
Model Checking Partial Software Product Line Designs

Yufeng Shi, Ou Wei, Yu Zhou
Department of Computer Science and Technology
Nanjing University of Aeronautics and Astronautics

Nanjing,China
{shiyufeng,owei,zhouyu}@nuaa.edu.cn

ABSTRACT
Software product line (SPL) maximizes commonality be-
tween software products to reduce cost and improve pro-
ductivity, where each product is represented by a selection
of features that corresponds to particular customer require-
ments. SPL has been widely applied in critical systems such
as communications, automobile, and aerospace, and ensur-
ing correctness of the system is thus of great importance.
In this paper, we consider model checking partial software
product line designs, i.e., the incomplete designs in the early
stage of software development, where the design decisions
for a feature may be unknown. This enables detecting de-
sign errors earlier, reducing the cost of later development
of final products. To this end, we first propose bilattice-
based feature transitions systems (BFTSs) for modeling par-
tial software product line designs, which support description
of uncertainty and preserve features as a first class notion.
We then express system behavioral properties using ACTL
formulas and define its semantics over BFTSs. Finally, to
leverage the power of existing model checking engine for ver-
ification, we provide the procedures that translate BFTSs
and ACTL formulas to the inputs of the symbolic model
checker χChek. We implement our approach and illustrate
its effectiveness on a benchmark from literature.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Model checking

General Terms
Theory, Verification

Keywords
Model Checking, Software Product Line, Partial Model

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
InnoSWDev’14 , November 16, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3226-2/14/11 ...$15.00.

1. INTRODUCTION
Software product line maximizes commonality between

software products to reduce cost and improve productivity.
Each product is represented by a selection of features that
correspond particular customer requirements. Recently, soft-
ware product lines have been widely applied in industries
such as communications, automobile, and aerospace [24],
where correctness of the systems are of great importance
to the success of the industry. In this paper, we consider
model checking software product lines with uncertainty, i.e.,
the incomplete design models in the early stage of software
product line development, where the design decisions for
a feature may be unknown. By conducting verification on
early design models, it allows for detecting errors, particu-
larly the ones associated with different features, earlier in
the development life cycle, and thus reduces the cost of fix-
ing the problems; the model checking results also help to
resolve design uncertainties that influence later implemen-
tation choices of the systems [20].

Model checking [6] is an automatic verification technique
for checking behavioral system properties via exhaustively
searching all possible contained behaviors, where a system
is typically modeled as a transition system and properties
of the system are specified using temporal logics. In order
to perform model checking on incomplete software prod-
uct lines designs, we need appropriate formalisms for sys-
tem modeling and property specification, and efficient model
checking approach.

Multi-valued models, based on multi-valued logics, have
been proposed for partial product line modeling and verifi-
cation [13, 4], where the values in such a logic capture the
degree of uncertainty, used to specify system behaviors and
represent model checking results. These models, however,
as pointed in [8], express product features as part of the
behavioral models, rather than a first-class notion, which
makes it hard to explicitly capture relations between prod-
ucts and feature selections. In [8, 7], Classen et al. propose
feature transition systems (FTSs) for modeling behaviors of
product line systems, which recognize feature as the unit
of difference and explicitly relate system behaviors to their
originating features at the level of individual transitions. An
FTS, however, is complete, i.e, the relation between features
and transitions are boolean — a transition is either associ-
ated with a set of features, or not; therefore, it does not
support modeling designs that are not yet finished.

In this paper, we propose bilattice-based feature transi-
tions systems (BFTSs) – a combination of multi-valued and
feature-based product line models – for model checking in-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

InnoSWDev’14, November 16, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3226-2/14/11...$15.00
http://dx.doi.org/10.1145/2666581.2666589

21

complete software product line designs. The transitions in a
BFTS are labeled by the values from a world-based bilattice
B [14] that is a multi-valued logic built from the set W of
SPL features. Each value in B is a pair 〈U, V 〉, where U
and V are subsets of W , and U and W are not necessar-
ily complement each other. A transition labeled by 〈U, V 〉
means that it is required by the features in U and refuted
by the ones in V , and the design decisions of this transition
on the rest of the features in W are unknown. We assume
that U ∩ V = ∅, i.e., design decisions for each feature are
always consistent. BFTSs, therefore, support modeling in-
complete software product line designs while preserving fea-
tures as a first class notion. For the system properties of
interest, we express them using Action Computation Tree
Logic (ACTL) [10], which are interpreted over BFTSs based
on a multi-valued semantics. The value of an ACTL for-
mula ϕ on a BFTS is also a value 〈U, V 〉 from the bilattice
B, which means that ϕ is satisfied by the products with
features selected only from U , refuted by the products con-
taining features from V , and unknown for the rest. Such
a result provides verification information of an incomplete
design, which are valuable for later implementation of final
products.

Furthermore, instead of implementing an ad hoc model
checker for verification of ACTL formulas over BFTSs, we
leverage the power of existing model checking engine χChek [5]
for this. χChek is a symbolic model checker that is optimized
for multi-valued model checking, which takes as inputs a
multi-valued logic, a multi-valued Kripke structure, and a
CTL formula, and returns a value that denotes the degree
of the truth of the formula on the structure. In this context,
we provide the translation from a BFTS to a multi-valued
Kripke structure and the one from an ACTL formula to a
CTL formula. Finally, as a proof of concept, we implement
the procedure and illustrate our approach with a benchmark
from software product line literature [12, 2].

Structure of the paper. Section 2 reviews the neces-
sary background. Section 3 introduces the BFTS notion for
modelling SPLs, its projection on products, and the rela-
tionship with complete product models. Section 4 defines
the semantics of ACTL formulas on BFTSs. Section 5 pro-
vides the translations for BFTSs and ACTL formulas, and
reports the results of model checking an SPL benchmark us-
ing χChek. Section 6 discusses related work, and Section 7
concludes the paper.

2. PRELIMINARIES
In this section, we review basic concepts and background

of our work, including feature diagrams and world-based
bilattices.

2.1 Feature Diagram
Products of an SPL share substantial commonalities while

show variabilities for particular needs. Feature diagram is a
common approach for variability modeling.

Definition 1. [1] A feature diagram (FD) is a tree over
the feature set F , where each edge is defined by exactly one

v

f

c t

b

d r

Figure 1: FD of a beverage vending machine SPL.

feature constraint: mandatory, optional, alternative, or or,
where:

mandatory(p, f) ≡ f ⇔ p
optional(p, f) ≡ f ⇒ p

alternative(p, f1, ...fn) ≡ ((f1 ∨ ... ∨ fn)⇔ p)∧∧
i<j

¬(fi ∧ fj)

or(p, f1, ...fn) ≡ (f1 ∧ ... ∧ fn)⇔ p

Consider the example of a product line of vending ma-
chine adapted from [12]. The FD of this product line is
shown in Figure 1. The beverage vending machine has a
mandatory feature Finished that offers alternative ways of
reminding customers the beverage is finished, either by dis-
playing “done” or ringing a tone. And there is a mandatory
feature Beverages that allows the machine be able to offer
at least one type of drink between coffee and tea.

A valid product P of a product line is a selection of fea-
tures that satisfies the constraints defined in the FD [1]. For
the example of vending machine, the semantics of the FD
would be the following set of six products (using the short
feature names):

{{v, b, f, c, d}, {v, b, f, c, r}, {v, b, f, t, d}, {v, b, f, t, r},
{v, b, f, c, t, d}, {v, b, f, c, t, r}}.

2.2 World-based Bilattices
Our work is based on the multi-valued logic defined by

world-based bilattices [14]. Bilattices are a natural general-
ization of classical two-valued logic. Informally, a bilattice
is a space of generalized truth values with two lattices or-
dering: one ordering, ≤t, records the degree of truth, where
the bottom is denoted by false and the top – by true, and
the other ordering, ≤i, records the degree of information or
knowledge. Thus, if x ≤i y, then y gives at least as much as
information as x.

Definition 2. [14] A world-based bilattice is a structure

BW = 〈BW ,≤t,≤i,¬〉 such that: (i) BW , P(W)× P(W),
where W is a set of worlds and P(W) is the power set of
W ; (ii) ¬ is a negation and (iii) ≤t and ≤i are truth and
information orderings, respectively, where

〈U, V 〉 ≤i 〈S, T 〉 , U ⊆ S ∧ T ⊆ V
〈U, V 〉 ≤t 〈S, T 〉 , U ⊆ S ∧ V ⊆ T

¬〈U, V 〉 , 〈V,U〉

22

k
£

t
£

{ },{ }w wá ñ

{ },wá ñ;,{ }wá ñ;

,á ñ; ;

Figure 2: A world-based bilattice Bw over {w}.

For example, Figure 2 shows a world-based bilattice Bw

over {w}, where 〈{w}, ∅〉 represents true – maximal degree
of truth, 〈∅, {w}〉 represents false — minimal degree of fal-
sity, 〈∅, ∅〉 represents unknown – minimal degree of infor-
mation, and 〈{w}, {w}〉 represents inconsistency – maximal
degree of information. For convenience, for each pair 〈U, V 〉,
we introduce projections πt and πf defined as πt(〈U, V 〉) ,
U and πf (〈U, V 〉) , V , respectively.

Particularly, the meet and join operations for ≤i are de-
noted by ⊗ and ⊕ while the meet and join operations for ≤t

are denoted by ∧ and ∨, which are defined as follows:

Theorem 1. [14] Given a world-based bilattice BW =

〈BW ,≤t,≤i,¬〉 such that BW , P (W) × P (W). Then, for
any 〈U, T 〉, 〈S, T 〉 ∈ BW ,

〈U, V 〉 ∧ 〈S, T 〉 , 〈U ∩ S, V ∪ T 〉
〈U, V 〉 ∨ 〈S, T 〉 , 〈U ∪ S, V ∩ T 〉
〈U, V 〉 ⊗ 〈S, T 〉 , 〈U ∩ S, V ∩ T 〉
〈U, V 〉 ⊕ 〈S, T 〉 , 〈U ∪ S, V ∪ T 〉

3. PARTIAL MODELING OF SOFTWARE
PRODUCT LINE

In this section, we introduce Bilattice-based Feature Tran-
sition Systems (BFTSs) that support modeling product line
behaviors with uncertainty. We also define the projection of
a BFTS over a selection of features, and its relations with
the behavioral model of a product.

3.1 Bilattice-based Featured Transition System
Typically, the behaviors of a system are modeled using

state-transition system. A feature represents a system func-
tion for particular needs; it is associated with certain be-
haviors of the system, i.e., the transitions of the system
model. Due to incomplete information in the early design
phase, there exist three types of relations between features
and transitions: require, forbid, and unknown. Therefore,
given a set W of features, we can associate each transition
(s, a, s′) a value 〈U, V 〉 from the world-based lattice BW . In-
tuitively, if a feature f ∈ U , (s, a, s′) is required by f ; if
f ∈ V , (s, a, s′) is forbidden by f ; if f /∈ U ∪ V , (s, a, s′)
may be required by f . We assume that U ∩ V = ∅; that is,

0s

coin

{ },vá ñ;

1s
{ },bá ñ;

_no sugar
{ },bá ñ;

sugar

3s2s

4s 5s 6s 7s

8s9s

tea teacoffee coffee

_pour sugar

_pour sugar

_pour coffee

_pour tea

_display done

_ _ring a tone

_cup taken

{ },vá ñ;

{ },cá ñ; { },cá ñ;

{ },cá ñ;

{ },cá ñ;

{ },{ }d rá ñ

{ },{ }r dá ñ

{ },tá ñ;

{ },tá ñ;

{ },tá ñ;

{ },tá ñ;

Figure 3: BFTS of the vending machine SPL.

the designs of each feature in consistent. We formally define
bilattice-based featured transition system as follows.

Definition 3. A Bilattice-based Featured Transition Sys-
tems (BFTS) is a 6-tupleM = (S,Act,→, s0,BW , R), where:

• S is a finite set of states,

• Act is a set of actions,

• →⊆ S ×Act× S is a set of transitions,

• s0 is the initial state,

• BW = 〈P(W) × P(W),≤t,≤i,¬〉 is a world-based bi-
lattice,

• R : S × Act× S → BW is a mapping of transitions to
truth values in BW .

Each transition (s, a, s′) in M is labeled with a truth value
in BW . R : S ×Act× S → BW is a total function assigning
a value from BW to each transition between any two states
with a certain action. The value of (s, a, s′) in M is thus
referred to R(s, a, s′). If the value of the transition (s, a, s′)
is 〈U, V 〉, this means (s, a, s′) is required by features in U but
forbidden by those in V , and its relation with the rest of the
features are unknown. In particular, if R(s, a, s′) = 〈∅,W 〉,
the transition (s, a, s′) does not exist in M , i.e., (s, a, s′) /∈→.

The BFTS depicted in Figure 3, in which the truth value
of a transition is shown next to its action label, is an at-
tempt to model all possible behaviors conceived for SPL
of beverage vending machine. The transition (s0, coin, s1),
for instance, has the truth value 〈{v}, ∅〉, meaning that it
is required by the root feature, VendingMachine and other
features (e.g., the feature Beverages) are uncertain with it.

23

The truth values specified in pairs such that 〈U, V 〉 offer
an intuitive way to express cases in which two or more fea-
tures are mutually exclusive, i.e., those cannot be present
simultaneously in products. If they are mutually exclusive,
there must exist some behaviors where they disagree. The
feature d and the feature r, for instance, are mutually ex-
clusive as depicted in Figure 1. Thus in the behavioral
model of the SPL, there exist some transition they disagree
on, e.g., the transition (s8, display done, s9) which has the
truth value 〈{d}, {r}〉.

3.2 Projection and Product Model
Given a partial SPL design represented by a BFTS M , it

contains the information of all the products that may not
complete. For each product P , i.e., a selection of features,
we can derive a partial model of P from M via projection.

Definition 4. Given a BFTS M = (S,Act,→, s0,BW , R)
that specifies an SPL and a selection of features P . A BFTS
M ′ = (S′, Act,→′, s0,BP , R

′) is the projection of M over P ,
noted M|P , where:

1. →′= {(s, a, s′)|(s, a, s′) ∈→ ·πf (R(s, a, s′)) ∩ P = ∅},

2. S′ = {s|∃s′ ∈ S∃a ∈ Act·((s, a, s′) ∈→′ ∨(s′, a, s) ∈→′
)},

3. Act′ = {a|∃s ∈ S∃s′ ∈ S · (s, a, s′) ∈→′},

4.

R′(s, a, s′) =

〈P, ∅〉, if P ⊆ πt(R(s, a, s′)),

〈∅, P 〉, if πf (R(s, a, s′)) ∩ P 6= ∅,
〈∅, ∅〉, otherwise.

The projection M ′ is indeed a 3-valued model, since features
in products may contain unknown relations. If all features
definitely require or forbid transitions, M ′ is a 2-valued
model. In our beverage vending machine example, the pro-
jection on the set {v, b, f, c, r} has the behaviors specified in
the 3-valued BFTS in Figure 4. We notice that with the
selection {v, b, f, c, r}, existence of some transitions in the
corresponding product P = {v, b, f, c, r} is not definitely
determined because of unsolved uncertainty, e.g., the tran-
sition (s2, tea, s5).

Given the projection over the selection of features, the
behavioral model of the product over the same selection of
features can be derived by resolving all the unknown rela-
tions in the projection; then product’s behavioral models
only contain transitions which are definitely required.

Definition 5. [12] Let M|P = (S1, Act1,→1, s01 ,BP , R1)
be the projection of a BFTS M over a product P . The prod-
uct model of P is a 2-valued BFTS M(P) = (S2, Act2,→2

, s02 ,BP , R2) such that there exists a simulation H ⊆ S2 ×
S1, where (s02 , s01) ∈ H and for any (s2, s1) ∈ H, the fol-
lowing conditions hold:

• ∀s′1 ∈ S1 · ∀a ∈ Act1 · P ⊆ πt(R1(s1, a, s
′
1)) ⇒ ∃s′2 ∈

S2 · P ⊆ πt(R2(s2, a, s
′
2)) ∧ (s′2, s

′
1) ∈ H

• ∀s′2 ∈ S2 · ∀a ∈ Act2 · P * πfR2(s2, a, s
′
2) ⇒ ∃t1 ∈

S1 · P * πf (R1(s1, a, s
′
1)) ∧ (s′2, s

′
1) ∈ H

Figures 5 and 6 show two possible implementations of the
product p = {v, b, f, c, r} according to two different reso-
lutions on uncertainty: the former indicates that unknown
transitions are not required by features finally; the latter
indicates that they are required.

0
s

coin

1
s

_no sugarsugar

3
s

2
s

4
s 7

s

8
s9

s

coffee coffee

_pour sugar

_pour coffee

_ _ring a tone

_cup taken

5
s

tea

6
s

tea

_pour sugar

_pour tea

Figure 4: Projection of the vending machine model
over the features {v, b, f, c, r} (solid arcs are transi-
tions with the value 〈P, ∅〉 and dashed arcs – with
〈∅, ∅〉).

0
s

coin

1
s

_no sugarsugar

3
s

2
s

4
s 7

s

8
s

9
s

coffee coffee

_pour sugar

_pour coffee

_ _ring a tone

_cup taken

Figure 5: An implementation of the vending ma-
chine product defined by P = {v, b, f, c, r}.

24

0
s

coin

1
s

_no sugarsugar

3
s

2
s

4
s 7

s

8
s

9
s

coffee coffee

_pour sugar

_pour coffee

_ _ring a tone

_cup taken

tea tea

_pour sugar

5
s

6
s

_pour tea

Figure 6: An alternative implementation of the
vending machine product defined by P = {v, b, f, c, r}.

4. SEMANTICS OF ACTL ON BFTS
Our study of model checking SPLs focuses on verifying

Action Computation Tree Logic (ACTL) [10] properties for
the SPL system. As an action-based temporal logic, ACTL
is suitable to express properties of reactive systems whose
behaviors are characterized by the actions they perform.

Definition 6. The syntax of ACTL logic is given by the
following grammar:

ϕ ::=true|false|¬ϕ|ϕ ∧ ϕ′|ϕ ∨ ϕ′|(ϕ→ ϕ′)ϕ|〈a〉ϕ|
[a]ϕ|AFϕ|AGϕ|EFϕ|EGϕ|A[ϕUϕ′]|E[ϕUϕ′]|

with a ∈ Act is an action.

Intuitively, given an ACTL formula 〈a〉ϕ (resp. [a]ϕ), it
requires some (resp. every) next state arrived through the
action a to satisfy ϕ. The symbols ∧,∨,→ and ¬ have their
usual meanings. As in CTL, E (resp. A) means at least
one path satisfies (resp. all paths satisfy) the following path
operators: U – the until operator such that the formula
A[ϕUϕ′] (resp. E[ϕUϕ′]) means that for every (resp. every)
computation path there exists an initial prefix of the path
where ϕ′ holds at the last state and ϕ holds at all other
states, F – the future operator such that the formula AFϕ
(resp. EFϕ) means that for every (resp. some) computa-
tion path ϕ holds at some future state, and G – the global
operator such that the formula AGϕ (resp. EGϕ) means
that for every (resp. some) computation path ϕ holds at all
future states. An example property for our vending machine
is

AG[sugar]AF 〈pour sugar〉true

which reads that“whenever customers choose any drink with
sugar, then the system will pour sugar in drinks.”

The classical semantic of ACTL operators is introduced by
De Nicola in [10] on (boolean) Labelled Transition Systems.
In the following, we define a multi-valued semantics of ACTL
over BFTSs.

Definition 7. Let M = (S,Act,→, s0,BW , R) be a BFTS
and ϕ be an ACTL formula. The semantics of ϕ, denoted
by ‖ϕ‖M (‖ϕ‖ when M is clear from context) which returns
the value of ϕ for each state s ∈ S, is a mapping S → BW

and defined inductively on the structure of the formula:

‖true‖M = λs·〈W, ∅〉
‖false‖M = λs·〈∅,W 〉
‖¬ϕ‖M = λs·¬‖ϕ‖M (s)

‖ϕ ∧ ϕ′‖M = λs·‖ϕ‖M (s) ∧ ‖ϕ′‖M (s)
‖ϕ ∨ ϕ′‖M = λs·‖ϕ‖M (s) ∨ ‖ϕ′‖M (s)
‖〈a〉ϕ‖M = prea[R](‖ϕ‖M)
‖[a]ϕ‖M = ˜prea[R](‖ϕ‖M)
‖AFϕ‖M = µQ·‖ϕ‖M ∨ (

∧
a∈Act

˜prea[R](Q))

‖EFϕ‖M = µQ·‖ϕ‖M ∨ (
∨

a∈Act

prea[R](Q))

‖AGϕ‖M = υQ·‖ϕ‖M ∧ (
∧

a∈Act

˜prea[R](Q))

‖EGϕ‖M = υQ·‖ϕ‖M ∧ (
∨

a∈Act

prea[R](Q))

‖A[ϕ ∪ ϕ′]‖M = µQ·‖ϕ′‖M ∨ (‖ϕ‖M ∧ (
∧

a∈Act

˜prea[R](Q))

‖E[ϕ ∪ ϕ′]‖M = µQ·‖ϕ′‖M ∨ (‖ϕ‖M ∧ (
∧

a∈Act

prea[R](Q))

where the µ and υ operators are used to express least and
greatest fixpoints, respectively; and for a transition relation
R : S × Act× S → BW , we define the preimage of Q : S →
BW w.r.t. R and a given action a, prea[R] : [S → BW] →
[S → BW] as

prea[R](Q) , λs·
∨

s′∈S
(R(s, a, s′) ∧Q(s′))

and its dual is ˜pre:

˜prea[R](Q) , ¬prea[R](¬Q)

For example, a property of the beverage vending machine
SPL shown in Figure 3 is that when the system is at the
state s8, it can ring a tone and then customers take the cup,
expressed as the formula

〈ring a tone〉〈cup taken〉true

According to Definition 7, the value of ‖ϕ‖(s8) is computed
as following:

‖ϕ‖(s8)

=R(s8, ring a tone, s9) ∧ ‖〈cup taken〉true‖(s9)

=R(s8, ring a tone, s9) ∧R(s9, cup taken, s0)

=〈{r}, {d}〉 ∧ 〈{v}, ∅〉
=〈∅, {d}〉

Based on the relation between a partial SPL model M and
the final implementation of a final product P (Definitions 4
and 5), we have the following result. For any ACTL formula
ϕ, if the value of ϕ on M is 〈U, V 〉, then if P ∩ V 6= ∅, then
ϕ is false on M(P); if P ⊆ U , then ϕ is true on M(P);
otherwise, the value of ϕ is unknown on M(P).

25

For the previous example, ‖ϕ‖(s8) = 〈∅, {d}〉, which means
that the property does not hold on s8 on any product that
contains the feature d. On the other hand, for the formula
ψ = AF (〈tea〉true ∨ 〈coffee〉true → 〈cup taken〉true) and
the product P = {v, b, f, c, , r}, ‖ψ‖(s0) = 〈{v, b, c, t, f, r, d}, ∅〉
and P ⊆ {v, b, c, t, f, r, d}, therefore ψ is true on the two im-
plementations of P shown in Figures 5 and 6.

5. MODEL CHECKING WITH XCHEK
To experiment our approach, we leverage the existing multi-

valued symbolic model checker χChek [5] for model checking
BFTSs. χChek is implemented in Java, and provides sup-
port for multi-valued model checking. Given a CTL property
and a system modeled in χKripke structure – a multi-valued
Kripke structure [3], χChek checks the model and returns
a value that denotes the degree of the truth of the formula
on the structure. BFTSs and ACTL can not be directly
checked by χChek. Therefore, we provide the translation
from a BFTS to a multi-valued Kripke structure and the
one from an ACTL formula to a CTL formula. We imple-
ment the procedure and report the model checking results
on the vending machine example.

Translations of BFTSs and ACTL. Action-based tran-
sition systems and Kripke structures are two types of for-
malisms that have been used for modeling reactive and con-
current systems. In [11], two transformation functions are
introduced for Kripke structures and Labelled Transition
Systems; Godefroid [15] proves the same expressiveness be-
tween 3-valued Kripke structures and modal transition sys-
tems. Inspired by these results, we define the translation
from a BFTS to a χKripke structure.

Definition 8. [3] A χKripke Structure is a 7-tuple M =
(S,AP,→, S0,BW , R, L) where:

1. S is a finite set of states,

2. AP is a set of atomic propositions,

3. →⊆ S × S is a set of transitions,

4. S0 ⊆ S is the non-empty set of initial states,

5. BW is a world-based bilattice,

6. R:S × S → BW is a mapping of transitions to truth
values,

7. L:S ×AP → BW is a total function that maps a state
and an atomic proposition to truth values.

A χKripke Structure is based on the same logic as a BFTS:
the degrees of truth are given in a world-based bilattice and
truth values of transitions are pairs such that 〈U, V 〉.

Definition 9. The semantics of a CTL formula ϕ on a
χKripke Structure M = (S,AP,→, S0,BW , R, L), written
‖ϕ‖M (‖ϕ‖ when M is clear from context), is defined induc-
tively as follows:

‖true‖M = λs·〈W, ∅〉
‖false‖M = λs·〈∅,W 〉
‖¬ϕ‖M = λs·¬‖ϕ‖M (s)

‖ϕ ∧ ϕ′‖M = λs·‖ϕ‖M (s) ∧ ‖ϕ′‖M (s)
‖EXϕ‖M = pre[R](‖ϕ‖M)
‖AXϕ‖M = ˜pre[R](‖ϕ‖M)
‖AFϕ‖M = µQ·‖ϕ‖M ∨ ˜pre[R](Q)
‖EFϕ‖M = µQ·‖ϕ‖M ∨ pre[R](Q)
‖AGϕ‖M = υQ·‖ϕ‖M ∧ ˜pre[R](Q)
‖EGϕ‖M = υQ·‖ϕ‖M ∧ pre[R](Q)

‖A[ϕ ∪ ϕ′]‖M = µQ·‖ϕ′‖M ∨ (‖ϕ‖M ∧ ˜pre[R](Q))
‖E[ϕ ∪ ϕ′]‖M = µQ·‖ϕ′‖M ∨ (‖ϕ‖M ∧ pre[R](Q))

where the µ and υ operators are used to express least and
greatest fixpoints, respectively; and for a transition relation
R : S × S → BW , we define the preimage of Q : S → BW

w.r.t. R , pre[R] : [S → BW]→ [S → BW] as

pre[R](Q) , λs·
∨

s′∈S
(R(s, s′) ∧Q(s′))

and its dual is ˜pre:

˜pre[R](Q) , ¬pre[R](¬Q)

The translation from a BFTS to a χKripke structure is
then defined as follows.

Definition 10. For any BFTSM = (S,Act,→, s0,BW , R),
we define an equivalent χKripke structure M ′ = (S′, AP,→′
, S′0,BW , R′, L) such that

1. S′ = S ×Act,

2. AP = Act,

3. S′0 = s0 ×Act,

4. →′= {((s, a), (s′, a′))|(s, a′, s′) ∈→},

5. ∀(s, a), (s′, a′) ∈ S′ : R′((s, a), (s′, a′)) = R(s, a′, s′),

6. ∀(s, a) ∈ S′ : ∀p ∈ AP :

L((s, a), p) =

{
〈W, ∅〉, if p = a ,

〈∅,W 〉, else.

Given a BFTS with |S| states and an action set Act, the
number of states in the translated χKripke structure M ′ de-
fined by definition is at most |S| · |Act|; that is, each state
of M can be copied at most |Act| times in M ′. For a fixed
action set Act, the number of states and transitions in M ′ is
nevertheless linear in the number of states and transitions,
respectively, in M . Particularly, if BW in M is defined such
that |W | = 1, the above translation then becomes transla-
tion from modal transition systems to Kripke modal transi-
tion systems in [15].

We illustrate the translation using the example of a red
light system. Required by the root feature light, the red
lights can switch with red and green. A variability of the
system is that whether the light will show the yellow when
switching between red and green (required by the feature
skip yellow) or not (required by the yellow). The BFTS
and FD for the red light system are depicted in Figures 7(a)
and 7(b). Applying the translation in Definition 10, we get

26

1s
2s 3s

4s

yellow red green

red

return

{ },{ }y sá ñ{ },{ }y sá ñ

{ },{ }s yá ñ

{ },lá ñ;

{ },lá ñ;

(a) BFTS for the red light system

light

l

yellow
y

_skip yellow

s

(b) FD for the red light system

,

,

,

,

yellow W

red W

green W

return W

= á ñ

= á ñ

= á ñ

= á ñ

;

;

;

;

,

,

,

,

yellow W

red W

green W

return W

= á ñ

= á ñ

= á ñ

= á ñ

;

;

;

;

,

,

,

,

yellow W

red W

green W

return W

= á ñ

= á ñ

= á ñ

= á ñ

;

;

;

;

,

,

,

,

yellow W

red W

green W

return W

= á ñ

= á ñ

= á ñ

= á ñ

;

;

;

;

,

,

,

,

yellow W

red W

green W

return W

= á ñ

= á ñ

= á ñ

= á ñ

;

;

;

;

,

,

,

,

yellow W

red W

green W

return W

= á ñ

= á ñ

= á ñ

= á ñ

;

;

;

;

1(,)s yellow

1(,)s red

1(,)s green

1(,)s return

2(,)s yellow

2(,)s red

2(,)s green

2(,)s return

3(,)s yellow

3(,)s red

3(,)s green

3(,)s return

4(,)s yellow

4(,)s red

4(,)s green

4(,)s return

{
},{
}

y
s

á

ñ {
},
l

á

ñ;

{
},
l

á

ñ;

{ },lá ñ;

{
},l

á

ñ;

{
}
,
l

á
ñ
;

{
}
,
l

á
ñ
;

{ },lá ñ;
{ },lá ñ;

{ }
,{
}

s
y

á

ñ

{
},
{
}

y
s

á

ñ

{
},{
}

y
s

á

ñ

{
},{
}

y
s

á

ñ

{ },{}y sá
ñ

{
},
{
}

y
s

á

ñ

{ },{ }y sá ñ

{
},
{
}

y
s

á
ñ

{ }
,{
}

s
y

á

ñ

{ },{ }
s
y

á

ñ

{ }
,{
}

s
y

á

ñ

,

,

,

,

yellow W

red W

green W

return W

= á ñ

= á ñ

= á ñ

= á ñ

;

;

;

;

,

,

,

,

yellow W

red W

green W

return W

= á ñ

= á ñ

= á ñ

= á ñ

;

;

;

;

,

,

,

,

yellow W

red W

green W

return W

= á ñ

= á ñ

= á ñ

= á ñ

;

;

;

;

,

,

,

,

yellow W

red W

green W

return W

= á ñ

= á ñ

= á ñ

= á ñ

;

;

;

;

,

,

,

,

yellow W

red W

green W

return W

= á ñ

= á ñ

= á ñ

= á ñ

;

;

;

;

,

,

,

,

yellow W

red W

green W

return W

= á ñ

= á ñ

= á ñ

= á ñ

;

;

;

;

,

,

,

,

yellow W

red W

green W

return W

= á ñ

= á ñ

= á ñ

= á ñ

;

;

;

;

,

,

,

,

yellow W

red W

green W

return W

= á ñ

= á ñ

= á ñ

= á ñ

;

;

;

;

,

,

,

,

yellow W

red W

green W

return W

= á ñ

= á ñ

= á ñ

= á ñ

;

;

;

;

,

,

,

,

yellow W

red W

green W

return W

= á ñ

= á ñ

= á ñ

= á ñ

;

;

;

;

(c) the translated X Kripke structure for the red light system

Figure 7: Modeling of the red light system.

the χKripke structure in Figure 7(c), which has 4× 4 states
with 4 labelled atomic propositions and 4× 5 transitions.

Furthermore, the following definition gives the translation
from ACTL to CTL [10]

Definition 11. [10] The mapping ks′ : ACTL→ CTL is
inductively defined by:

ks′(true) = true,
ks′(false) = false,
ks′(¬ϕ) = ¬ks′(ϕ),

ks′(ϕ ∧ ϕ′) = ks′(ϕ) ∧ ks′(ϕ′),
ks′(ϕ ∨ ϕ′) = ks′(ϕ) ∨ ks′(ϕ′),
ks′([a]ϕ) = AX(a→ ks′(ϕ)),
ks′(〈a〉ϕ) = EX(a ∧ ks′(ϕ)),
ks′(AFϕ) = µQ·ks

′(ϕ) ∨ (
∧

a∈Act

ks′([a]Q)),

ks′(EFϕ) = µQ·ks
′(ϕ) ∨ (

∨
a∈Act

ks′(〈a〉Q)),

ks′(AGϕ) = υQ·ks
′(ϕ) ∧ (

∧
a∈Act

ks′([a]Q)),

ks′(EGϕ) = υQ·ks
′(ϕ) ∧ (

∨
a∈Act

ks′(〈a〉Q)),

ks′(A(ϕUϕ′)) = µQ·ks
′(ϕ′) ∨ (ks′(ϕ) ∧

∧
a∈Act

ks′([a]Q)),

ks′(E(ϕUϕ′)) = µQ·ks
′(ϕ′) ∨ (ks′(ϕ) ∧

∧
a∈Act

ks′(〈a〉Q)).

Table 1 presents some properties for the beverage machine
example expressed in ACTL formulas and their correspond-
ing CTL formulas translated through ks′. The ACTL for-
mula 〈display done〉true, for instance, is translated to the
CTL formula EXdisplay.

Model Checking Results with χChek. We implement
the above procedures and use χChek to prove properties of
the vending machine system, as described in Table 1.

For example, for the property ¬AF 〈ring a tone〉true that
checks whether the tone will ring after the drink is delivered.
The equivalent CTL formula is ¬AFring a tone. The result
of model checking this formula using χChek is shown in Fig-
ure 8. Since the value is 〈∅, {r}〉, the property fails on any
product that contains the feature r.

On the other hand, for the property AF (〈sugar〉true →
〈pour sugar〉 that ensures that if a customer wants sugar,
then the request will be satisfied eventually. The equivalent
CTL formula is AF (sugar → pour sugar). The result is
〈{v, b, c, t, f, r, d}, ∅〉, which means the property holds on any
product built from the features {v, b, c, t, f, r, d}.

6. RELATED WORK
Modeling Variability for SPLs. A number of models

for SPL have been proposed in the literature, which can be
categorized into two classes. On the one hand, there are
approaches that organize and structure the whole SPL pro-
cess in terms of features. In this way, it is easy to trace the
requirements of stakeholders to the software artifacts that
provide the corresponding functionality [1]. On the other
hand, there exist formal modeling formalisms for description
of SPL behaviors, which can be used for the verification of
temporal properties as what we do.

Most feature-oriented approaches are based on feature di-
agrams. Kang et al. introduce the notion of FD in [16].
Since then, various FD variants have been devised to make
up for lack of precision and expressiveness [22]. Feature are

27

Table 1: Verification on The Vending Machine SPL.

ACTL Formula ϕ CTL Formula ϕ′ Results
AF (〈tea〉true ∨ 〈coffee〉true→ 〈cup taken〉true) AF (tea ∨ coffee→ cup taken) 〈{v, b, c, t, f, r, d}, ∅〉
AF (〈sugar〉true→ 〈pour sugar〉true) AF (sugar → pour sugar) 〈{v, b, c, t, f, r, d}, ∅〉
¬AF 〈display done〉true ¬AFdisplay done 〈∅, {d}〉
¬AF 〈ring a tone〉true ¬AFring a tone 〈∅, {r}〉
¬AF (〈sugar〉true ∨ 〈no sugar〉true) ¬AF (sugar ∨ no sugar) 〈∅, {v, b, c, t, f, r, d}〉

Figure 8: Model checking result of the property
¬AF 〈ring a tone〉true.

used to distinguish products for a SPL. Ideally, a software
manufacture can generate a software product based on the
feature selection from customers. In this case, the authors
leverage viewpoints to develop a particular SPL model ac-
cording to stakeholders’ personal views [18] and propose a
model for viewpoints integration [19]. These approaches,
however, focus on defining features existing in an SPL, not
behaviors.

Modal Transition Systems are one of the most popular
formal frameworks for modeling SPL behaviors [13]. In an
MTS, transitions may be possible or necessary. Based on
MTSs, there are proposals such as [12] to extend them to
overcome the low distinguishing power of MTSs when model-
ing variation points. However, they ignore relations between
features and behaviors; therefore, invalid products may de-
rived from their approaches. In [8], Clssen et al. propose
feature transition systems (FTSs) to relate features and be-
haviors. Every transition is labeled by a feature set. A
model checing tool SNIP [7] has been developed to provide
support for verifying FTS against LTL properties. But FTSs
do not support modeling uncertainties; thus, their approach
is not applicable for verifying partial product line designs.
Formal Verification for SPLs. Recently, a number of re-
searchers have observed the need for verification of SPLs.
In [17], Larsen defines a behavioral variability model for
product line development based on modal I/O automata,
aimed at verifying the error fee combinability of interfaces.
Therefore, they do not focus on verifying product specific
functional properties. In [9], the modeling checking ap-
proach is based on UML. By mapping feature models to

concise representations of variability in different kinds of
other models a product can be derived from the model of
the SPL. However, the verification does not refer to tempo-
ral logic properties. Asirellis et al. formalize properties in
MHML logic, and consider managing variabilities in prod-
ucts derivation [2]; they also develop a tool VMC [23] for
model checking with MTSs. However, they don’t consider
relation between features and actions, which is typically re-
quired by software product line designers.
Multi-Valued Model Checking. Multi-valued models
are widely used for reasoning about systems with incomplete
information. In [4], Chechik et al. propose quasi-boolean
multi-valued logics for reasoning about systems with uncer-
tainty and inconsistency. A symbolic model checker χchek
is also implemented to support multi-valued model check-
ing [5]. Salay et al. propose an approach for expressing un-
known information using partial models [21] and apply it to
management of requirements uncertainty in [20]. But they
have not been directly applied to model checking software
product lines.

7. CONCLUSION
In this paper, we consider model checking partial soft-

ware product line designs, i.e., the incomplete designs in the
early stage of software development, where the design deci-
sions for a feature may be unknown. This enables detecting
design errors earlier, reducing the cost of later development
of final products. We first propose bilattice-based feature
transitions systems (BFTSs) for modeling partial software
product line designs, which support description of uncer-
tainty and preserve features as a first class notion. We then
express system behavioral properties using ACTL formulas
and define its semantics over BFTSs. Finally, we provide
the procedures that translate BFTSs and ACTL formulas
to the inputs of the existing symbolic model checker χChek.
We implement our approach and illustrate its effectiveness
on a benchmark from literature. A major limitation of our
work is lack of high-level modeling language for description
of software product line designs; we would like to address
this problem in future by extending fPromela [7] – the in-
put language of SNIP – for specifying incomplete designs
of features, and provide model checking approach for the
extended language.

8. ACKNOWLEDGMENT
We thank Mingyu Huang for his help with the experi-

ments. This work has been financially supported by the
National Natural Science Foundation of China under Grant
No.61170043 and Grant No. 61202002, and the National Ba-
sic Research Program of China under Grant No.2014CB744904.

28

9. REFERENCES
[1] S. Apel, D. Batory, C. Kästner, and G. Saake.

Feature-Oriented Software Product Lines. Springer,
2013.

[2] P. Asirelli, M. H. Ter Beek, S. Gnesi, and A. Fantechi.
Formal description of variability in product families.
In Software Product Line Conference, volume 11,
pages 130–139, 2011.

[3] M. Chechik, B. Devereux, S. Easterbrook, and
A. Gurfinkel. Multi-valued symbolic model-checking.
ACM Transactions on Software Engineering and
Methodology (TOSEM), 12(4):371–408, 2003.

[4] M. Chechik, S. Easterbrook, and V. Petrovykh.
Model-checking over multi-valued logics. In FME
2001: Formal Methods for Increasing Software
Productivity, pages 72–98. Springer, 2001.

[5] M. Chechik, A. Gurfinkel, and B. Devereux. χchek: a
multi-valued model-checker. In Computer Aided
Verification, pages 505–509. Springer, 2002.

[6] E. M. Clarke, O. Grumberg, and D. Peled. Model
checking. MIT press, 1999.

[7] A. Classen, M. Cordy, P. Heymans, A. Legay, and
P.-Y. Schobbens. Model checking software product
lines with snip. International Journal on Software
Tools for Technology Transfer, 14(5):589–612, 2012.

[8] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay,
and J.-F. Raskin. Model checking lots of systems:
efficient verification of temporal properties in software
product lines. In ICSE, pages 335–344. ACM, 2010.

[9] K. Czarnecki and M. Antkiewicz. Mapping features to
models: A template approach based on superimposed
variants. In Generative Programming and Component
Engineering, pages 422–437. Springer, 2005.

[10] R. De Nicola and F. Vaandrager. Action versus state
based logics for transition systems. In Semantics of
Systems of Concurrent Processes, pages 407–419.
Springer, 1990.

[11] R. De Nicola and F. Vaandrager. Three logics for
branching bisimulation. Journal of the ACM (JACM),
42(2):458–487, 1995.

[12] A. Fantechi and S. Gnesi. Formal modeling for
product families engineering. In Software Product Line
Conference, pages 193–202. IEEE, 2008.

[13] D. Fischbein, S. Uchitel, and V. Braberman. A
foundation for behavioural conformance in software
product line architectures. In Proceedings of the
ISSTA 2006 workshop on Role of software architecture
for testing and analysis, pages 39–48. ACM, 2006.

[14] M. L. Ginsberg. Multivalued logics: A uniform
approach to reasoning in artificial intelligence.
Computational intelligence, 4(3):265–316, 1988.

[15] P. Godefroid and R. Jagadeesan. On the
expressiveness of 3-valued models. In Verification,
Model Checking, and Abstract Interpretation, pages
206–222. Springer, 2003.

[16] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak,
and A. S. Peterson. Feature-oriented domain analysis
(foda) feasibility study. Technical report, DTIC
Document, 1990.

[17] K. G. Larsen, U. Nyman, and A. Wasowski. Modal i/o
automata for interface and product line theories. In
Programming Languages and Systems, pages 64–79.
Springer, 2007.

[18] M. Mannion, J. Savolainen, and T. Asikainen.
Viewpoint-oriented variability modeling. In Computer
Software and Applications Conference, volume 1,
pages 67–72. IEEE, 2009.

[19] N. Niu, J. Savolainen, and Y. Yu. Variability modeling
for product line viewpoints integration. In Computer
Software and Applications Conference, pages 337–346.
IEEE, 2010.

[20] R. Salay, M. Chechik, J. Horkoff, and A. Di Sandro.
Managing requirements uncertainty with partial
models. Requirements Engineering, 18(2):107–128,
2013.

[21] R. Salay, M. Famelis, and M. Chechik. Language
independent refinement using partial modeling. In
Fundamental Approaches to Software Engineering,
pages 224–239. Springer, 2012.

[22] P. Schobbens, P. Heymans, and J.-C. Trigaux. Feature
diagrams: A survey and a formal semantics. In
Requirements Engineering, pages 139–148. IEEE, 2006.

[23] M. H. ter Beek, F. Mazzanti, and A. Sulova. Vmc: A
tool for product variability analysis. In FM 2012:
Formal Methods, pages 450–454. Springer, 2012.

[24] D. M. Weiss. The product line hall of fame. In
Software Product Line Conference, page 395, 2008.

29

