
Automated Workflow Regression Testing for Multi-tenant
SaaS

Integrated Support in Self-Service Configuration Dashboard

Majid Makki Dimitri Van Landuyt Wouter Joosen
iMinds-DistriNet, KU Leuven 3001 Leuven, Belgium

firstname.lastname@cs.kuleuven.be

ABSTRACT
Single-instance multi-tenant SaaS applications allow tenant
administrators to (extensively) customize the application
according to the requirements of their organizations. In
the specific case of workflow-driven applications, the SaaS
provider may offer a set of pre-defined workflow activities
and leave their composition to the tenant administrators.
In such cases, the tenant administrator can instantiate new
variants of the application without deploying new software.
This effectively makes these tenant administrators part of
the DevOps team, and in turn creates the need for the SaaS
provider to provide them with Quality Assurance tool sup-
port. One such tool is a regression testing framework that
allows them to make sure that a new version of a workflow
can behave similarly as to a successful execution of a previ-
ous version.
This paper highlights the potential and discusses the inher-
ent challenges of running regression tests on workflows in
the production environment of a multi-tenant SaaS appli-
cation and outlines a solution in terms of architecture and
automation techniques for mocking and regression detection
under control of tenant administrators.

CCS Concepts
•Applied computing → Business process management;
Service-oriented architectures; •Computer systems or-
ganization → Cloud computing; •Software and its en-
gineering → Software testing and debugging;

Keywords
Automated Regression Testing, Application-level Multi-
tenancy, Software-as-a-Service

1. INTRODUCTION
Single-instance multi-tenant Software-as-a-Service (SaaS)

applications serve multiple tenant organizations with differ-
ent requirements using a single instance of the application.

Tenant administrators configure or customize the applica-
tion such that it behaves according to the needs of the users
associated with their own organization. To ensure the eco-
nomic viability of the cloud offering, such configuration ac-
tivities are ideally done entirely in a self-service manner [10,
11], requiring no SaaS provider involvement. However, re-
moving the SaaS provider staff from the configuration pro-
cess requires certain measures for making sure that the ten-
ant administrators configure the system appropriately.

In case of workflow-driven applications, one important
point of customization is the workflow definition (cf. [7, 8,
9]). The customization story can go as far as allowing the
tenant administrator to design a workflow consisting of ac-
tivities predefined by the SaaS provider. While designing
workflows is a task of the development team and releasing
new software variants is a task of the IT operations team,
these two tasks are partially delegated to tenant administra-
tors in economically successful multi-tenant settings. Once
these tasks are delegated to tenant administrators, they be-
come part of the DevOps1 team and partially in charge of
their own service.

This however, raises the need to provide the tenant admin-
istrators with suitable Quality Assurance (QA) tools as part
of the self-service configuration dashboard in the production
environment itself [10]. They can also update the workflow
definition from time to time when their requirements change.
Nonetheless, they may still expect an equivalent behavior
from the system under a number of similar circumstances
and in such cases automated regression testing shows great
potential. Provisioning a separate environment for testing
which mirrors the production environment is technically pos-
sible but considered too costly, potentially hampering the
economic viability of the single-instance multi-tenant SaaS
offering.

Running a regression test on a workflow definition in the
production environment of a SaaS application is different
from running a regression test on a piece of code in the
developer’s workbench or even the entire application in the
development team’s integration server. There are challenges
rooted from the SaaS business model, long lifespan of work-
flows (compared to computer programs), complex nature of
possible regression types in a workflow, and mission-critical
status of artifacts in the production environment.

In this work-in-progress paper, we draw a perspective to-
ward automated regression testing of workflows in SaaS pro-
duction environment where test cases are directly derived

1An abbreviation for Development and Operations.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

A-TEST’16, November 18, 2016, Seattle, WA, USA
c© 2016 ACM. 978-1-4503-4401-2/16/11...$15.00

http://dx.doi.org/10.1145/2994291.2994302

70

Start

Meta-data
Elicitation

Standard
Generation

Signing Send by Email

End

Figure 1: Document Processing Workflow in BPMN 2.0 - Version 1

Start

Meta-data
Elicitation

Premium
Generation

Signature
Required?

Signing

Merge

Send by Email

End

Yes

No

Figure 2: Document Processing Workflow in BPMN 2.0 - Version 2

from previous successful executions. The contributions of
this paper are three-fold: (i) we highlight the potential of
tightly integrated automation of workflow regression test-
ing in the context of cloud offerings that rely extensively on
self-service; (ii) we identify and analyze the inherent chal-
lenges of workflows regression testing in a SaaS production
environment; and (iii) we outline a solution for overcoming
these challenges in terms of an architectural sketch and a
set of configurable test automation techniques.

The architectural sketch aims at avoiding the costly mir-
roring of the production environment and the automation
techniques are destined to avoid undesired side-effects of
testing in the production environment, to decrease test exe-
cution time and to detect regressions vis-à-vis previous ver-
sions. The work leading to these contributions are based on
frequent and intensive interactions with Belgian workflow-
driven SaaS providers in the context of a number of collab-
orative research projects [1, 3, 6].

The rest of this paper is structured as follows. Section 2
presents a motivating example. Section 3 elaborates on the
challenges that the framework should deal with. Section 4
outlines the elements of the testing framework align with
test automation techniques. Finally, Section 5 concludes
the paper.

2. MOTIVATING EXAMPLE
This section briefly presents a workflow-driven multi-

tenant document processing SaaS application where tenant
administrators can customize the application behavior by
designing a workflow using elements provided by the SaaS
provider out-of-the-box. We use Business Process Model
and Notation (BPMN) 2.02 [2] to illustrate workflows.

The SaaS provider provides tenants with a set of prede-
fined workflow activities and impose some constraints on
how these activities can be composed to form a workflow.
For instance, using the Meta-data Elicitation activity is
always mandatory because without the latter it is neither
possible to generate documents nor to distribute them. How-
ever, for generating documents, two alternative activities are
provided namely Standard Generation and Premium Gen-

eration. The tenant administrators can choose any of these

2This is the most recent version of a standardized modeling
notation by the Object Management Group (OMG), which,
next to the Business Process Exection Language (BPEL) [5]
is increasingly being adopted in practice.

two depending on their requirements and budget but they
are obliged to put at least one of these activities immediately
after Meta-data Elicictation. For instance, as shown in
Figure 1, Tenant A has chosen Standard Generation for
generating their invoices.

In order to be able to generate and send their leaflets and
advertisements using the same system, the administrator of
Tenant A updates their initially designed workflow into the
one depicted in Figure 2. There are two main differences.
Firstly, they have chosen Premium Generation in order to
benefit from the advanced templates offered by the latter.
Secondly, the tenant administrator makes the Signing activ-
ity optional because leaflets and advertisements, as opposed
to invoices, are not signed before sending.

Even though the workflow design is changed, it should be-
have as before for the invoices. In order to make sure that
the existing behavior of the system in processing invoices is
not disturbed, the tenant administrator wants to run regres-
sion tests before activating the new workflow design for their
organization. For that purpose, the SaaS provider should of-
fer integrated and automated regression testing in the self-
service configuration dashboard.

3. CHALLENGES
In a more realistic scenario, integrating and automating

workflow regression tests in the self-service configuration
dashboard of a SaaS application involves a number of chal-
lenges. This section elaborates on four main challenges that
a testing framework should deal with in that regard.

C1: Test Case Generation. Since tenant adminis-
trators are not professional QA engineers, the framework
should automatically generate a test case by allowing the
tenant administrator to select from a previous execution of
the workflow. This requires starting the test workflow in ex-
actly the same manner as the selected past execution. This
further requires comparing the outcome of two executions
based on regression criteria specified by the tenant admin.

C2: Regression Detection Criteria. The effects of
workflow executions are reflected in (i) values of workflow
variables, (ii) the end nodes where the workflow finishes up,
(iii) data implicitly modified or sent out by workflow ac-
tivities, and (iv) the intermediate events3 occurred while
executing the workflow. However, depending on the change

3Modern workflow technologies (e.g. BPMN2 or BPEL) al-
low workflows to throw and catch events. For instance, one

71

scenario urging the regression test, only a subset of these
criteria may be relevant. If all items pertaining to these cri-
teria are always considered, the test may end up in a lot of
false-positives.

C3: Undesired Side-effects. The SaaS business model,
like other areas of cloud computing, is based on the pay-
per-use pricing scheme. This implies that executing ser-
vices involve cost. If workflow activities invoking services
not modified in the change scenarios, paying for them only
for the purpose of testing is not interesting for the tenants.
Moreover, some activities may modify mission-critical data
or send them to the outside world (e.g. by sending an email)
which is not desirable. Even though such activities should
not be executed in the test phase, bypassing them should
neither lead to false-positives nor to false-negatives in regres-
sion detection. Furthermore, since a workflow is a persistent
entity, running a test workflow in the production environ-
ment should be performed in such a way that the operational
database is not affected by the test execution. This should
not partially introduce the costly solution of mirroring the
production environment for testing.

C4: Longevity and Interdependence. Modern work-
flow technologies, such as BPMN2, allows configuring a
timer in the workflow definition. However, while executing
regression tests, the tenant administrator cannot wait until
a timer configured to trigger every Friday at midnight trig-
gers. Furthermore, certain events may not be even thrown
at all in the test execution. An example is when the event
is thrown by workflow and is supposed to be handled by
another. In the normal production execution, the thrown
event of the first workflow will be handled by the second
workflow. However, if the tenant administrator wants to test
the second workflow independently, the event would never
be thrown and the second workflow will halt at a certain
point. The framework should provide a way to avoid these
halts or waiting times.

4. PROPOSED SOLUTION
This section outlines the solution for overcoming the above

challenges. This consists of a high-level architectural view of
the testing framework, a set of techniques aimed at manip-
ulating the workflow definition before executing test cases
and a mechanism for regression detection.

4.1 Overall View
Figure 3 demonstrates the main components and their re-

lationships. The two components highlighted by color are
provided by our testing framework and the others are either
developed by the SaaS provider or provided by third-parties
out-of-the-box. The SaaS developers use the Test Automa-

tion API to allow the tenant administrators automatically
execute regression test cases. The History Log repository
is updated by the Snapshot Creator. The latter is an inter-
ceptor which is notified by the workflow engine before and
after execution of each step of the workflow. Each time it is
notified, it creates a snapshot of the workflow instance and
stores it in the History Log repository.

The tenant administrator selects one successful execution
of the workflow from the History Log repository. Then, the

workflow throws an exception if a certain condition is met
and a second workflow handles the exception. The workflow
engine mediates between the two workflows.

Operational

Database

History Logs

InMemory DB

T
e

st
 A

u
to

m
a

ti
o

n
 A

P
I

B
u

si
n

e
ss

 C
o

m
p

o
n

e
n

ts

W
o

rk
fl

o
w

 E
n

g
in

e

W
F

 E
x
e

cu
ti

o
n

S
e

ss
io

n
s

W
F

 T
e

st

E
x

e
c

u
ti

o
n

S
e

ss
io

n
s

M
u

lt
i-

te
n

a
n

t
C

o
n

fi
g

u
ra

ti
o

n
 D

a
sh

b
o

a
rd

S
n

a
p

sh
o

t

C
re

a
to

r

W
o

rk
fl

o
w

 E
n

g
in

e

Figure 3: Top-Level Architecture

testing framework should start the test workflow by trigger-
ing exactly the same start node4 and by feeding the work-
flow instance with the same values assigned to the workflow
variables in the selected past execution (cf. C1).

As it is shown in Figure 3, the workflow engine used by the
Test Automation API is separated from the one used by the
Business Components in order to keep the data persisted
by the workflow engine for the mere purpose of testing out
of the Operational Database. This is compliant with the
third point made in C3 , namely the fact that the production
environment should not be even partially mirrored, because
it allows persisting the test workflow states in an InMemory

Database which is dropped after the test execution.

4.2 Workflow Manipulation
As implied by C3 and C4 , certain workflow steps should

be circumvented in test execution. For circumventing such
steps, the framework should modify the workflow definition,
in the following respects, before starting the test execution.

Mocking Activities. In order to avoid the undesired
side-effects discussed in C3 , certain activities should be
mocked. Mocking means producing the expected effect of
an activity without actually executing it. For mocking an
activity, the latter should be replaced by a Mock Activity.

When the activity has been used in the past executions of
the workflow, it is possible to mock the activity by consulting
the History Log repository. This amounts to querying the
snapshots taken before executing the activity when workflow
variables holding the same values as mocking time. Subse-
quently, the test workflow variables should be assigned the
same values recorded in the corresponding snapshot of the
History Log taken after executing the activity.

When the activity has not been used in the past, the only
way to mock it is by prompting the tenant administrator
for entering the changes that should be made in workflow
variables as a result of mocking.

Before applying any of these mocking tactics, the frame-
work should automatically group workflow activities into
two groups: previously-used and new. This can be done

4It is assumed that a workflow definition may have multiple
start nodes but only one of them can be triggered in every
execution. This assumption holds for most modern workflow
technologies such as BPMN2 or BPEL.

72

by comparing the old and the new version of the workflow
definition. For instance, by comparing the workflows shown
in Figures 1 and 2, the framework should group Meta-data

Elicitation, Signing and Send by Email as previously-
used activities and Premium Generation as new activity.

Skipping Steps. The time-consuming or hindering work-
flow steps, discussed in C4 , should be skipped over in order
to make the test execution feasible and sufficiently rapid.
The testing framework should replace such workflow steps
by new steps bearing the same name and making no changes
in terms of workflow variables. The latter characteristics of
the replacement steps guarantees that neither false-positives
are caused by them nor do they mask true-positives.

4.3 Regression Detection
As indicated in C2 , regression can be detected based on

four different criteria. However, the framework should al-
low the tenant administrator to select any of these as re-
gression detection criteria because any of them might be
relevant or irrelevant depending on tenant-specific require-
ments. For example, a tenant may not be concerned about
the end nodes in which the workflow finishes. The tenant
admin’s control over what to be included in regression de-
tection criteria and what to be excluded from it is even more
fine-grained. The framework should allow the tenant admin-
istrator to indicate certain elements for each of these four
criteria to be ignored in regression detection. This helps the
tenant administrator to avoid false-positives where s/he ex-
pects a change in the test execution vis-à-vis the successful
execution of the past.

The most difficult of the four criteria to evaluate is the
data implicitly modified by activities or sent by them to the
outside world. Since we do not really execute some activities
at the testing phase and mock them instead, it is sufficient
to have a trace of all the mocked activities traversed in test
execution. The same tracking mechanism is required both
for end nodes reached and intermediate events occurred in
the course of test workflow execution (cf. C2). Therefore,
an observer is injected into the test workflow engine which
is notified after each node of the BPMN2 model is traversed.
This observer keeps track of all the nodes and the trace will
be used in the final phase for detecting regression.

Regression detection consists of comparing any combina-
tion (based on tenant-admin’s preferences) of the following
four elements after the test workflow completes: (i) val-
ues assigned to variables; (ii) names of all activities mocked
in the course of test workflow execution; (iii) names of all
events skipped over (cf. Section 4.2); and (iv) names of end
nodes where the test workflow finishes in. Obviously, any
variable, activity, event or end node indicated by the tenant
administrator to be ignored will be excluded from this final
comparison to avoid false-positives.

5. CONCLUSION
In this paper, we discussed the main challenges of embed-

ding a workflow regression testing tool in the production en-
vironment of a SaaS application and proposed a solution in
terms of a high-level architecture and test automation tech-
niques. The proposed architecture helps avoiding the costly
and complex mirroring of the production environment for
online test execution by tenant administrators. The test-
ing framework leverages on the workflow executions in the
past to both automatically generate a test case and to by-

pass costly, halting or time-consuming workflow steps. It
also enables the tenant administrator to configure the re-
gression detection mechanism.

This work is motivated from our frequent collaborations
with industrial partners active in a wide range of application
domains, from automated document processing to e-health
workflows, and this work fits in our ongoing research on
workflow-driven multi-tenant SaaS [1, 3, 7, 6]. We are cur-
rently implementing the proposed testing framework on top
of jBPM [4] and evaluating it in the context of the industry
cases mentioned above.

6. ACKNOWLEDGMENTS
This research is partially funded by the Research Fund KU

Leuven, the ADDIS research program funded by KU Leuven
GOA, the DeCoMAdS SBO strategic research project, and
the MuDCads O&O project.

7. REFERENCES
[1] D-Base. Decentralized support for Business processes

in Application Services (iMinds ICON project), 2014.

[2] Business Process Model and Notation (BPMN).
http://www.omg.org/spec/BPMN/2.0/PDF/.
Accessed: 2015-08-04.

[3] DeCoMAdS. Deployment and Configuration
Middleware for Adaptive Software-as-a-Service (SBO
project), 2014-2018.

[4] RedHat JBoss jBPM. http://www.jbpm.org/.
Accessed: 2016-02-17.

[5] Web Services Business Process Execution Language.
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.
0-OS.html. Accessed: 2016-06-04.

[6] iMinds-OCareCloudS: Organizing Home Care Using a
Cloud-based Platform.
http://www.iminds.be/en/projects/ocareclouds, June
2016.

[7] M. Makki, D. Van Landuyt, S. Walraven, and
W. Joosen. Scalable and manageable customization of
workflows in multi-tenant saas offerings. In
Proceedings of the 31st annual acm symposium on
applied computing, pages 432–439. ACM, 2016.

[8] R. Mietzner and F. Leymann. Generation of bpel
customization processes for saas applications from
variability descriptors. In Services Computing, 2008.
SCC’08. IEEE International Conference on, volume 2,
pages 359–366. IEEE, 2008.

[9] W. M. Van Der Aalst. Business process configuration
in the cloud: how to support and analyze multi-tenant
processes? In Web Services (ECOWS), 2011 Ninth
IEEE European Conference on, pages 3–10. IEEE,
2011.

[10] D. Van Landuyt, S. Walraven, and W. Joosen.
Variability middleware for multi-tenant saas
applications: a research roadmap for service lines. In
Proceedings of the 19th International Conference on
Software Product Line, pages 211–215. ACM, 2015.

[11] S. Walraven, D. Van Landuyt, E. Truyen,
K. Handekyn, and W. Joosen. Efficient customization
of multi-tenant software-as-a-service applications with
service lines. Journal of Systems and Software,
91:48–62, 2014.

73

