
Parallel Data Race Detection for Task Parallel Programs
with Locks

Adarsh Yoga
Department of Computer Science

Rutgers University
Piscataway, NJ, USA

adarsh.yoga@cs.rutgers.edu

Santosh Nagarakatte
Department of Computer Science

Rutgers University
Piscataway, NJ, USA

santosh.nagarakatte@cs.rutgers.edu

Aarti Gupta
Department of Computer Science

Princeton University
Princeton, NJ, USA

aartig@cs.princeton.edu

ABSTRACT
Programming with tasks is a promising approach to write perfor-
mance portable parallel code. In this model, the programmer ex-
plicitly specifies tasks and the task parallel runtime employs work
stealing to distribute tasks among threads. Similar to multithreaded
programs, task parallel programs can also exhibit data races. Unfor-
tunately, prior data race detectors for task parallel programs either
run the program serially or do not handle locks, and/or detect races
only in the schedule observed by the analysis.

This paper proposes PTRacer, a parallel on-the-fly data race
detector for task parallel programs that use locks. PTRacer detects
data races not only in the observed schedule but also those that can
happen in other schedules (which are permutations of the memory
operations in the observed schedule) for a given input. It accom-
plishes the above goal by leveraging the dynamic execution graph
of a task parallel execution to determine whether two accesses can
happen in parallel and by maintaining constant amount of access
history metadata with each distinct set of locks held for each shared
memory location. To detect data races (beyond the observed sched-
ule) in programs with branches sensitive to scheduling decisions,
we propose static compiler instrumentation that records memory
accesses that will be executed in the other path with simple branches.
PTRacer has performance overheads similar to the state-of-the-
art race detector for task parallel programs, SPD3, while detecting
more races in programs with locks.

CCS Concepts
•Software and its engineering → Dynamic analysis; Software
testing and debugging; Software verification;

Keywords
Data Races, Intel TBB, Fork Join Programs

1. INTRODUCTION
Task parallelism is an effective abstraction to write performance

portable code. In a task parallel programming environment, the pro-

Task T1

Task T2

Task T3

S1

lock(&L1);
 t = C;
unlock(&L1);
if(t == true){
 lock(&L1);
 Y = X - 1;
 unlock(&L1);

}
else{
 Y = X + 1;

}

lock(&L1);
 C = true;
 Y = X + 1;
unlock(&L1);

X = 0;
Y = 0;
C = false;

Spawn T2

Spawn T3

Sync

S3 S2

X, Y, and C are shared memory
locations

L1 is a lock variable

Figure 1: An example task parallel program that uses locks. There
are three tasks, T1, T2, and T3. They access three shared memory
variables X, Y, and C. There are three regions of code without any
task management constructs. They are labeled S1, S2, and S3. The
program has a data race on shared memory location Y.

grammer specifies the tasks and the work stealing runtime distributes
these tasks to the threads. A task parallel program can provide scal-
able speedups when the program is executed on a machine with
different core/thread count as the runtime dynamically balances the
load between the threads. Task parallel frameworks like Cilk [17],
Intel Threading Building Blocks (TBB) [39], Habanero Java [6],
X10 [7], and the Java Fork-Join framework [25] have become main-
stream. Given the promise of performance portable code, there are
initiatives in teaching parallelism through task parallel programming
models [19].

Task parallel programs can have data races, similar to multi-
threaded programs. A program exhibits a data race when there are
multiple accesses to a shared memory location, at least one of them
is a write, and there is no ordering between these accesses. In the
absence of locks, a data race occurs when these accesses are not
ordered by task management (spawn/sync) constructs. In the pres-
ence of locks, a data race occurs when two parallel accesses (one
of which is a write) are not protected by a common lock. Similar
to multithreaded programs, data races in task parallel programs are
usually indicators of program errors. The behavior of the program
is dependent on the memory model in the presence of data races.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

FSE’16, November 13–18, 2016, Seattle, WA, USA
c© 2016 ACM. 978-1-4503-4218-6/16/11...$15.00

http://dx.doi.org/10.1145/2950290.2950329

Artifact evaluated by FSE✓

833

Instrumented

Program

Static Analysis
and

Instrumentation

Parallel
Dynamic

Detection of
Races

Check
Feasibility

of
Branches

Input
Task

Parallel
program

Report an apparent
race in another

trace with branch
condition inverted

Possible
Apparent

Races

Report an apparent
race with the

operations in the
current trace

SMT
formula for

branch
feasibility

Check
Validity of

SMT
Formula

True Apparent Races

Inputs

Figure 2: Workflow of our parallel data race detection algorithm for task parallel programs that use locks.

Further, it can also cause non-deterministic execution. Figure 1
illustrates an example task parallel program with a data race.

In the terminology of Netzer and Miller [33], data races can be
classified into two categories: apparent races and feasible races.
Data races that appear to occur in an execution of a program primar-
ily considering the parallel constructs but without taking the actual
computation into account are termed apparent races. Data races that
occur taking into account the computation, synchronization, and
parallel constructs are termed feasible races. An apparent race may
not be a feasible race in some scenarios where operations in critical
sections influence branches. Depending on how critical sections are
scheduled, the computation itself may change when the tasks are
scheduled in a different order. However, every apparent race is also
a feasible race for a class of task parallel programs called Abelian
programs [8], which have commutative critical sections. Identifying
feasible races is a hard problem [8, 24, 33]. Detectors that aim
to detect feasible races need to perform interleaving exploration,
which is practically infeasible. Hence, we focus on the detection of
apparent races in this paper as task parallel programs have structured
parallelism.

Data race detectors can be classified into three categories based
on their detection abilities: per-program, per-input, and per-schedule
detectors. Per-program detectors detect possible races for all inputs
and schedules for a given program. Although per-program detectors
are appealing in theory, they can report a large number of false
positives in practice because of approximations in the underlying
static analysis [46]. Per-input detectors detect possible races in
various schedules for a given input when the programs do not use
locks [15, 30, 38]. Finally, per-schedule detectors detect data races
in the observed schedule. They typically need to be coupled with
interleaving exploration to detect races that can occur in other sched-
ules for the same input. Further, data-race detectors can also be
classified into offline, on-the-fly, or hybrid detectors depending on
whether the race is detected with a postmortem analysis, during
program execution, or a combination of them, respectively.

Our goal is to detect data races in task parallel programs with the
following three objectives. First, the detector should detect races
in the presence of locks because frameworks like Intel TBB [39]
and Cilk [17] provide various lock implementations. Second, the
detector should detect races in the observed schedule and also pos-
sible races in other schedules for a given input to either minimize
or obviate the need for interleaving exploration. Third, the detector
should use multiple cores available on modern processors to enable
its usage with long running programs.

Although data race detection is a well-studied topic for mul-
tithreaded programs, existing detectors do not satisfy our goals.
FastTrack [16] is a vector-clock based detector that detects races
in schedules that follow the observed happens-before ordering in
multithreaded programs. When we repurpose FastTrack for tasks,
FastTrack’s vector clock metadata with each shared memory location

is proportional to the number of tasks, which makes it impractical
for task parallel programs that create a large number of tasks. Our
implementation of FastTrack aborted with out-of-memory errors
with many applications (see Section 5). Prior research has also
investigated numerous techniques to detect races in task parallel
programs [8, 15, 30, 37, 38]. SP-Bags [15], ESP-Bags [37], and
SPD3 [38] leverage the series-parallel structure of a task parallel
execution to detect races per-input for task parallel programs that
do not use locks. SPD3 with support for isolated blocks [36] and
ALL-SETS [8] detect data races per-schedule in task parallel pro-
grams. Both these approaches can detect races per-input when the
program has commutative critical sections (i.e., Abelian programs).
However, SPD3 does not support locks and ALL-SETS runs the
detector serially. In this paper, we explore if it is possible to combine
SPD3 and ALL-SETS to attain our objectives.

Inspired by SPD3 [38] and ALL-SETS [8], we propose an on-
the-fly dynamic data race detector, PTRacer, for task parallel
programs with locks. PTRacer uses the dynamic program struc-
ture tree (DPST) representation from SPD3 to determine whether
two accesses can happen in parallel. It borrows the idea of tracking
the set of locks held before an access with each entry in the meta-
data space from ALL-SETS. The key challenge is in maintaining
appropriate metadata when there are multiple readers and writers
to a given shared memory location to enable effective and efficient
detection of races.

Further, branch statements in a task parallel program can be
influenced by scheduling decisions when the program uses locks.
Such branches are called schedule-sensitive branches (SSB)[22]. In
the presence of SSBs, the dynamic trace observed by the analysis
may not have memory operations from all schedules (e.g., from the
path not-taken at the branch statement). We explore if it is possible
to detect races that happen in other schedules in the presence of
SSBs.

To accomplish our objectives, we designed PTRacer with three
components: (a) static analysis and instrumentation component to
instrument shared memory accesses and identify accesses in the
other path with simple branch statements, (2) a parallel dynamic
race detection component that extends SPD3 to handle locks, and
(3) a diagnosis component that classifies some of the races reported
by the parallel dynamic analysis as infeasible if the branch is not
schedule sensitive. Figure 2 provides an overview of the various
components in PTRacer.

The static analysis and instrumentation component of PTRacer
has two goals: instrument shared memory accesses and identify
accesses that can be executed in the other path at a branch statement.
PTRacer uses a compiler pass to instrument the program with calls
to the dynamic race detection library. The compiler pass identifies
branch statements and records the memory accesses executed in
the other path at a simple branch statement with calls to the race
detection library. When the branching structure involves loops or

834

has nested branches, the compiler pass informs the user that the
dynamic race detection will be restricted to the detection of apparent
races in the observed schedule and schedules that are permutations
of memory operations in the observed schedule.

The dynamic data race detection component of PTRacer con-
structs the DPST as the program executes and performs dynamic
data race detection when the race detection library calls execute.
Hence, the race detection happens in parallel. PTRacer maintains
two reads and two writes with each distinct set of locks held before
an access to a shared memory location in the metadata space for
each shared memory location. Maintaining information about two
reads and a single write is sufficient when accesses are performed
without holding any locks.

When there are multiple writes to a shared memory location with
the same set of locks held, PTRacermaintains two write operations
so that all other parallel write operations to the same location are
in the subtree under the least common ancestor (LCA) of the two
writes in the DPST. Any future write or a read operation that may
execute in parallel with any of the not-maintained accesses will
execute in parallel with at least one of the two writes maintained in
the metadata space. The dynamic data race detector reports a race
when two accesses are not protected by a common lock.

The races reported by the dynamic race detector are either true
apparent races that involve operations in the observed schedule or
possible apparent races that involve races between operations from
the observed schedule and operations in the not-taken path at a
branch statement.

Finally, the diagnosis component of PTRacer filters out possible
races by checking the schedule sensitivity of the branch resulting
in the race. The diagnosis component runs the program again to
obtain a detailed trace. It encodes the detailed trace and the inverted
branch condition of the schedule sensitive branch involved with
the possible apparent race as a first-order logic formula and checks
its satisfiability (similar to prior work [22, 23, 27]). If the formula
is satisfiable, then the diagnosis component reports the race as an
apparent race to the user.
PTRacer detects apparent races for a given input for Abelian

programs similar to ALL-SETS. When there are multiple races in-
volving a shared memory location, PTRacer reports a single race
to the user. PTRacer detects apparent races in the observed sched-
ule and in schedules that are permutation of the memory operations
in the observed schedule for non-Abelian programs. Some of these
races may not be feasible if the computation in the program forbids
them. Even the infeasible apparent races are likely program errors
as task parallel programs typically have structured communication.
The race detection involving operations from non-taken paths is
best-effort (i.e., it can miss races with SSBs) due to the limitations
of our static analysis.

Our prototype detector PTRacer detects data races in Intel
TBB programs that use locks. The prototype detects all races in
our test suite, which has unit tests with locks, without false pos-
itives and without requiring interleaving exploration. In contrast,
FastTrack misses many races and SPD3 reports false positives
as it does not handle locks. PTRacer is usable with long-running
applications and has performance overhead similar to SPD3.

2. BACKGROUND
This section provides background on Dynamic Program Structure

Tree (DPST) representation of a task parallel execution to identify
parallel accesses. As we use the DPST and build on SPD3 [38], we
also provide a brief background on the SPD3 data race detector for
task parallel programs.

F11

S1 F12

A2 A3

S2 S3

Figure 3: DPST for the sample task parallel program in Figure 1 after
it has executed all statements. There are three step nodes (S1, S2,
and S3) in the DPST, which are depicted by nodes with two circles
and are executed by tasks T1, T2, and T3 respectively. The step
nodes S2 and S3 can occur in parallel because LCA(S2, S3)
is F12 and the left child of F12 is an async node and it is an
ancestor of S2. The step nodes S1 and S2 cannot occur in parallel
as LCA(S1, S2) is a finish node F11 and its left child that is also
an ancestor of S1 is not an async node.

2.1 Dynamic Program Structure Tree
The execution of a task parallel program results in a series-parallel

execution graph. The series-parallel execution graph can be used
to determine whether two accesses by different tasks can logically
execute in parallel [8, 15, 30]. The graph can be used to find apparent
races in other schedules when these programs do not use locks.
However, the program has to be executed serially, which results in
performance overheads.

To address the problem of serial execution with data race detec-
tion, Raman et al. [38] proposed an approach to check whether
two accesses can logically execute in parallel using an ordered tree
called the Dynamic Program Structure Tree (DPST). The DPST
captures the dynamic parent-child relationship between tasks, which
enables parallel race detection with SPD3 [38].

The DPST consists of three types of nodes: (a) step nodes,
(b) finish nodes, and (c) async nodes. A step node in the
DPST represents the maximal sequence of instructions without
any task spawn (for task creation) and sync (join) statements. All
computation and memory accesses occur in the step nodes. Hence,
every memory access has a corresponding step node associated with
it. Further, the step nodes are always leaf nodes in the DPST.

The async nodes capture the spawning of a task by a parent task.
The descendants of an async node execute asynchronously with the
remainder of the parent task. A finish node is created when a task
spawns a child task and waits for the child (and its descendants)
to complete. A finish node is the parent of all async, finish and
step nodes directly executed by its children or their descendants. A
node’s children in the DPST are ordered left-to-right to reflect the
left-to-right sequencing of computation in their parent task.

The DPST’s construction ensures that all internal nodes are either
async or finish nodes. The path from a node to the root and the left-
to-right ordering of siblings in the DPST do not change even when
nodes are added to the DPST during execution. The construction of
the DPST ensures that two step nodes S1 and S2 (assuming S1 is to
the left of S2) can execute in parallel if the least common ancestor
of S1 and S2 (i.e., LCA(S1, S2)) in the DPST has an immediate
child A that is an async node and is also an ancestor of S1.

Consider the example task parallel program in Figure 1 with three
tasks T1, T2, and T3. Figure 3 presents the DPST after all tasks
and instructions in the program in Figure 1 have executed. There are
three step nodes: S1, S2, and S3. There are two finish nodes: F11

835

that corresponds to the implicit finish with the main task and F12
that corresponds to the collection of tasks T1 and T2 followed by
a sync statement. The step nodes S2 and S3 can occur in parallel
since the LCA(S2, S3) is F12 and its left child is an async node.
In contrast, step nodes S1 and S2 cannot occur in parallel since the
LCA(S1, S2) is F11 and its left child that is also an ancestor of
S1 is S1, which is not an async node. Similarly, step nodes S1 and
S3 cannot occur in parallel.

2.2 SPD3 Race Detector
Any dynamic race detector needs to determine if two accesses (at

least one of them is a write) can happen in parallel and track accesses
to the same location. SPD3 [36, 38] uses the DPST to determine if
two accesses can occur in parallel. It maintains shadow memory for
each memory location that tracks tasks that have accessed the same
location.

Rather than maintaining information about every access to a
shared memory location by tasks, SPD3 maintains a total of two
reads (r1 and r2) and a write (w1) with every shared memory lo-
cation in shadow memory. It is sufficient to maintain information
about one write as all other writes should either occur in series or
constitute a data race. However, there can be multiple readers and
it is necessary to maintain information about them. When there
are multiple parallel readers to a location, SPD3 stores two reads
r1 and r2 such that the subtree under LCA(r1, r2) in the DPST
includes other reads. In contrast to vector clock based detectors,
SPD3 maintains constant number of access history entries with each
monitored shared memory location irrespective of the number of
tasks.
SPD3 detects races for a given input by examining a single trace

provided the task parallel program does not use locks. Next, we
describe how to handle locks and propose a technique to detect races
not only in the current trace but also in other schedules for a given
input.

3. APPROACH
Our goal is to design an on-the-fly data race detector for task

parallel programs with the following attributes: (1) runs in parallel,
(2) handles programs that use locks, and (3) detects data races that
occur in different schedules for a given input by examining a single
trace. We do not need to store long traces with an on-the-fly detector.
A parallel data race detector reduces performance overheads by
leveraging multi-cores. Handling locks enables us to detect races in
applications written with frameworks such as Intel TBB [39] and
Cilk [17] that support locks. Detecting races that can happen in other
schedules by examining a single schedule for a given input either
minimizes or obviates (in the best case) the need for interleaving
exploration.

We are primarily focused on detecting apparent races, which are
races that appear to occur taking into account the parallel constructs
in the program [33]. In the presence of critical sections, some of
these apparent races may not be feasible when the actual compu-
tation performed by the task is considered along with the parallel
and synchronization constructs. Detecting feasible races typically
requires interleaving exploration and covering all interleavings is not
possible in practice. However, every apparent race is a feasible race
for a class of programs (i.e., Abelian programs) with commutative
critical sections [8].

When the program contains non-commutative critical sections,
we investigate if it possible to detect races that can happen in other
schedules to minimize the need for interleaving exploration. In such
scenarios, our goal is to detect apparent races that can happen in
other schedules, which perform the same shared memory accesses

Task T1

Task T2

Task T3

S1

lock(&L1);
 t = C;
unlock(&L1);
if(t == true){
 lock(&L1);
 Y = X - 1;
 unlock(&L1);
 RecordRd(X,{},{});
 RecordWr(Y,{},{});
}
else{
 Y = X + 1;
 RecordWr(Y,{L1},{});
 RecordRd(X,{L1},{});
}

lock(&L1);
 C = true;
 Y = X + 1;
unlock(&L1);

X = 0;
Y = 0;
C = false;

Spawn T2

Spawn T3

Sync

S3 S2

X, Y, and C are shared memory
locations

L1 is a lock variable

Figure 4: The task parallel program in Figure 1 instrumented with
RecordRd and RecordWr instrumentation calls using static anal-
ysis. There is a RecordWr(Y, {},{}) in the if-block that is
executed when C is true in Task T2 because shared memory loca-
tion Y is written in the else-branch without any lock acquisitions
and releases from the start of the else-block. Similarly, there is
RecordWr(Y, {L1}, {}) in the else-block because memory
location Y is written in the if-branch after acquiring lock L1 and
before releasing any lock from the beginning of the if-block.

but possibly in a different order, for a given input. This guarantee
is similar in spirit to the guarantees aimed by predictive testing
techniques for multithreaded programs [21, 44, 45, 47].

In the presence of critical sections, the branch statements in the
program can also be influenced by the scheduling of critical sections.
Such branches are called schedule sensitive branches (SSBs). A
schedule observed by the dynamic analysis may not contain memory
accesses from the not-taken path of a schedule sensitive branch. We
propose a static instrumentation technique to record memory ac-
cesses that will be executed in the not-taken branch. This approach
enables us to detect apparent races that can occur in different sched-
ules of a program with SSBs for the same input without requiring
interleaving exploration. To filter false positives when the branch is
not schedule sensitive, we encode the trace and the inverted branch
condition as a first-order logic formula and check its satisfiability.

Three components of our proposed detector. Our proposed
detector PTRacer consists of three components to accomplish the
above goals: (1) static analysis and instrumentation component to
instrument the program with calls to the dynamic race detection
library to construct the DPST, record shared memory accesses in
the presence of branches, and to detect races, (2) a parallel dynamic
analysis component that executes when the task parallel program ex-
ecutes and detects races, and (3) a diagnosis component that checks
the feasibility of the reported races involving memory accesses from
the not-taken path at a branch statement. Figure 2 illustrates the
three components of PTRacer, which we describe in detail below.

3.1 Static Instrumentation Component
The static analysis and instrumentation component has three ob-

jectives: (1) add instrumentation to identify task management con-
structs to build the DPST at runtime, (2) add instrumentation to
identify shared memory accesses and lock operations to perform

836

procedure DATARACEDETECTOR(l, S, A, LS)
AH ←Metadata(l)
for all p ∈ AH do

if p.LS ∩ LS = ∅ then
if A = Rd ∧DMHP (S, p.W1) then

Report write-read race between p.W1 and S
end if
if A = Rd ∧DMHP (S, p.W2) then

Report write-read race between p.W2 and S
end if
if A = Wr ∧DMHP (S, p.W1) then

Report write-write race between p.W1 and S
end if
if A = Wr ∧DMHP (S, p.W2) then

Report write-write race between p.W2 and S
end if
if A = Wr ∧DMHP (S, p.R1) then

Report read-write race between p.R1 and S
end if
if A = Wr ∧DMHP (S, p.R2) then

Report read-write race between p.R2 and S
end if

end if
if p.LS = LS then . Update the metadata for lockset LS

if A = Wr then
if ¬DMHP (S, p.W1) ∧ ¬DMHP (S, p.W2) then

p.W1 ← S
p.W2 ← null

end if
if DMHP (S, p.W1) ∧DMHP (S, p.W2) then

lca12 ← LCA(p.W1, p.W2)
lca1s ← LCA(p.W1, S)
lca2s ← LCA(p.W2, S)
if lca1s >dpst lca12 ∨ lca2s >dpst lca12 then

p.W1 ← S
end if

end if
end if
if A = Rd then

if ¬DMHP (S, p.R1) ∧ ¬DMHP (S, p.R2) then
p.R1 ← S
p.R2 ← null

end if
if DMHP (S, p.R1) ∧DMHP (S, p.R2) then

lca12 ← LCA(p.R1, p.R2)
lca1s ← LCA(p.R1, S)
lca2s ← LCA(p.R2, S)
if lca1s >dpst lca12 ∨ lca2s >dpst lca12 then

p.R1 ← S
end if

end if
end if

end if
end for
if LS /∈Metadata(l) then

Create a new lockset LS and add a new entry for l
end if
return

end procedure

Figure 5: Algorithm to check for a data race on memory access to loca-
tion l by the step node S with access type A and lockset LS. Metadata(l)
function returns the access history in shadow memory associated with loca-
tion l. The predicate DMHP (Dynamic May Happen in Parallel) is used
to determine if two accesses are parallel. The predicate DMHP (Si, Sj)
returns true if the step nodes Si and Sj in the DPST can execute in parallel.
LCA(Si, Sj) returns the least common ancestor node of Si and Sj .

dynamic race detection, and (3) add instrumentation to identify
shared memory operations that are possibly executed in the other
path in the presence of a schedule-sensitive branch statement, which

is inspired by a similar attempt for property driven pruning with
dynamic partial order reduction [48].

The static analysis and instrumentation phase can be performed
either on the source code or within the compiler. We perform
this phase within the compiler for mainly two reasons: (a) the
compiler already performs various analyses to identify thread local
accesses and the branch statements, and (b) the instrumentation can
be performed on optimized code, which reduces the performance
overhead of race detection.

The compiler pass that adds calls to the race detection library to
identify task management constructs and shared memory accesses
is straightforward, which we omit for space constraints. The inter-
esting aspect is the addition of instrumentation to identify memory
accesses performed in both the taken and the not-taken paths in the
presence of schedule sensitive branches. Our algorithm to record
memory accesses is described below. First, the compiler pass iden-
tifies conditional and unconditional branch statements and their
corresponding join statements. Second, the compiler pass identifies
the set of memory operations performed, the set of locks acquired
and released before every memory operation in the taken and the
not-taken branch from the beginning of the branch for each branch
statement and its corresponding join statement. If the branch condi-
tion does not dominate either the memory access or the lock variable,
then we need to perform additional work to make these accesses
visible in the other branch. In such scenarios, we add the backward
static program slice of the memory access and/or the lock variable
in the other branch. Finally, the compiler inserts calls to the runtime
library to record the memory operation performed in the other path.
If a memory access A is written in the else-block of a schedule
sensitive branch with La locks acquired and Lr locks released from
the beginning of the else-block till memory operation A, then the
compiler introduces a runtime call RecordWr(A, La, Lr) in
the if-block.

Figure 4 shows the additional RecordWr and RecordRd in-
strumentation in the if-branch and the else-branch. In the if-branch,
the additional RecordWr and RecordRd instrumentation corre-
spond to memory accesses in the else-branch. This instrumentation
enables us to detect data races that can occur with operations in
the else-branch even when the trace observed during the dynamic
analysis contains only operations from the if-branch.

Limitations. We primarily focus on simple branch statements
that are not nested and are not part of loops to record memory
accesses from the not-taken path. Our static analysis informs the
user about the presence of non-nested branches and branches that
are part of loops. In the presence of such branches, our framework
still detects apparent races that occur in other schedules whose
memory operations are a permutation of the memory operations in
the observed trace. The taken and not-taken paths at a branch can
include function calls provided it is non-recursive without nested-
branches and loops. We chose this design point to avoid false
apparent races. However, our race detector will miss some races
given these limitations.

3.2 Parallel Dynamic Data Race Detector
PTRacer detects data races when the program executes the

library calls introduced by the static instrumentation component. As
tasks execute in parallel, the race detection also happens in parallel.
The dynamic race detector component of PTRacer maintains two
pieces of information at runtime: the DPST and the metadata. The
DPST is constructed at runtime and queried to determine if two
accesses can occur in parallel. The metadata is maintained with
each shared memory location that provides information about prior
accesses by various tasks.

837

Metadata design. A naive approach to detect apparent races
(in the observed schedule and other schedules involving the same
memory operations) would maintain a list of accesses performed by
various tasks with each shared memory location. As each access
to a shared memory location can occur with different sets of locks
held, the access history should also maintain information about
the set of locks held (lockset) before performing a memory access.
However, such an approach would make the metadata proportional
to the number of dynamic memory accesses and is infeasible in
practice.

Our contribution is in designing a dynamic data race detection
algorithm that maintains a constant number of access history entries,
which is independent of the number of tasks and the number of
dynamic memory accesses, while handling locks. Our metadata for
each shared memory location contains four access history entries
(step nodes of two reads: R1 and R2, and two writes: W1 and W2)
for each distinct set of locks held before the access. Although the
size of the metadata is proportional to the number of distinct sets of
locks held for each memory location, we observe in practice that
each shared memory location is accessed with similar sets of locks.
In summary, the access history with each shared memory location
can be conceptually viewed as an array of data nodes, where each
data node contains the unique lockset and step nodes corresponding
to two reads (R1 and R2) and two writes (W1 and W2).

Metadata checks on a shared memory access. Figure 5 pro-
vides the algorithm for checking the metadata on a shared memory
access. The algorithm iterates over all access history entries corre-
sponding to each lockset in the metadata space. First, the algorithm
checks if the intersection of the lockset of the current access and
each lockset in the metadata space is empty. If the intersection is
empty, two accesses have been performed without a common lock
and PTRacer reports a race if two accesses can occur in parallel
and at least one of them is a write.

Updating the read metadata. After the check, the algorithm
in Figure 5 updates the metadata corresponding to the appropriate
lockset. If the current access is a read access, then the metadata is
updated similar to SPD3 [38] except that the access history entries
for a particular lockset are updated. If the current read access is
in series with both the reads (R1 and R2) corresponding to the
current lockset, then R1 is set to the current access and R2 is set to
null (a unique empty value). When there are multiple readers that
can execute in parallel (i.e., two existing readers R1 and R2 in the
metadata space and current access), PTRacer maintains two reads
in the metadata space such that the subtree under LCA(R1, R2)
includes all reads similar to SPD3. The key insight is that any future
access that can have a data race with the not-stored reads will also
have a data race with R1 and/or R2.

Updating the write metadata for a lockset. Updating the meta-
data in the presence of write operations and locksets requires some
thought in comparison to SPD3. When writes are performed with-
out locks, any two parallel writes is a data race. When tasks use
locks, two writes can happen in parallel but may be protected by
the same lock. Hence, they do not constitute a data race. When
PTRacer sees multiple parallel writes (current access, W1 and W2

in the metadata space) with the same lockset, it needs to identify
two writes to maintain in the metadata space. Similar to multiple
parallel reads, PTRacermaintains two writes in the metadata space
such that the subtree under LCA(W1,W2) includes all writes. Any
future access that can race with one of the not-stored writes will also
race with at least one of W1 or W2. Maintaining only two reads
and two writes with each distinct set of locks enables PTRacer
to detect apparent races both in the observed schedule and other

1. T1/S1: X = 0; []
2. T1/S1: Y = 0; [[{}, S1, null, null, null]]
3. T1/S1: C = false; [[{}, S1, null, null, null]]
4. T1 : Spawn T2; [[{}, S1, null, null, null]]
5. T1 : Spawn T3; [[{}, S1, null, null, null]]
6. T3/S3: lock(&L1); [[{}, S1, null, null, null]]
7. T3/S3: C = true; [[{}, S1, null, null, null]]
8. T3/S3: Y = X + 1; [[{}, S1, null, null, null], [{L1}, S3, null, null, null]]
9. T3/S3: unlock(&L1); [[{}, S1, null, null, null], [{L1}, S3, null, null, null]]
10. T2/S2: lock(&L1); [[{}, S1, null, null, null], [{L1}, S3, null, null, null]]
11. T2/S2: t = C; [[{}, S1, null, null, null], [{L1}, S3, null, null, null]]
12. T2/S2: unlock(&L1); [[{}, S1, null, null, null], [{L1}, S3, null, null, null]]
13. T2/S2: if(t == true) [[{}, S1, null, null, null], [{L1}, S3, null, null, null]]
14. T2/S2: lock(&L1); [[{}, S1, null, null, null], [{L1}, S3, null, null, null]]
15. T2/S2: Y = X - 1; [[{}, S1, null, null, null], [{L1}, S3, S2, null, null]]
 -> Two writes to Y with lock set L1
 by step nodes S3 and S2.
16. T2/S2: unlock(&L1); [[{}, S1, null, null, null], [{L1}, S3, S2, null, null]]
17. T2/S2: RecordRd(X, {}, {}) [[{}, S1, null, null, null], [{L1}, S3, S2, null, null]]
18. T2/S2: RecordWr(Y, {}, {}) [[{}, S2, null, null, null], [{L1}, S3, S2, null, null]]
 -> Write-Write race for Y based on
 its access in the other branch
 as S2 and S3 occur in parallel
19. T1: Sync

Time Observed trace Metadata for Y

Figure 6: Illustration of race detection with a concrete trace of the
program in Figure 4. The observed trace provides the instruction
executed, the task, and the step node performing the operation
observed in the trace. The metadata in shadow memory for the
shared memory variable Y is also shown. The metadata for a shared
memory location is a list of access histories with each lockset. There
are four access histories for each lockset (W1, W2, R1, R2). On
time step 2, Y is written by step node S1 in Task T1 without holding
any lock. We create a new entry for the empty lockset and update
the access history corresponding to the write by S1 i.e., [{}, S1,
null, null, null]. Similarly when Y is written with lockset
L1 by step node S3 in task T3 at time step 8, the race detector
checks if this access results in a race according to existing history
and updates the metadata of Y with a new lockset L1 and the current
write. It is important to note that when Y is written by step node S2
in task T2 at time step 15, there is already a write to Y in the
metadata space with lockset L1. Since this write by S2 can occur
in parallel with the existing write, we maintain both writes in the
metadata for Y. Finally, the record instrumentation enables us to
find races that would occur when the not-taken branch is executed
on a different schedule.

schedules for the same input. Figure 6 illustrates the metadata for
shared memory variables, checks, and the metadata update actions
performed after each statement in the observed trace.

3.3 Diagnosis Phase
The parallel data race detection algorithm described above reports

two kinds of apparent races, which we call true races and possible
races. A true race is a data race that occurs between the operations
of the observed trace without involving memory operations from the
RecordWr and RecordRd instrumentation. A possible race is a
data race that involves shared memory operations from the other-
branch instrumentation. If the branch is not schedule sensitive, then
these possible races will never manifest for a given input. Hence,
we propose a diagnosis phase to identify whether the branch is
schedule sensitive when our parallel race detection algorithm reports
a possible race. We divide the diagnosis phase into two components:
execution trace generator that generates per-task execution traces
for the reported possible race, and a constraint generator that checks
if the branch statement responsible for the reported possible race is
schedule sensitive by transforming the trace into a first-order logic

838

a) Trace Representation

Per-task trace Canonicalized trace
1. X = 0; WX@1.1 = 0;
2. Y = 0; WY@1.2 = 0;
3. C = false; WC@1.3 = false;
4. Spawn T2; SpawnT2@1.4
5. Spawn T3; SpawnT3@1.5
6. Sync; SyncT2,T3@1.6

T1

Per-task trace Canonicalized trace
1. lock(L1); LL1@3.1;
2. C = true; WC@3.2 = true;
3. Y = X + 1; RX@3.3;
 WY@3.3 = X@3.3 + 1;
4. unlock(L1); UL1@3.4

T3

Per-task trace Canonicalized trace
1. lock(L1); LL1@2.1;
2. t = C; RC@2.2;
 Wt@2.2 = C@2.2;
3. unlock(L1); UL1@2.3;
4. if (t == true) { Rt@2.4
5. lock(L2); LL2@2.5;
6. Y = X - 1; RX@2.6;
 WY@2.6 = X@2.6 - 1;
7. unlock(L2); UL2@2.7;
 Negated Branch Check: t@2.4 != true

T2

b) Constraints

 Per-task Order Constraints:
 (W1.1 < W1.2 < W1.3)
 ^ (L2.1 < R2.2 < W2.2 < U2.3 < R2.4
 < L2.5 < R2.6 < W2.6 < U2.7)
 ^ (L3.1 < W3.2 < R3.3 < W3.3 < U3.4)

 Synchronization Constraints:
 (U3.4 < L2.1) ⌄ (U2.3 < L3.1)

 Read-Write Constraints:
 ((C2.2 = false) ^ (W1.3 < R2.2) ^
 (W3.2 < W1.2 ⌄ R2.2 < W3.2))
 ⌄ ((C2.2 = true) ^ (W3.2 < R2.2) ^
 (W1.3 < W3.2 ⌄ R2.2 < W1.3))
 ^ ((t2.4 = C2.2) ^ (W2.2 < R2.4))

 Spawn-Sync Constraints:
 (W1.3 < L2.1) ^ (W1.3 < L3.1)

 Negated Branch Check Constraint:
 t2.4 != true

Figure 7: (a) Concrete per-task traces and canonicalized trace rep-
resentation. For every statement in the per-task trace, we create an
order variable. The order variable for a write operation performed
by statement j in task Ti is represented by Wi.j . Similarly, the
order variables for the read, lock, and unlock operations performed
in statement j by task Ti is represented by Ri.j , Li.j , and Ui.j

respectively. The elements within the same task are ordered. Hence,
we haveW1.1 < W1.2 < W1.3. There are two value variables (C2.2

and t2.4) representing symbolic read operations that directly or in-
directly influence the branch condition. The read-write constraints
connect the value variables and the order variables. The synchro-
nization and spawn-sync constraints further restrict the feasible
orderings. If the negated branch condition is satisfiable with the
constraints, then the branch is a schedule sensitive branch and the
race is reported to the user.

formula and checking its satisfiability using an SMT solver. Our
constraint generator and schedule sensitivity checker is inspired
by prior work [22, 27]. We enforce an ordering corresponding to
the possible race and repurpose prior approaches to a task-based
context.

Per-task execution trace generator. When the dynamic race
detector reports a possible race, we enforce the schedule correspond-
ing to the possible race. This step is necessary because the dynamic
race detection algorithm does not log the trace as it wants to detect
races with a low performance overhead. We also generate canonical-
ized per-task execution traces. The canonicalized per-task execution
trace captures all loads/stores, synchronization constructs, and the
branch condition corresponding to the possible race. To check if
the branch is schedule-sensitive, we need to check if the negation
of the branch condition involved in a possible race is satisfiable.
Figure 7(a) shows the per-task trace and the canonicalized trace for
an execution of the program in Figure 4.

Constraint generator. Using the per-task traces, we construct a
first-order logic formula to check for the satisfiability of the negated
branch condition. Inspired by prior work [27], we create two types of
variables: order variables and value variables. The order variables
are used to encode the position of the operation in the per-task
trace. The value variables are used to symbolically encode the
read operations. Since, we are specifically interested in checking
the satisfiability of the negated branch condition, we create value

variables for only those reads that directly or indirectly influence the
branch condition. We generate a formula Φ that relates these order
and value variables using the task-parallel execution constraints and
checks the negated branch condition.

Φ = φpo ∧ φsync ∧ φrw ∧ φss ∧ φbr

where φpo is the constraint that encodes the order of execution of
operation in a given task, φsync is the constraint that represents the
possible orders of execution among the synchronization statements
among tasks, φrw is the constraint that encodes the data flow be-
tween various accesses to the same location, φss is the constraint
that represents the parent-child relationship between tasks, and φbr

is the constraint representing the negated branch condition. Satisfia-
bility of Φ implies that the branch involved in a possible race is a
schedule sensitive branch and the reported race is indeed feasible.

Generating the constraints. The per-task order constraints (φpo)
ensure that the operations within the same task are ordered. The
synchronization constraints (φsync) order the lock and unlock op-
erations performed by the tasks on the same lock. Let Li.m/Ui.n

and Lj.p/Uj.q be two lock/unlock order variables from two different
tasks (i 6= j) on the same lock. There are two possible orderings in
this scenario. When the lock statement from task i is executed first,
then Lj.p is executed only after the unlock statement Ui.n, which
results in an ordering constraint Ui.n < Lj.p. Otherwise, the lock
statement from task j is executed first, which results in an ordering
constraint Uj.q < Li.m. Hence, the synchronization constraint is a
disjunction of these two constraints.

The read-write constraint (φrw) connects the value variable and
order variables corresponding to writes to the same location. For
every read operation r, our constraint specifies that it reads the value
of a particular write w if w happens before r and every other write
happens before w or after r. Since we check for the satisfiability
of the negated branch condition, we consider only those reads and
writes that directly or indirectly affect the branch condition. Fig-
ure 7(b) illustrates the constraints generated for the per-task traces
in Figure 7(a).

In summary, if the constraints generated are satisfiable, then the
branch is a schedule sensitive branch and the not-taken path at
a branch statement will be executed for the same input. Hence,
we report all such possible races involved with schedule sensitive
branches to the user.

4. IMPLEMENTATION
This section describes the metadata encoding and the implemen-

tation optimizations that we use to reduce the performance overhead
of data race detection.

4.1 Metadata Organization
The metadata for each shared memory location is stored in shadow

memory. We implement shadow memory using a two-level lookup
trie data structure as it provides the ability to shadow every address
in memory efficiently. A trie is a page-table like structure where each
level is accessed using few bits from the address whose metadata
is being looked up. PTRacer maps a 48-bit virtual address space
using a two-level trie [31]. The first-level trie mappings are allocated
at program initialization and the second level entries are allocated
on demand when a memory location is touched for the first time,
which reduces the memory overhead.

Metadata encoding. The metadata associated with a shared
memory location is a list of four access history entries for each
lockset. Maintaining linked data structures in the shadow space
increases the performance overhead. In practice, we observe that

839

most shared memory locations are accessed with a small number
of locksets. Hence, we accelerate the common case (i.e., accesses
with few locksets) by organizing the entry in shadow memory as
a constant-sized array of data nodes. Each data node represents
the access history for a given lockset. If a shared memory location
is accessed with more locksets than the constant-sized array of
data nodes, then we resort back to the slower list representation for
that shared memory location. Each data node contains five 64-bit
values: a 64-bit value encoding the lockset, two 64-bit values for
representing the step nodes performing the reads: R1 and R2, and
two 64-bit values for representing the step nodes performing the
writes: W1 and W2. These implementation techniques enabled
us to successfully run parallel data race detection on long running
programs.

4.2 Optimizations
We observed three major opportunities for reducing the perfor-

mance overhead in our implementation: (1) choosing appropriate
data structures for the DPST, (2) identifying redundant checks, and
(3) identifying redundant LCA queries on the DPST. We describe
these optimizations below.

Overlay DPST in a linear array. Rather than building the DPST
using a linked n-ary tree data structure, we optimize the layout of the
DPST by overlaying the tree in a linear array of nodes. We maintain
parent-child relationship in such an overlay by maintaining the index
of the parent node with each child node. We achieve better locality,
avoid pointer chasing code, and avoid the cost of frequent dynamic
allocations by overlaying the DPST in a linear array of nodes. This
representation reduces the overhead of a single LCA query when
compared to the linked data structure because it eliminated several
pointer indirections in the traversal of the DPST.

Access caching. We observed that there were multiple accesses
to the same location with the same lockset from a given step node.
However, we were not able to prove that they are redundant accesses
through static analysis. We observe that when there are multiple
accesses of the same type with the same lockset in a step node, then
it is sufficient to perform the check once and store the metadata
for only one access. We reduce the overhead of metadata checking
and propagation by caching accesses performed in the task, and not
performing the check on accesses that have an entry in the cache
with the same lockset and access type.

LCA caching. LCA queries are expensive even after optimizing
the layout of the DPST because each query can traverse a large
number of nodes. Moreover, our data race detection algorithm per-
forms LCA queries on each access to check and propagate metadata.
We observe that even when previously unseen addresses are being
checked, there are opportunities to cache LCA queries. LCA queries
check whether two step nodes can occur in parallel. When these
step nodes have been previously accessed in a LCA query, it is not
necessary to perform the query again as the series-parallel relation-
ship between the tasks does not change as nodes are being added to
the graph. Hence, we cache the frequently performed LCA queries
to reduce the overhead resulting from the repeated traversals of the
DPST. These optimizations not only reduced the overhead of our
implementation but also reduced the overhead of SPD3, the baseline
that we compare against in our evaluation.

5. EXPERIMENTAL EVALUATION
This section describes our prototype, implementation optimiza-

tions, benchmarks, and experimental evaluation to measure the
effectiveness and the performance overhead of data race detection.

Table 1: We report the number of dynamic shared memory accesses,
the number memory accesses due to record instrumentation to cap-
ture operations from the not-taken path at a branch statement, the
number of least common ancestor queries, the percentage of unique
LCA queries, and the percentage of accesses that hit in the access
cache for each benchmark. We use M for million in the table.

Benchmark No.
of ac-
cesses

No. of
other
branch
accesses

No.
of
LCAs

Percent.
of unique
LCAs

Percent.
of access
cache hits

blackscholes 140M 0 253M 67.27 49.05
bodytrack 32.48M 0 96.97M 24.08 0.8
fluidanimate 27.49M 0 74.08M 41.21 86.77
streamcluster 257M 63,742 854M 60.93 70.86
swaptions 301M 56,200 924M 63.11 64.45
convexhull 30.07M 26,386 19.11M 61.37 99.82
delrefine 153M 0 328M 53.43 0
deltriang 20M 366 64.36M 32.87 0
karatsuba 115M 22,438 152M 53.32 71.96
kmeans 118M 582 147M 30.19 54.57
nearestneigh 76M 0 134M 64.64 48.72
raycast 128M 11,704 655M 74.85 1.03
sort 11.74M 3768 4.14M 45.78 97.87

Prototype. Our prototype PTRacer is designed for C++ pro-
grams that use Intel Threading Building Blocks(TBB) for task par-
allelism. It includes a compiler intermediate representation instru-
menter, a race detection library that performs runtime race detection,
an execution trace generator, and a constraint generator. The instru-
menter is implemented as a compiler pass in Clang+LLVM-3.7. It
inserts calls to the race detection library at shared memory accesses,
synchronization statements, and task management statements. We
use the demangled name of the library calls to identify synchro-
nization and task management statements. The instrumenter also
identifies accesses performed in both the taken and not-taken paths
of a branch statement.

The race detection library is written in C++. The runtime library
builds the DPST, performs metadata propagation and checks for data
races as described in Figure 5. The constraint generator is written
in Python. It parses the per-task traces, creates order and value
variables, and constructs the first-order logic formula to check the
feasibility of a schedule sensitive branch. PTRacer uses Z3 [10]
to check the satisfiability of the generated formula. Our tool is open
source [49].

Benchmarks. We evaluate the performance overheads of our
prototype with thirteen TBB applications, which include five TBB-
based applications from Parsec [3], five geometry and graphics
applications from the problem based benchmark suite (PBBS) [42],
and three applications from the Structured Parallel Programming
book [29]. The PBBS applications were originally implemented
using Cilk [17]. We translated these applications to use Intel TBB
for task parallelism. Table 1 lists the applications used and their
important features.

Evaluation environment. The experiments were performed on a
4.00GHz four-core Intel x86-64 i7 processor, with 64 GB of memory
running 64-bit Ubuntu 14.04.3. Each benchmark was executed five
times and the reported performance overhead is calculated by taking
the average of the five executions. We use geometric mean to report
average slowdown in our evaluation.

840

0X

5X

10X
S

lo
w

d
o
w

n
PTRacer

SPD3

blackscholes

bodytrack

flu
idanimate

stre
amcluste

r

sw
aptions

convexHull

delRefin
e

delTriang

karatsu
ba

kmeans

nearestn
eigh

rayCast sort

Geo.mean

1
1
X

1
1
X

1
3
X

1
1
X

1
2
X

Figure 8: Execution time slowdown of PTRacer and SPD3 when compared to a baseline without any instrumentation.

0X

5X

10X

S
lo

w
d
o
w

n

PTRacer with other branch PTRacer without other branch

blackscholes

bodytrack

flu
idanimate

stre
amcluste

r

sw
aptions

convexHull

delRefin
e

delTriang

karatsu
ba
kmeans

nearestn
eigh

rayCast sort

Geo.mean

1
1
X

1
1
X

1
3
X

1
3
X

1
2
X

1
2
X

Figure 9: Execution time slowdown of PTRacer with and without
data race detection with record instrumention from the not-taken
path of a branch statement.

Effectiveness in detecting data races. To test the effectiveness
of our prototype in detecting races, we have built a test suite of 120
unit tests that include racy and non-racy programs with and without
locks and schedule sensitive branches. There were 60 races in total
in the test suite. PTRacer successfully detects all the races in the
racy suite without any false positives. In contrast, SPD3 detected
46 races, reported 40 false positives, and missed 14 races. We ran
SPD3 multiple times to detect races in the presence of schedule
sensitive branches. There were 14 races that were not detected by
SPD3 even after performing multiple executions.

Performance overhead in comparison to SPD3. Figure 8 re-
ports the performance overhead of PTRacer and SPD3 when com-
pared to a baseline without any instrumentation. We use LCA
caching by default even with SPD3. There are two bars for each
benchmark (smaller bars are better as it reports overheads). The av-
erage performance overhead of PTRacer is 6.7×. Although the av-
erage overhead is 6.7×, four applications, streamcluster, swaptions,
delRefine and raycast have overhead greater than 10×. Among them,
streamcluster and swaptions have large number of race detection
checks and they perform a large number of LCA queries. Applica-
tions, delRefine and raycast have relatively fewer accesses but have
no locality in their LCA queries and race checks (see Table 1). The
performance overhead of SPD3 is 5.4×. SPD3 maintains constant
metadata for every shared memory location and does not detect data
races in programs that use locks. PTRacer has similar overheads
when compared to SPD3 and detects more races in the presence of
locks and schedule sensitive branches.

Performance overhead in comparison to FastTrack. We com-
pared the performance overhead of our implementation of FastTrack
for tasks when compared to a baseline without any instrumentation.
FastTrack aborted with out-of-memory errors with three applica-

0X

5X

10X

S
lo

w
d
o
w

n

PTRacer with access caching PTRacer without access caching

blackscholes

bodytrack

flu
idanimate

stre
amcluste

r

sw
aptions

convexHull

delRefin
e

delTriang

karatsu
ba
kmeans

nearestn
eigh

rayCast sort

Geo.mean

1
1
X

1
4
X

1
1
X

1
4
X

1
3
X

1
4
X

1
2
X

1
1
X

1
2
X

1
2
X

Figure 10: Execution time slowdown of PTRacer with and without
access caching.

0X

5X

10X

S
lo

w
d
o

w
n

PTRacer with LCA caching PTRacer without LCA caching

blackscholes

bodytrack

flu
idanimate

stre
amcluste

r

sw
aptions

convexHull

delRefin
e

delTriang

karatsu
ba
kmeans

nearestn
eigh

rayCast sort

Geo.mean

1
1
X

1
5
X

1
1
X

1
4
X

1
3
X

1
5
X

1
1
X

1
3
X

1
2
X

1
2
X

Figure 11: Execution time slowdown of PTRacer with and without
LCA caching.

tions, streamcluster, delRefine and raycast. These applications
create many tasks and have a large number of shared accesses that
prevent the use of optimized version of vector clocks. The average
performance overhead of FastTrack for other applications, which
did not abort with out-of-memory errors, is 14×.

Performance impact of record instrumentation from the not-
taken path. Figure 9 reports the performance overhead of PTRacer
with and without the record instrumentation to capture operations
from both the paths of a branch statement. The record instrumen-
tation has increased the overhead of data race detection from 6.3×
to 6.7×. With a nominal increase in performance overhead, the
record instrumentation enables detection of races in the presence of
schedule sensitive branches.

Performance benefits with access caching. Figure 10 reports
the effect of the access caching optimization on the performance
overhead of PTRacer. The access caching optimization reduces the
average performance overhead from 8.5× without access caching

841

0X

5X

10X
S

lo
w

d
o
w

n

1 thread
2 threads
4 threads

blackscholes

bodytrack

flu
idanimate

stre
amcluste

r

sw
aptions

convexHull

delRefin
e

delTriang

karatsu
ba
kmeans

nearestn
eigh

rayCast sort

Geo.mean
1

1
X

1
1
X

1
1
X

1
2
X

1
1
X

1
1
X

1
4
X

1
3
X

1
3
X

1
3
X

1
2
X

1
2
X

Figure 12: Execution time slowdown of PTRacer when executed
with 1, 2 and 4 threads.

to 6.7×. Most applications benefit from access caching. Three
applications, fluidanimate, convexhull, and sort have significant
reduction in overhead because a large fraction of the accesses hit in
the access cache and do not perform the costly data race check and
the metadata update. Applications bodytrack, delrefine, deltriang,
and raycast, do not benefit from access caching since most locations
are accessed once in a given step node.

Performance benefits with LCA caching. Figure 11 reports the
performance overhead of PTRacer with and without LCA caching
when compared to a baseline without any instrumentation. On
average, LCA caching reduces the performance overhead from 8.8×
without LCA caching to 6.7×. All applications except raycast see a
significant reduction in overheads as there are fewer unique LCA
queries. Application, raycast, does not benefit much from LCA
caching because of the large number of unique LCA queries.

Performance overhead for different number of threads. Fig-
ure 12 reports the performance overhead of PTRacer when ex-
ecuted by restricting the task parallel runtime to use 1, 2, and 4
threads. The average overhead when executed with 1, 2, and 4
threads is 6.8×, 6.6× and 6.7× respectively. The average overhead
is almost constant with increasing core count, which indicates that
our approach scales well when the program is executed on machines
with larger number of processors.

6. RELATED WORK
Data race detection in multithreaded programs. There is a

large body of work on dynamic data race detection in thread based
parallel programs [12, 16, 34, 41, 48]. FastTrack [16] represents
the state-of-the-art in dynamic data race detection for threaded pro-
grams. FastTrack detects data races in the given execution by track-
ing happens-before relations between shared memory accesses. The
overhead of race detection with FastTrack can be high when ex-
ecuted on programs that create many threads as the metadata is
proportional to the number of threads. Further, FastTrack only
detects races that occur in a given schedule. Eraser [40] uses a
lockset-based approach and checks for errors in locking discipline.
Lockset-based approaches often have lower performance overhead
when compared to happens-before based approaches, but can report
false positives.

There are dynamic approaches [5, 11, 14, 18, 28] that attempt to
reduce the overhead of race detection through sampling. But these
approaches often miss data races while trying to reduce the overhead.
There are several proposals for static race detection [1, 13, 32, 35].
While static detection approaches are appealing as they have no
runtime performance overhead, they can produce a large number of
false positives.

Predictive testing for threaded programs. There are also nu-
merous approaches that attempt to detect races and other concur-
rency errors feasible in a different schedule derived from a trace
of a multithreaded program [20, 21, 43, 45, 47]. Predictive testing
ideally can detect feasible races for a given input as long as all
operations that can occur in different thread schedules occur in the
observed trace. However, most predictive testing techniques bound
the instruction window (up to 4K instructions) to make it practical.
PTRacer provides guarantees similar to an ideal predictive test-
ing by leveraging the structure of the task parallel execution and
by maintaining appropriate metadata. Further, it detects races that
can occur in other schedules in the presence of schedule sensitive
branches using record instrumentation.

Data race detection in task parallel programs. The approach
proposed by Mellor-Crummey et al. [30] and Nondeterminator [15]
were seminal in proposing the detection of apparent data races in
task parallel programs using the series-parallel execution graph. Sub-
sequently, these techniques have been enhanced to handle locks [8],
to handle task graphs in Habanero-Java [37], and to detect races
without serial execution with SPD3 [36, 38]. Our proposed research
uses the DPST representation in SPD3 and is inspired by the access
histories in the ALL-SETS algorithm for Cilk [8].

Determinacy checkers. In the absence of synchronization, data
race freedom ensures determinism [4, 26]. Even in deterministic pro-
grams there can be a large number of schedules for different inputs.
There are proposals that memoize past schedules [9] and limit the
execution to a set of input covering schedules [2]. Tardis [26] checks
for determinism by maintaining a log of accesses and identifying
conflicting accesses between tasks. In contrast, our approach de-
tects data races both in the presence and absence of synchronization
operations.

7. CONCLUSION
This paper addresses the problem of detecting apparent data races

in task parallel programs with a parallel detector that handles locks.
The key insight is to leverage the execution graph of a task par-
allel program to determine if accesses can occur in parallel and
design metadata that tracks a constant number of access histories
for each lockset held before an access to a shared memory loca-
tion. PTRacer uses static analysis and instrumentation to identify
operations that can happen in the not-taken path in the presence
of schedule sensitive branches and detects apparent races that can
occur in other schedules for a given input. In summary, PTRacer
is a data race detector for task parallel programs that (a) runs in
parallel, (b) detects data races when the program uses locks, (3)
maintains per-location metadata that is independent of the number
of dynamic accesses, and (4) detects apparent races not only in the
observed schedule but also in other schedules for a given input.

8. ACKNOWLEDGMENTS
We thank the annonymous reviewers for their feedback on the

initial draft of this paper. This paper is based on work supported
in part by NSF CAREER Award CCF–1453086, a sub-contract of
NSF Award CNS–1116682, and a NSF Award CNS–1441724.

842

9. ARTIFACT DESCRIPTION
Our artifact is publicly available through GitHub at the following

URL https://github.com/rutgers-apl/PTRacer. The artifact is struc-
tured as follows: (1) tdebug-lib contains the PTRacer dynamic
data race detection library for Intel TBB programs, (2) PTRacer-
solver contains the constraint generator written in python that con-
structs the first-order logic formula to check the feasibility of a
schedule sensitive branch, (3) spd3-lib contains our implementation
of the SPD3 dynamic data race detector for TBB programs, (4)
tdebug-llvm contains the compiler pass in Clang+LLVM 3.7 that
instruments the TBB program with calls to the data race detection
library, (5) tbb-lib contains the modified Intel TBB library to enable
data race detection, and (6) test_suite contains 120 unit tests, which
includes racy and non-racy programs with and without locks and
schedule sensitive branches.

The benchmark applications used for performance evaluation is
available for download at http://bit.ly/29i3OYL. The entire arti-
fact including the tools and the benchmark applications requires
approximately 6 GB of storage space.

9.1 Setup
Run-time Environment. PTRacer has been developed and

tested on a 4.00GHz four-core Intel x86-64 i7 processor, with 64
GB of memory running 64-bit Ubuntu 14.04.3. PTRacer works
on C++ programs that use the Intel TBB library. PTRacer requires
the C++ programs to be compiled with the Clang+LLVM compiler
provided with the artifact.

Software Dependencies. Our artifact uses CMake to compile
the Clang+LLVM sources. CMake can be downloaded from https:
//cmake.org/download/. To install CMake on Ubuntu use

$ sudo apt-get install cmake

PTRacer uses Z3 to check the satisfiability of the generated
formula. Z3 is available on GitHub at the URL https://github.com/
Z3Prover/z3. To install Z3, execute the following commands:

$ cd <Z3_base_directory>
$ python scripts/mk_make.py
$ cd build; make
$ export PYTHONPATH =

<path_to_Z3_base_directory>/build

Our artifact uses jgraph, a postscript graphing tool, to generate
the performance graph. The jgraph tool is available as a package
for installation on Ubuntu. To install jgraph on Ubuntu, execute the
following command:

$ sudo apt-get install jgraph

To convert the postscript graph generated by jgraph to a pdf
we use epstopdf. To install epstopdf on Ubuntu, execute the
following command:

$ sudo apt-get install texlive-font-utils

Installation. We provide two bash scripts to automate the in-
stallation of PTRacer and SPD3: build_PTRacer.sh and
build_SPD3.sh. We use < PT_ROOT > to refer to the base
directory of our artifact.

To build PTRacer, run the build_PTRacer.sh shell script.

$ cd <PT_ROOT>
$ source build_PTRacer.sh

To build SPD3, run the build_SPD3.sh shell script.

$ cd <PT_ROOT>
$ source build_SPD3.sh

Note, the shell scripts have to be sourced at the command-line.
The installation will fail if they are run as executables (i.e., with ./
command).

Download the benchmarks from http://bit.ly/29i3OYL. To unpack
the benchmarks,

$ cd <PT_ROOT>
$ tar -xvf <path_to_benchmarks.tar.gz>

9.2 Usage
Test-suite. The unit tests can be compiled by running make in

the test_suite directory. The unit tests are compiled using the
Clang+LLVM compiler provided in the artifact, which instruments
the unit tests with calls to the data race detection library. To execute
each unit test use

$./<unit_test>

Alternatively, we provide a python script run_tests.py to ex-
ecute all test programs and generate a test report. To run PTRacer
on the unit tests use

$ python run_tests.py -d ptracer > report.txt

To run SPD3 use

$ python run_tests.py -d spd3 > report.txt

Note, to execute PTRacer on the unit tests, first run the build
script for PTRacer and then run run_tests.py. Similarly, for
SPD3, first run the build script for SPD3. This is necessary since
the build scripts setup the appropriate paths to run the specific data
race detector.

Benchmarks. We provide a python script that executes PTRacer
and SPD3 on the benchmarks. Since the benchmark applications
are long running we suggest using the nohup command to run the
script. To run the benchmarks,

$ cd benchmarks
$ nohup python run_bmarks.py > report.txt &

Note, to execute PTRacer on the unit tests, first run the build
script for PTRacer and then run run_bmarks.py. Similarly,
for SPD3, first run the build script for SPD3.

9.3 Expected Results
Test-suite. The python script run_tests.py reports the num-

ber of unit tests that succeed or fail. A unit test succeeds if the data
race detection tool reports all the data races that exist in the unit test
and does not report any false positives. For all the unit tests that
failed, the python script reports the cause of the failure, whether it
was due to a missed data race or a false positive. All the unit tests
are expected to succeed when executed with PTRacer. In contrast,
SPD3 is expected to miss races and report false positives.

Benchmarks. The python script run_bmarks.py executes
PTRacer and SPD3 on each benchmark application and generates
a bar graph called Slowdown_graph.pdf. This graph shows the
relative slowdown of executing the benchmark application with the
data race detection tool over the baseline execution without instru-
mentation. The average slowdown of PTRacer over the benchmark
suite on a x86-64 bit 4.00GHz machine with four cores and 64GB
RAM (with simultaneous multithreading disabled) is expected to be
6.7× ± 1×. The mean slowdown of SPD3 is expected to be 5.4×.

843

https://github.com/rutgers-apl/PTRacer
http://bit.ly/29i3OYL
https://cmake.org/download/
https://cmake.org/download/
https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3
http://bit.ly/29i3OYL

10. REFERENCES

[1] M. Abadi, C. Flanagan, and S. N. Freund. Types for safe
locking: Static race detection for java. ACM Trans. Program.
Lang. Syst., 28(2):207–255, 2006.

[2] T. Bergan, L. Ceze, and D. Grossman. Input-covering sched-
ules for multithreaded programs. In Proceedings of the 2013
ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications, pages
677–692, 2013.

[3] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec bench-
mark suite: Characterization and architectural implications. In
Proceedings of the 17th International Conference on Parallel
Architectures and Compilation Techniques, pages 72–81, 2008.

[4] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve,
S. Heumann, R. Komuravelli, J. Overbey, P. Simmons,
H. Sung, and M. Vakilian. A type and effect system for de-
terministic parallel java. In Proceedings of the 24th ACM
SIGPLAN Conference on Object Oriented Programming Sys-
tems Languages and Applications, pages 97–116, 2009.

[5] M. D. Bond, K. E. Coons, and K. S. McKinley. Pacer: Propor-
tional detection of data races. In Proceedings of the 31st ACM
SIGPLAN Conference on Programming Language Design and
Implementation, pages 255–268, 2010.

[6] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar. Habanero-java:
The new adventures of old x10. In Proceedings of the 9th
International Conference on Principles and Practice of Pro-
gramming in Java, pages 51–61, 2011.

[7] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kiel-
stra, K. Ebcioglu, C. von Praun, and V. Sarkar. X10: An
object-oriented approach to non-uniform cluster computing.
In Proceedings of the 20th Annual ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages, and
Applications, pages 519–538, 2005.

[8] G.-I. Cheng, M. Feng, C. E. Leiserson, K. H. Randall, and
A. F. Stark. Detecting data races in cilk programs that use
locks. In Proceedings of the 10th ACM Symposium on Parallel
Algorithms and Architectures, pages 298–309, 1998.

[9] H. Cui, J. Wu, C.-C. Tsai, and J. Yang. Stable deterministic
multithreading through schedule memoization. In Proceedings
of the 9th USENIX Conference on Operating Systems Design
and Implementation, pages 1–13, 2010.

[10] L. De Moura and N. Bjørner. Z3: An efficient smt solver.
In Proceedings of the Theory and Practice of Software, 14th
International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 337–340, 2008.

[11] L. Effinger-Dean, B. Lucia, L. Ceze, D. Grossman, and H.-J.
Boehm. Ifrit: Interference-free regions for dynamic data-race
detection. In Proceedings of the ACM International Confer-
ence on Object Oriented Programming Systems Languages
and Applications, pages 467–484, 2012.

[12] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: A race
and transaction-aware java runtime. In Proceedings of the
28th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 245–255, 2007.

[13] D. Engler and K. Ashcraft. Racerx: Effective, static detec-
tion of race conditions and deadlocks. In Proceedings of the
Nineteenth ACM Symposium on Operating Systems Principles,
pages 237–252, 2003.

[14] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk.
Effective data-race detection for the kernel. In In Proceedings
of the 9th USENIX conference on Operating systems design
and implementation, 2010.

[15] M. Feng and C. E. Leiserson. Efficient detection of determi-
nacy races in cilk programs. In Proceedings of the 9th ACM
Symposium on Parallel Algorithms and Architectures, pages
1–11, 1997.

[16] C. Flanagan and S. N. Freund. Fasttrack: Efficient and precise
dynamic race detection. In Proceedings of the 30th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, pages 121–133, 2009.

[17] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementa-
tion of the cilk-5 multithreaded language. In Proceedings of the
ACM SIGPLAN 1998 Conference on Programming Language
Design and Implementation, pages 212–223, 1998.

[18] J. L. Greathouse, Z. Ma, M. I. Frank, R. Peri, and T. Austin.
Demand-driven software race detection using hardware perfor-
mance counters. In Proceedings of the 38th Annual Interna-
tional Symposium on Computer Architecture, pages 165–176,
2011.

[19] D. Grossman and R. E. Anderson. Introducing parallelism
and concurrency in the data structures course. In Proceedings
of the 43rd ACM Technical Symposium on Computer Science
Education, 2012.

[20] J. Huang, Q. Luo, and G. Rosu. Gpredict: Generic predictive
concurrency analysis. In Proceedings of the 37th International
Conference on Software Engineering - Volume 1, pages 847–
857, 2015.

[21] J. Huang, P. O. Meredith, and G. Rosu. Maximal sound predic-
tive race detection with control flow abstraction. In Proceed-
ings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 337–348, 2014.

[22] J. Huang and L. Rauchwerger. Finding schedule-sensitive
branches. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, pages 439–449, 2015.

[23] J. Huang, C. Zhang, and J. Dolby. Clap: Recording local execu-
tions to reproduce concurrency failures. In Proceedings of the
34th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 141–152, 2013.

[24] V. Kahlon, F. Ivančić, and A. Gupta. Reasoning about threads
communicating via locks. In Proceedings of the 17th Inter-
national Conference on Computer Aided Verification, pages
505–518, 2005.

[25] D. Lea. A java fork/join framework. In Proceedings of the
ACM 2000 Conference on Java Grande, pages 36–43, 2000.

[26] L. Lu, W. Ji, and M. L. Scott. Dynamic enforcement of deter-
minism in a parallel scripting language. In Proceedings of the
35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 519–529, 2014.

844

[27] N. Machado, B. Lucia, and L. Rodrigues. Concurrency debug-
ging with differential schedule projections. In Proceedings of
the 36th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 586–595, 2015.

[28] D. Marino, M. Musuvathi, and S. Narayanasamy. Literace:
Effective sampling for lightweight data-race detection. In Pro-
ceedings of the 30th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 134–143,
2009.

[29] M. McCool, A. Robison, and J. Reinders. Structured Parallel
Programming: Patterns for Efficient Computation. Morgan
Kaufmann, 2012.

[30] J. Mellor-Crummey. On-the-fly detection of data races for
programs with nested fork-join parallelism. In Proceedings of
the 1991 ACM/IEEE Conference on Supercomputing, pages
24–33, 1991.

[31] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic.
Cets: Compiler enforced temporal safety for c. In Proceedings
of the 2010 International Symposium on Memory Management,
2010.

[32] M. Naik, A. Aiken, and J. Whaley. Effective static race de-
tection for java. In Proceedings of the 27th ACM SIGPLAN
Conference on Programming Language Design and Implemen-
tation, pages 308–319, 2006.

[33] R. H. B. Netzer and B. P. Miller. What are race conditions?:
Some issues and formalizations. ACM Lett. Program. Lang.
Syst., pages 74–88, 1992.

[34] E. Pozniansky and A. Schuster. Efficient on-the-fly data race
detection in multithreaded c++ programs. In Proceedings
of the Ninth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 179–190, 2003.

[35] P. Pratikakis, J. S. Foster, and M. Hicks. Locksmith: Context-
sensitive correlation analysis for race detection. In Proceed-
ings of the 27th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 320–331, 2006.

[36] R. Raman. Dynamic Data Race Detection for Structured
Parallelism. PhD thesis, Rice University, 2012.

[37] R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav. Ef-
ficient data race detection for async-finish parallelism. In
Proceedings of the 1st International Conference on Runtime
Verification, pages 368–383, 2010.

[38] R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav. Scal-
able and precise dynamic datarace detection for structured
parallelism. In Proceedings of the 33rd ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation,
pages 531–542, 2012.

[39] J. Reinders. Intel Threading Building Blocks. O’Reilly &
Associates, Inc., 2007.

[40] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Ander-
son. Eraser: A dynamic data race detector for multi-threaded
programs. In Proceedings of the 16th ACM Symposium on
Operating Systems Principles, pages 27–37, 1997.

[41] K. Serebryany and T. Iskhodzhanov. Threadsanitizer: Data
race detection in practice. In Proceedings of the Workshop on
Binary Instrumentation and Applications, pages 62–71, 2009.

[42] J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, A. Ky-
rola, H. V. Simhadri, and K. Tangwongsan. Brief announce-
ment: The problem based benchmark suite. In Proceedings of
the 24th Annual ACM Symposium on Parallelism in Algorithms
and Architectures, pages 68–70, 2012.

[43] A. Sinha, S. Malik, and A. Gupta. Efficient predictive analysis
for detecting nondeterminism in multi-threaded programs. In
Formal Methods in Computer-Aided Design, pages 6–15, 2012.

[44] A. Sinha, S. Malik, C. Wang, and A. Gupta. Predictive analysis
for detecting serializability violations through trace segmenta-
tion. In Proceedings of the 28th ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages
446–455, 2011.

[45] Y. Smaragdakis, J. Evans, C. Sadowski, J. Yi, and C. Flana-
gan. Sound predictive race detection in polynomial time. In
Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pages 387–
400, 2012.

[46] J. W. Voung, R. Jhala, and S. Lerner. Relay: Static race detec-
tion on millions of lines of code. In Proceedings of the the 6th
Joint Meeting of the European Software Engineering Confer-
ence and the ACM SIGSOFT Symposium on The Foundations
of Software Engineering, pages 205–214, 2007.

[47] C. Wang, S. Kundu, M. Ganai, and A. Gupta. Symbolic
predictive analysis for concurrent programs. In Proceedings
of Formal Methods, pages 256–272, 2009.

[48] C. Wang, Y. Yang, A. Gupta, and G. Gopalakrishnan. Dynamic
model checking with property driven pruning to detect race
conditions. In Proceedings of the 6th International Symposium
on Automated Technology for Verification and Analysis, pages
126–140, 2008.

[49] A. Yoga and S. Nagarakatte. PTRacer. https://github.com/
rutgers-apl/PTRacer. Retrieved 2016-07-29.

845

https://github.com/rutgers-apl/PTRacer
https://github.com/rutgers-apl/PTRacer

	Introduction
	Background
	Dynamic Program Structure Tree
	SPD3 Race Detector

	Approach
	Static Instrumentation Component
	Parallel Dynamic Data Race Detector
	Diagnosis Phase

	Implementation
	Metadata Organization
	Optimizations

	Experimental Evaluation
	Related Work
	Conclusion
	ACKNOWLEDGMENTS
	Artifact Description
	Setup
	Usage
	Expected Results

	REFERENCES

