
Design and Validation of Feature-based Process Model
Tailoring – A Sample Implementation of PDE

Daniela Costache, Georg Kalus, Marco Kuhrmann
Technische Universität München – Software & Systems Engineering

Munich, Germany
{daniela.costache, kalus, kuhrmann}@in.tum.de

ABSTRACT
A comprehensive software development process needs some
adjustment before it can be used: It needs to be tailored
to the particular organization’s and project’s setting. The
definition of an appropriate tailoring model is a critical task.
Process users need tailoring that enables them to trim the
process to reflect the actual needs. Process engineers need
a method and a tool to define a valid model. The SE Book
of T-Systems contains a feature model to describe variable
parts of the process model and relations and constraints be-
tween these parts. The notation and semantics of feature
models can be used to visually author a consistent and valid
tailoring model. In this paper we present a tool for visual
modeling and validation of process model tailoring based
on feature models using the SE Book of T-Systems as an
example. The tool is based on a domain-specific language
that represents the process model. It leverages the seman-
tics of feature models to provide an easy-to-use editor for
tailoring-enabled process models.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Programmer
workbench; D.2.6 [Programming Environments]: Graph-
ical environments, Integrated environments

Keywords
development process, feature-model, visual modeling

1. INTRODUCTION
Software development process models summarize and for-

malize experience, knowledge, and best practices of success-
ful projects. Standard processes such as the the Rational
Unified Process (RUP, [7]) are designed as a superset of de-
velopment processes to be applicable in many different soft-
ware development projects. Before such a generic process
model can be used, it has to be tailored to reflect the cir-
cumstances of a concrete project. As a process model is of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’11, September 5–9, 2011, Szeged, Hungary.
Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

limited value without project-specific customization, a tai-
loring method can be considered a critical part of the process
itself.

The so-called SE Book is the in-house development pro-
cess of T-Systems International GmbH1. It uses a feature
model known from Software Product Line engineering [2] to
describe the mandatory and the variable parts of the process
model. The process user can customize the process to the
project’s circumstances using a tool that makes use of the
feature model.

1.1 Problem Statement
Similar to RUP or the V-Modell XT, the SE Book is very

large. It consists of a couple of thousand elements with re-
lations between them. Virtually every one of those elements
can be subject to tailoring, meaning that it is affected by the
selection or deselection of a feature in the feature-model. To
avoid configurations where two features would have conflict-
ing effects, the process engineer needs to keep in mind poten-
tially the whole model during design. The process engineer
could be relieved from dealing with some of this complexity
by appropriate tool support.

1.2 Contribution & Context
In this paper we present a tool that supports the pro-

cess engineer during the design of a feature model for tailor-
ing. The tool is based on the platform PDE [8, 17], which
supports process engineers during the design- and author-
ing phases of process model development and maintenance.
PDE is a generic platform. We show how the problems of de-
sign and validation of a comprehensive feature model can be
approached using an integrated process modeling tool gen-
erated from the metamodel definition of the development
process.

1.3 Outline
The remainder of this paper is organized as follows: We

give an overview over state of the art and state of practice
with regards to process tailoring and process model design in
Sect. 2. We then introduce the SE Book in Sect. 3, focusing
on the parts of the model that are involved in tailoring. In
Sect. 4 we give an overview over PDE, the tool infrastructure
that we are using as a basis for the tool presented in this
paper. The tool itself is subject of Sect. 5. We conclude the
paper in Sect. 6 with a summary and an outlook.

1We did not include a reference as this development process
model is property of T-Systems International GmbH and
has not been published.

464

2. RELATED WORK
Rich process models, such as RUP, V-Modell XT [4], or

SE Book, are well suited for tool support, as their meta-
model [14] can be used to structure the tool’s “data models”.
A couple of comprehensive process metamodels (SPEM [15],
V-Modell XT [18], ISO/IEC 24744 [5]) have been developed.
Yet, there are just a handful of tools to support process engi-
neering: The tool to edit SPEM/EPF is the EPF Composer
based on Eclipse. The equivalent tool for the V-Modell XT
is the V-Modell XT Editor, which is also used to work with
the SE Book. For the ISO 24744 metamodel we are currently
not aware of any accepted tool support.

Tailoring and Feature Modeling. In process models
based on SPEM, tailoring can be regarded a “constructive”
activity. Customizing the process means to“build”a process
model that reflects the organization’s and project’s needs.
The tailoring philosophy realized in the SE Book and in the
V-Modell XT assumes a ready process model that through
the specification of a number of project characteristics gets
“pruned” to reflect the needs. Although it seems natural
to adapt product line modeling techniques [2] to tailoring
of process models, we are not aware of other implementa-
tions than the SE Book. In some respect, the tool presented
in this paper is a proof of concept for the applicability of
Feature-Oriented Domain Analysis (FODA) [6] to process
model tailoring.

Discussion. Tool support for working with development
process models is essential. The V-Modell XT Editor, which
is the tool used to work with the SE Book, is basically a spe-
cialized XML editor. It’s advantage is that it can be used
to work with any kind of XML-based model. The flexibility
comes at a price, however: the tool does not use the “mean-
ing” of the model structures to provide editing capabilities
that would feel more natural than working natively with
the XML structure. The SE Book’s feature model is a good
example where one would expect to work with a graphical
representation of the feature tree instead of with the under-
lying XML nodes. The fact that the existing editor ignores
the meaning the model structures also means that it cannot
perform sanity checks [10] and validation, making editing
the SE Book fairly error-prone. Mistakes made during the
design of the process model often occur much later in the
tool chain, for example when generating process documen-
tation from the model.

3. TAILORING THE SE BOOK
Whenever the SE Book is instantiated for a project, it

does exhibit a number of traits depending on the project’s
characteristics. It does for example contain rules and regu-
lations about how to deal with sub-contractors if these play
a role in the project – otherwise it would not contain this
content. Recommendations for the design of a mobile user
interface may or may not play a role in the project but they
certainly do not make sense if the project does not include
a user interface at all. Generally, some of the traits imply
or exclude each other.

The SE Book uses a feature model to express the traits
of the process model and relations between them. The ap-
proach is roughly sketched in Fig. 1: Each feature of the
feature tree represents a trait that the instantiated process
model may or may not have. The structure of the tree de-
termines the relations between the traits. Each leaf-feature

Feature 1

Feature 2

Feature 4

Feature 3

Feature 5 Feature 6 Feature 7

OP1 OP2 OP3 OP2 OP1 OP2 OP1 OP3

Activity
 DocumentWork

 Product
Work

 Product
Work

 Product Document
Activity

Feature Model

Operations

Process Content

Figure 1: Tailoring using a feature-model

is associated with a set of operations to manipulate the pro-
cess content (currently, the operations are: add a process
content element to the resulting process model instance, re-
move a content element and all it’s dependencies from the
resulting instance). The feature “high safety-requirements”
for example leads to the inclusion of a couple of extra ac-
tivities and artifacts into the resulting instance – process
content elements that would otherwise not be part of the
process model instance.

The SE Book, including the feature model, associated op-
erations and the process content, is defined in an XML file
(the name SE “Book” may give a slightly wrong impression:
although there exists a printed version of the process doc-
umentation, the SE Book is first and foremost a process
“model”). Designing the process model basically means to
edit the XML file. With over 6 MB the file is so large that it
cannot be edited with standard XML editors. The Process
Development Environment is a flexible tool that we have
built to edit large development process models in general.
For the SE Book we built a specialized instance of PDE.
The resulting tool is covered in Sect. 5 after a brief descrip-
tion of the PDE platform.

4. THE PDE PLATFORM
The Process Development Environment (PDE) is a plat-

form based on domain-specific languages and has served as
a basis for the specialized editor for the SE Book and partic-
ularly for it’s tailoring. It allows the definition of a process
metamodel and the generation of a (visual) process model
editor. PDE consists of several components, the most im-
portant of which are briefly described in the following (for
details cf. [8], [17]).

4.1 Technical Foundation
PDE is built using the Microsoft DSL toolkit [3], which

provides the basic infrastructure for the definition of DSLs.
Metamodels, in terms of DSLs, are developed using a Visual
Studio 2010 plugin. The Windows Presentation Foundation
(WPF) [13] is used to develop/define the “end-user” appli-
cation. Runtime plugins are realized using the Managed
Extensibility Framework (MEF) [12].

465

4.2 Platform Architecture
Figure 2 shows the architecture of the PDE. The frame-

work consists of two parts: (1) the PDE Language, which
is the extension of the DSL tools, and (2) an PDE Editor
Framework that provides the basic features to edit a de-
signed process model. A concrete process language (a pro-
cess metamodel) is a DSL based on the PDE Language.

Figure 2: PDE Architecture Overview

Modular Languages. The language elements (frag-
ments, which can be later model elements, validation rou-
tines, images etc.) are stored in Language Components
(LC). Components are comprised in Language Libraries
(LL) and can be developed and maintained independently
(close to SME). Components can be preconfigured within
a library. If there are components that have dependencies,
they can refer to each other, can reuse and/or extend con-
tent of other components. A library itself is a container to
hold certain components. An Integrated Process Language
(IPL) is a configuration of components lc1,. . . , lcn, where
usually an initial component lc0 is the root of the IPL.

Visual Languages. PDE is focused on visual languages
[9]. If, for example, a process contains state entities and
transition relations between states, the corresponding lan-
guage/metamodel elements State and Transition contain in-
formation on how to visualize these elements, e.g., by simple
shapes or images. The platform provides assistance to the
process language engineer to add visual elements. The ad-
vantage of visual editing is also a limitation of PDE: textual
DSLs/process languages are not supported.

Validation. PDE supports two kinds of validation.
Firstly, so-called hard constraints are language properties
that are used for structural validation. If, for example, a
language element Workflow requires exactly one starting
point, PDE can check this constraint without additional
logic by just using the metamodel properties. The editors
get their basic functionality from those hard constraints and
forbid operations on the model which are not covered by the
metamodel. The second validation style is realized by soft
constraints. Soft constraints are properties of the model
instance and can provide semantic validation e.g., naming
rules, cycle freeness, and fulfillment of dependencies. In an
experimental prototype [19] a sample validation of modu-
lar processes according to [1] using Petri-Nets was realized
using this validation style. In addition, PDE provides sev-

eral plugin mechanisms [16] that allow the injection of extra
validation logic by external libraries. The hooks for soft-
constraints were used in the editor for the SE Book feature-
tree to see if it contains any deficiencies (see Sect. 5.2).

5. THE SE BOOK IN PDE
The editor tool for the feature model of the SE Book is

built on top of the PDE platform and extends the default
functionality by adding a custom visual editor for the feature
tree and by hooking in to the validation extension points to
validate the feature tree.

5.1 Visual Design
As mentioned in Sect. 3, the SE Book is defined in an

XML file. If used without extensions, PDE displays the
hierarical structure of the XML file in a tree view with a
property grid for the individual elements. This generic user
interface works for any kind of process content, independent
of it’s meaning. For the feature-model that is part of the
SE Book we have decided to extend default PDE with a
visual designer. Figure 3 displays a rough impression of the
designer. It uses the accepted notation for feature models
and allows the user to manipulate the feature tree with drag
and drop.

Figure 3: Visual Editor for SE Book Tailoring

5.2 Validation
Validation plays an important role in generating consis-

tent product (process) configurations. To ensure a valid
feature model, the tool looks for deficiencies in the tree as
described in [10]. The paper describes three classes of defi-
ciencies, namely redundancy, anomalies and inconsistencies.
A typical deficiency for example would be “A mutual exclu-
sion is modeled between alternative child features. As the
alternative relation implies a mutual exclusion between the
child features the dependency is superfluous.”

By extending the default validation using custom soft con-
straints, PDE detects all these types of deficiencies by using
the feature tree representation generated from the process
model DSL. When implementing the validation, we found
that some checks seem redundant at first sight, as some de-
ficiencies represent a specialized case of a more general one.
In these cases, the tool detects both the general case (e.g.,

466

anomaly: “An optional feature is mutual exclusive to a full-
mandatory feature”) and the specialized case (e.g., anomaly:
“An alternative-child feature is mutual exclusive to a full-
mandatory feature”; the alternative-child feature is an op-
tional feature).

The deficiencies in [10] are described in their most simple
form, usually for the first “child-parent” level of the feature
tree. The SE Book tool also deals with identifying defi-
ciencies where the source of the problem is located “farther
away” in the tree, for example for features situated on dif-
ferent levels in the tree. The reason behind this implemen-
tation is given by the previous example, where validation
may seem redundant, but in specific configurations only the
specialized case can be detected, due to the complexity of
the feature model.

If the tool recognizes a deficiency pattern, it outputs a
message to the output pane, similar to compiler warnings in
an IDE. We have decided to classify the messages as warn-
ings, allowing the user to save a faulty model. We have yet
to decide whether to promote some of the deficiencies to er-
rors, which would mean that such deficiencies would have to
be resolved before the process model can be saved.

6. CONCLUSIONS AND FUTURE WORK
We have presented a special-purpose tool for editing the

SE Book – a proprietary software development process of
T-Systems International GmbH. The tool is built using the
Process Development Environment (PDE) platform, which
in turn is built on top of the Microsoft DSL toolkit.

For a particular area of the development process model,
namely the feature-model-based tailoring, we have extended
the default PDE functionality to provide a visual editor for
the tailoring feature tree and for validation of this tree. The
metamodel extension using feature-model-based tailoring is
included in the recent release of SE Book. The PDE-based
implementation was originally planned for evaluation pur-
poses, and is, still, subject to ongoing research.

6.1 Future Work
We have an implementation for a couple of sanity checks

concerning the relation between the feature tree, associated
operations and the process content (see Sect. 3 for details).
We also have an implementation that translates the feature
model into a propositional formula which serves as input into
a SAT solver to determine valid configurations [11]. Both
implementations are in Java and have yet to be translated to
our PDE-based implementation of the process model editor.

While the presented tool offers a comfortable way to edit
the tailoring-related parts of the SE Book, other parts of
the process model still have to be edited using the default
PDE functionality. We are considering to add more visual
designers for other parts of the process model, such as the
artifact model and the milestone configuration.

7. REFERENCES
[1] K. Bergner and J. Friedrich. Using Project Procedure

Diagrams for Milestone Planning. In Proceedings of
International Conference on Software Process (ICSP
2010), 2010.

[2] CMU Software Engineering Institute. Software
product lines. Online:
http://www.sei.cmu.edu/productlines, 2011. Visit:
2011-06-06.

[3] S. Cook, G. Jones, S. Kent, and A. C. Wills.
Domain-Specific Development with Visual Studio DSL
Tools. Addison-Wesley, 2007.

[4] J. Friedrich, U. Hammerschall, M. Kuhrmann, and
M. Sihling. Das V-Modell XT - Für Projektleiter und
QS-Verantwortliche kompakt und übersichtlich.
Springer, 2. edition, 2009.

[5] Joint Technical Committee ISO/IEC JTC 1,
Subcommittee SC 7. Software engineering –
metamodel for development methodologies. Technical
Report ISO/IEC 24744:2007, International
Organization for Standardization, 2007.

[6] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak,
and A. S. Peterson. Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-021, Software Engineering Institute,
Carnegie Mellon Univerisity, 2000.

[7] P. Kruchten. The Rational Unified Process: An
Introduction. Addison-Wesley Longman, 3 edition,
2003.

[8] M. Kuhrmann, G. Kalus, M. Then, and E. Wachtel.
From Design to Tools: Process Modeling and
Enactment with PDE and PET. In Third
International Workshop on Academic Software
Development Tools and Techniques, 2010.

[9] M. Kuhrmann, G. Kalus, E. Wachtel, and M. Broy.
Visual Process Model Design using Domain-specific
Languages. In Proceedings of SPLASH Workshop on
Flexible Modeling Tools 2010, 2010.

[10] T. Maßen and H. Lichter. Deficiencies in Feature
Models, 2004.

[11] M. Mendonca, A. W ↪asowski, and K. Czarnecki.
Sat-based analysis of feature models is easy. In
Proceedings of the 13th International Software Product
Line Conference, SPLC ’09, pages 231–240,
Pittsburgh, PA, USA, 2009. Carnegie Mellon
University.

[12] Microsoft Corporation, CodePlex. Managed
Extensibility Framework. Online:
http://mef.codeplex.com, 2010.

[13] A. Nathan. WPF 4 Unleashed. Sams, 2010.

[14] OMG. Meta Object Facility (MOF) Core Specification
Version 2.0. Technical report, Object Management
Group, 2006.

[15] OMG. Software & Systems Process Engineering
Metamodel Specification (SPEM) Version 2.0.
Technical report, Object Management Group, 2008.

[16] L. Surhone, M. Timpledon, and S. Marseken, editors.
Managed Extensibility Framework. Betascript
Publishing, 2010.

[17] Technische Universität München. Process
Development Environment (PDE) – Project
Homepage. Online: http://pde.codeplex.com, 2010.

[18] T. Ternité and M. Kuhrmann. Das V-Modell XT 1.3
Metamodell. Research Report TUM-I0905, Technische
Universität München, 2009.

[19] E. Wachtel, M. Kuhrmann, and G. Kalus. A Domain
Specific Language for Project Execution Models. In
39th Annual Conference of the German Computer
Society, 2009.

467

