Model-Based Debugging

After applying the instrumentation, code is generated from the in-
strumented model and an executable and debuggable binary is built
from the code. Fig. 8 gives an overview of our current implementa-
tion. The debuggable binary consists of two parts: the instrumented
binary itself, and a debugging agent responsible for managing de-
bugging sessions and for interfacing with the model debugger. The
debugging agent interfaces on one side with the instrumented
binary through messages exchanged using the Papyrus-RT RTS
library, and on the other side with the model debugger through two
queues: an event queue for sending detailed traces and a command
queue for receiving debugging commands for, e.g., suspending the
execution or viewing an attribute. Shared memory was favored
as it provides efficient and fast asynchronous communication so
that the model debugger can interface with the system without
disrupting its execution. The model debugger, called MDebugger,
provides debugging services to users. Its API is accessible either
via the command line or via TCP to connect external debugging
environments.

4.2.1 Debugging Agent. The debugging agent plays a central role
to provide effective debugging services. It was designed as a cus-
tomized version of a more generic run-time monitoring architecture
currently being developed [7, 16]. The debugging agent communi-
cates with the system using the execution semantics of UML-RT.
This brings several benefits. E.g., It cannot make the system un-
schedulable or cause unpredictability or synchronization issues.

Initially, the debugging agent creates the event and command
queues for communicating with the model debugger, then waits for
every instrumented capsule instance to register. The registration
phase is essential so the debugging agent can maintain a list of
every capsule instance. It allows the model debugger to identify
and send commands to a specific capsule instance to debug. After
the registration phase, the debugging agent performs two tasks:
1) it receives and forwards trace events from the registered cap-
sule instances to the event queue, and 2) it periodically polls the
command queue and processes any received commands. When a
received command is valid, it is transmitted by the debugging agent
to the target capsule instance.

4.2.2 MDebugger. MDebugger is a model-level debugger which
provides debugging services by interacting with the debuggable
binary. It consists of several components including a core component,
a command interface, an event manager, and a communication layer.
The core component implements the main logic of the debugger.
Initially, it queries the list of registered capsule instances from
the debugging agent. For every capsule instance, it keeps track of
certain data including: 1) last events generated by the capsule, 2)
the active state or transition, 3) the list of attributes, their type and
value, 4) the execution mode (e.g., stepping or suspended), 5) the list
of breakpoints set, and 6) the debugging command history related
to the capsule instance.

In addition to the core component, the communication layer pro-
vides services for reading from and writing to the shared memory,
and for handling TCP connections. The command interface is re-
sponsible for receiving and parsing the debugging commands from
the command line interface or from external applications connected
via TCP.
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Figure 8: Implementation Overview

Our current implementation supports the following features:
(1) Set, remove, and list breakpoints: Similar to program debuggers,
breakpoints can be set to suspend the execution at certain points.
However, in our implementation, breakpoints are set at the model-
level, i.e., before and after entry and exit action code of states, or on
transitions. In addition, breakpoints can be set on a specific capsule
instance, meaning that only this specific instance is suspended while
other instances of the same capsule keep on running. This is even
possible in the case where capsules are assigned to the same physical
thread. (2) Stepped execution: Our current implementation supports
three execution modes: stepping, run to next breakpoint, and run
to completion. As for setting breakpoints, stepping is possible at
instance-level, so it is possible to run the system with different
debugging scenarios. (3) View and change attributes: Whenever a
capsule instance is suspended, commands can be used to view and
change attribute values. In addition, the generated detailed traces
allow the user to “rewind” the execution to see where and when
attribute values are modified. (4) View and store event chain: It is
possible to view the last event traces generated by each capsule
instance. It is very useful for root-cause and crash analysis.

Also, we extended the Eclipse debugging interface along with
Papyrus-RT in order to provide a graphical user interface for model-
based debugging of UML-RT models.

4.3 Exceptions and Limitations

Currently, instrumentation only applies to explicitly defined tran-
sitions. Since transitions from the history state to possible target
states are implicitly implemented, the current approach does not
provide support for suspending the execution before the entry ac-
tion code of a state when it is reached from the history state. The
same limitation exists for exit code on sub-states during a group
transition. Also, our current implementation only supports value
change of primitive attributes.

5 EXPERIMENT

This section details the experiment we conducted in order to as-
sess the applicability of our approach. The first part presents the
experiment protocol and hypotheses we formulated. The second
part details results showing the benefits of our approach in terms
of performance and scalability.
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5.1 Experiment Protocol

In order to assess the applicability of our approach, we formulated
two hypotheses w.r.t. the expected gains compared to existing ap-
proaches relying on general-purpose program debuggers. The two
hypotheses are formulated below:

Hypothesis 1 (Performance). We hypothesize that our approach
relying on model instrumentation causes reasonable performance
overhead, negligible enough so it can be applicable to RTE systems.

Hypothesis 2 (Code Size). While our approach based on model
instrumentation undoubtedly increases the size of the generated
code (as it significantly increases the complexity of the models), we
hypothesize that the size of the generated binary file is within the
size range of binary files containing debugging symbols used by
general-purpose debuggers.

To verify the two hypotheses, we compared MDebugger with
the normal execution and, when applicable, with GDB, one of the
most widely used program debuggers. Despite being semantically
different as they operate at different levels, the comparison is viable
as existing model-based approaches rely on program debuggers,
hence inherit the overhead induced by them, in addition to other
possible overhead resulting from the mapping between code- and
model-level. It may be argued that GDB provides more advanced
features and debugging services at binary-level, making the com-
parison unfair. While this is true, it is worth mentioning that most
of the services provided by GDB or other program debuggers are
not beneficial at model-level, hence merely impede the performance
of model-based debuggers.

5.1.1 Use cases. In order to verify our approach, we applied the
instrumentation to several RTE system models. Models have dif-
ferent complexities that range from simple models containing two
states to models with more than 250 states. Simple models include
the Counter and the Car Door Central Lock systems. Counter is a
simple system which counts the elapsed seconds. Car Door Central
Lock is a control system for locking and unlocking car doors.

The Parcel Router [26, 42] is an automatic system where tagged
parcels are routed through successive chutes and switchers to a cor-
responding bin. The system is time-sensitive and jams can appear
due to the variation of time spent by a parcel to transit through the
different chutes. We created two different versions of the same sys-
tem. The complete version checks whenever parcel jam occurs and
prevents a parcel from being transfered from one chute to another
one until it is empty. The simplified version ignores jams.

The Rover system model [1] allows an autonomous robot to
move through different directions. It is equipped with three wheels
driven by two engines. It can move forward, move backwards, and
rotate. In addition, it embeds several sensors, such as temperature
and humidity sensors to collect data from the environment, as well
as an ultrasonic detection sensor to detect and avoid obstacles.

The FailOver system [6, 23] is an implementation of the fail-over
mechanism. It involves a set of servers processing client requests. To
meet high availability, the system supports two replication modes,
passive and active [14]. In passive replication, one server component
works as the master, handling all the client requests while backup
servers are largely idle, except for handshake operations. Whenever
a malfunction occurs, resulting in a failure of the master server, a
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Table 1: Model Complexity and Instrumentation Time

Model Complexity Instr.

Model Original Instrumented | time

C[S[T|C[S T | (ms
Counter 112 |2 |2 14 | 20 | 445
Car Door Central | 4 | 8 | 18 | 5 | 95 | 144 | 943
Lock
Simplified Parcel | 8 | 12 | 14 | 9 | 96 | 140 | 1346
Router
Parcel Router 8|14 | 25| 9 | 158 | 244 | 1488
Rover 6 |16 | 21 | 7 | 134 | 200 | 1397
FailOver System 9 | 28|43 |10 | 254 | 396 | 1528

C: Capsule, S: State, T: Transition

backup server is ranked up as the new master. In active replication,
client requests are load-balanced between several servers. In ad-
dition to processing client requests, each server has to update its
status to inform other servers of its availability. Therefore, each
server can be notified whenever a malfunction causes the failure of
one of its peers.

5.1.2  Quality Metrics. Beside assessing the coverage of our im-
plementation, we evaluated our approach based on different quality
metrics, such as the size overhead, instrumentation time, and perfor-
mance overhead. To perform the experiment, we used a computer
equipped with a 2.7 GHz CPU and 8GB of memory. All hardware
and software configurations and workload of the system during
the entire experiment were identical.

Performance Overhead: Performance overhead is one of the
main factors impacting the applicability of debugging tools. This
factor is even more important in RTE systems where time sensi-
tiveness and behaviour preservation are the main concerns during
debugging.

To evaluate this metric, we set up a benchmark for evaluating the
performance of the FailOver system under normal mode (to show
the real performance of the system) and debugging mode using
our approach. In both cases, we executed the system until 10,000
messages were sent by the clients and processed by the servers.
Then, based on the system logs, we collected the computation time
for replying to a server request (i.e., RequestReply transition), pro-
cessing message response by the clients (i.e., ProcessingResponse
transition), and notifying the availability of each server to its peers
(i.e., SendKeepAlive transition). Besides, we also measured the over-
all execution time, from the first message sent to the last message
received and processed.

Size Overhead: This metric shows the impact of model instru-
mentation on the model complexity, generated code, and binary
size. As part of the first hypothesis, the size of the generated code
is directly proportional to the increased complexity of the instru-
mented model. However, as the debugging features are embedded
in the model itself, there is no need to generate debugging symbols
as used by existing model-based approaches. Therefore, we focus
our experiment on the binary size overhead.

To evaluate this metric, we generated for each use case illustrated
in Table 1 the code of both the original and the instrumented mod-
els. From the code of the original model, we created two binaries:
without debugging symbols (to get the real size of the system) and
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with debugging symbols used by GDB. Then, we created a third bi-
nary by compiling the code generated from the instrumented model.
We compared the three binaries to compare the size overhead of
GDB and our approach. This comparison allows us to compare
our approach with general-purpose program debuggers, such as
GDB. It does not take into consideration extra overhead caused
by existing model-based approaches, e.g., to maintain a mapping
between binary-, code-, and model-levels.

Instrumentation Time: To verify that our approach is scalable,
we also measured the time required by the tool to create the instru-
mented version of the model, from which code is generated. For
each use case, we calculated an average time of the instrumentation
over 20 measures in order to reduce margins of error. It would have
been interesting to compare the time required for instrumenting
models in our approach with the time required for instrumenting
code in existing model-based approaches. Unfortunately, no data is
available for establishing a comparison.

5.2 Results

Table 1 shows the added model complexity of each model, as well
as the time required to instrument them. Depending on the use
case complexity, models grow proportionally to the number of
transition chains to instrument. Therefore, the number of states
is increased by 5 to 11 times and the number of transitions by 7
to 10 times. As for the structural part of the models, one capsule
is always added, which corresponds to the debugger capsule. The
added model complexity impacts the generated code size which is
increased by 3 to 6 times depending on the use case. As for the time
required to instrument the models, it varies between 445 and 1,523
milliseconds, depending on the use case, which is within the range
of a second.

In order to assess the scalability of our approach, we applied the
model instrumentation process twice, successively on the FailOver
system model and on the instrumented version of the model. While
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there is no need to apply the instrumentation on an already in-
strumented model, this experiment allowed us to check that the
instrumentation time does not skyrocket when the model size grows
exponentially. Note that, although intensive efforts are being made
to make Papyrus-RT an industrial-grade MDE tool, it is still in in-
cubation phase, hence no industrial model is available to assess the
scalability of our approach.

The resulting model includes 2363 states and 3725 transitions
and the instrumentation time is an average of 41 seconds. It shows
that the approach is scalable enough for industrial models.

Both instrumented models and generated code are intermediate
in our approach, and their size growth does not impact user experi-
ence. However, they do impact the size of the binaries created from
them. Fig. 10 shows a comparison of the size of the binary files
using our approach and GDB (compiled with -ggdb and -g3 flags). It
shows that for each use case, the debuggable binary resulting from
our approach is an average of 8 times as large as the original binary.
We argue that this is reasonable and even comparable with program
debuggers as the size overhead is within the range of values when
compiling the code with debugging symbols (between 7.98 and 8.17
times as large as the original binary files). This validates our second
hypothesis.

Compared to traditional model-level debugging approaches, our
approach does not add additional overhead other than the one
caused by the model instrumentation process. Besides creating an
overhead due to the integration of debugging symbols into the
binary files, existing methods cause an additional overhead in order
to generate and maintain a mapping between the executed binaries
and the models. As the description of existing approaches does not
include the measurement of this overhead, we could not compare
our approach with existing ones.

Performance is evaluated over the FailOver system. To do so,
we configured the system in the active replication mode with five
clients and two servers, and we set up a simple scenario where each
client checks the available servers, sends a message, and waits for
a reply. Upon receiving the reply, the client processes the response
and sends a new message after a specific time. The two servers
process client requests and send replies. In addition, every five
seconds, each server has to report its state to the second server,
so other servers are noticed whenever a failure affects a running
server.

We set up a benchmark and measured the overhead of our ap-
proach compared to the normal execution. To do so, we focused on
three specific transition chains: RequestReply, during which a client
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sends a message to both servers and waits for a reply; ProcessRe-
sponse, during which the client receives a response from one of the
servers and processes it; SendKeepAlive during which a server re-
ports its status to its peers. Fig. 9 shows violin plots of computation
times for the three transition chains. The box plots within the violin
plots show the median of data. Computation times are recorded
until 10,000 messages are processed. The wideness bars show the
density of computation time in the specific range. As shown in
Fig. 9, for all three transitions the system performance is impeded
by the use of MDebugger. Using MDebugger, the majority of the
ProcessResponse message are processed within 0.28 to 0.41ms, with
an average time of 0.35ms and a median time of 0.33ms respectively,
which is close to the processing time when the system in normal
mode (average and median times of 0.29 and 0.27ms respectively).
The overhead for ProcessResponse transition is within the range
of microseconds and therefore negligible. The overhead is similar
for RequestReply and SendKeepAlive messages. While the median
and average of computation time for RequestReply is 48.26ms and
48.45ms using our approach respectively, the median and average
in normal mode are 47.41 and 48.35ms. For the SendKeepAlive tran-
sitions, the median and average using our approach are 0.07ms
and 0.08ms respectively and is 0.01ms for both in normal mode.
In summary, we can argue that for each transition, the overhead
of our approach is small, which is quite acceptable for many RTE
systems.

We also measured the overall processing time of 10,000 messages.
The overall processing time is 507 seconds under normal mode and
519 seconds using our approach. It represents an added overhead of
2.31%. This overhead is quite low and validates our first hypothesis.
It might be worth mentioning that the added execution time for
each transition appears to be constant, meaning that this result
may vary depending on the complexity of the system to debug.

6 RELATED WORK

A certain amount of related work are relevant for model-based
debugging. It can be divided up into three categories: debugging
through simulation and model interpretation, off-line debugging
via trace analyses, and live debugging on a target platform.

Debugging via simulation is done by interpreting the models at
design-time. Debugging features, such as setting breakpoints and
stepping over the execution are usually supported. Simulation and
model interpretation are supported by several tools, e.g., Matlab
StateFlow [44], AF3 [9], xtUML [48] and YAKINDU [18]. However,
while simulation is necessary and useful for finding bugs at early
design-time based on functional requirements, it is insufficient for
debugging RTE systems where bugs can be caused by the sensi-
tiveness of the system to timing constraints [12, 15, 37, 46]. Such
bugs can be found using complex representations of the systems
where timing constraints and the environment are modeled, but this
requires more sophisticated environments to interpret the model.
Another proper solution is to run the system on the target platform,
allowing users to perform off-line or live debugging.

Trace analysis techniques are a means to support debugging capa-
bilities on target platforms where debugging tools cannot be embed-
ded due to the limited resources the platform provide. They rely on
the off-line interpretation of useful traces generated by the platform.
In order to generate these traces, one can rely on existing probes
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embedded on the target platform, or on customizing the code gen-
erator in order to instrument the code. An example of using probes
is described in [3], where traces are generated by an HW multi-core
platform and are used to estimate the power consumption of a HW
node. Examples of existing work and MDE tools supporting trace
analyses via code instrumentation include [11, 15, 19, 20, 43]. For
instance, Iyengar et al. [12, 19, 20] propose an optimized model-
based debugging technique for RTE systems with limited memory.
They use a monitor on the target platform to collect the generated
traces and a debugger (executed on a host with sufficient memory)
to analyse the traces off-line and to display results on the model
elements. Das et al. [7] propose a configurable tracing tool based
on LTTng. They rely on code instrumentation in order to produce
tracepoints useful for LT Tng.

The main disadvantage of this method is that the connection
between target platform and debugger is one way, which does not
provide the control on the execution which is required for rich
debugging features such as stepping over the execution, setting
breakpoints, or changing attributes. To the best of our knowledge,
only the work described in [11] provides limited support for control-
ling the execution via signal injection. Also, the work still requires
the maintenance of a mapping between the source code and the
model elements. It can be addressed by instrumentation [7] or
stored in mapping files [19, 20].

Live debugging on target platforms is the richest debugging ser-
vice and is our main focus in this research. Despite its importance,
only a few tools, e.g., ProgramDev [35], IBM RSARTE [17], and Tim-
ing Architects [45] supports live debugging capabilities. However,
they rely on existing program debuggers such as GDB [36] and Uni-
versal Debug Engine [32], and suffer from the limitations discussed
in Section 2. Also, some research tried to address model-level de-
bugging and facilitate the mapping in RTE and other domains using
traditional approaches [2, 8, 12, 33, 41, 49]. Martin et al. [2, 33, 41]
develop an integrated debugging plug-in for equation-based models
created by Modelica [28]. Graf et al. [12] present a framework for
dynamic mapping from binary- to the model-level. Dotan et al.[8]
develop a model-level debugger for IBM RSARTE.

7 CONCLUSION

In this paper, we formalised and implemented a model-level debug-
ging approach for RTE systems in the context of UML-RT. Com-
pared with existing approaches that rely on program debuggers to
work, our approach relies on model instrumentation techniques.
To do so, we formulated and applied the necessary instrumentation
at the model-level, bringing debugging capabilities to the model
itself. As a consequence, our approach does not require any addi-
tional instrumentation at code-level. It is therefore more generic and
portable, meaning that the debugger can support a range of code
generators, target languages, and HW platforms without change.
Along with the approach, we implemented a model-level debugger
called MDebugger. It supports most of the common debugging fea-
tures, and can be used from the command line, or via a graphical
debugging interface we developed in Eclipse. We also conducted an
experiment to assess the applicability or our approach. The experi-
ment showed that the size overhead of the generated binary files is
comparable to other approaches and the use of our implementation
impacts the performance of the debugged system only slightly.
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Table 2: Description of the Artifact Repository’s Content

Folder Description

StateChartDebugInstrument

The source code of the transformation rules which are written using Epsilon and constitute

the heart of the approach. They are used to instrument the UML-RT models for providing the

debugging services.
MDebugger

The source code of MDebugger which is developed in C++ and supports model-level debugging

through interaction with the debuggable program.

MDebugger-Eclipse-GUI

An Eclipse/Java implementation built upon the Eclipse debugger plug-in which provides a

high-level and user-friendly debugging graphical user interface.

DebuggerModel

Model of the debugging agent which is developed using UML-RT and provides the infrastructure

required for interaction with the system being debugged.

PaperEvaluationData
RealTimelibs
Samples

Models of case studie s and related evaluation data.
C++ utility libraries which are used by the debugging agent and MDebugger.
Some sample models which can be used to try debugging with MDebugger.

8 ARTIFACT DESCRIPTION

In this section, we describe the artifact that is published along
with this paper. The artifact includes all source code of the compo-
nents explained in Section 4 and the evaluation data mentioned in
Section 5.

8.1 Where is the artifact?

The artifact is publicly available at a git repository! [5]. The main
README at the repository’s root (README . md) provides the most
recent description of the artifact. Since this work is an ongoing
project, all of the paths, links, folders, and commands used in this
section may change except the address of the repository and the
main README.

8.2 What does the repository contain?

Table 2 shows the content of the artifact repository. Each folder
contains a README file which provides a description of its content.
Also, the main README file provides extra information including
(1) Links to a virtual machine image that includes the MDebugger
source and all required software (e.g., PapyrusRT); (2) Video tuto-
rials; (3) A paper and resources helpful for learning UML-RT and
Papyrus-RT.

8.3 Potential Use of the Artifact

The artifact can be used by people who are using models for the
software development, specifically by the two following groups.

RTE systems developers who are using UML-RT. Our current im-
plementation supports model-level debugging of UML-RT models
on the target platform without using any program debugger. The
list of supported features is described in README file located in the
MDebugger folder. Developers can use MDebugger to debug their
models.

MDD tools developers who develop tools to support MDD. As stated,
MDebugger supports debugging of UML-RT models without depen-
dency on any platform, target language in which code is generated
(e.g., C++, Java) from the models, or program debugger. Just like
Papyrus-RT, many MDE tools (e.g., IBM RSA-RTE, Mechatronic-
UML) are based on the Eclipse Modeling Framework (EMF) and

Ihttps://github.com/mojil/MDebugger

UML, and use UML profiles to customize the modeling language. In
our current implementation, dealing with elements in the UML-RT
profile only makes up a small part of the implementation. Conse-
quently, a large part of the implementation could be reused, if our
approach was ported to, e.g., IBM RSA-RTE.

8.4 How to use the artifact?

We have packaged our implementation into a virtual machine (VM)
containing our implementation, the environment (Papyrus-RT),
evaluation data, and sample models to facilitate its use and evalua-
tion. Once the VM has been started, the source code of our imple-
mentation can be accessed from /home/osboxes/MDebugger. We
recommend getting the latest update of the implementation by issu-
ing the "git pull" command in the source directory before using
the artifact. The main README provides detailed guidelines and
video tutorials to help developers and researchers use our artifact
and/or contributing to its future development.

To understand and use the provided instruction, we assume
that the user knows the core concepts of UML-RT and how to use
Papyrus-RT for modeling systems in UML-RT.

8.5 How to ask for additional help?

Users encountering technical difficulties during the use of the arti-
fact can send email to the paper’s authors or open a new issue at
https://github.com/mojil/MDebugger/issues.

Fortunately, Papyrus, Epsilon, and Papyrus-RT have an active
and growing community and similar to other Eclipse modeling tools
provide online forums to ask technical questions [21]. Users with
issues or questions about these tools should use the corresponding
forum (Papyrus-RT?, Epsilon?, Papyrus®).
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