
Validate Your SPDX Files for Open Source License
Violations

Demetris Paschalides
University of Cyprus
1, University Avenue

2109, Aglantzia, Cyprus
dpasch01@cs.ucy.ac.cy

Georgia M. Kapitsaki
University of Cyprus
1, University Avenue

2109, Aglantzia, Cyprus
gkapi@cs.ucy.ac.cy

ABSTRACT
Licensing decisions for new Open Source Software are not al-
ways straightforward. However, the license that accompanies
the software is important as it largely affects its subsequent
distribution and reuse. License information for software
products is captured - among other data - in the Software
Package Data Exchange (SPDX) files. The SPDX specifi-
cation is gaining popularity in the software industry and
has been adopted by many organizations internally. In this
demonstration paper, we present our tool for the validation
of SPDX files regarding proper license use. Software packages
described in SPDX format are examined in order to detect
license violations that may occur when a product combines
different software sources that carry different and potentially
contradicting licenses. The SPDX License Validation Tool
(SLVT) gives the opportunity to check the compatibility of
one or more SPDX files. The evaluation performed on a
number of software packages demonstrates its usefulness for
drawing conclusions on license use, revealing violations in
some of the test projects.

CCS Concepts
•Software and its engineering → Reusability; Open
source model; Software libraries and repositories;

Keywords
open source software; licensing; Software Package Data Ex-
change

1. INTRODUCTION
Free Open Source Software (FOSS) is nowadays widely

used for the creation of large software systems. Existing
software components are integrated in new implementations
leading to derivative works of existing products, i.e., works
adapted from the originally copyrighted item [11]. These
reusable software components often carry different licenses

with different terms in respect to the software use and distri-
bution [14]. Licenses provide the terms under which the use
of the intellectual property of the licensor, i.e., the software
creator, is feasible. Choosing the correct license to apply
on a new software system is not a trivial task due to the
differences in license terms and it is affected both by the
intentions of use for the software under construction and the
integration of third party software that may carry specific -
and sometimes conflicting - licenses [2].

Unfortunately cases of incorect license use can be encoun-
tered and these may lead to legal conflicts [1]. Users may
opt for using popular licenses (e.g., Apache license, MIT
license) instead of the correct license that does not violate
the terms of the license of adopted software. They may also
not consider properly the three main license categories of
permissive, weak- and strong-copyleft [6]. Therefore, the final
license(s) used on a product is(are) not allowed to conflict
with the licenses of existing third party software that forms
part of that product, e.g., code from third party software may
have been included statically or be linked dynamically to
the product. If we consider, for instance, a software product
that carries an Apache version 2.0 license (Apache-2.0), but
integrates software that uses the GPL version 2.0 license
(GPL-2.0), a violation exists, since these licenses are incom-
patible: software that carries the GPL-2.0 license cannot be
combined with software that carries the Apache-2.0 license
and be released under that license, and vice versa.

At the same time there is an emerging trend by many
organizations to adopt the Software Package Data Exchange
(SPDX) format for describing their software resources [12].
SPDX is a standard format for communicating the compo-
nents, licenses, and copyrights associated with a software
package [3]. License information is an important aspect
of SPDX. SPDX includes information for all software li-
censes used in the software product covering multi-licensing
schemes and licenses from third party software. Although
SPDX is currently gaining importance, its adoption is per-
formed mainly on an internal level. Wind River is one of
the early adopters and provides also a service that creates
SPDX files from uploaded packages1. Other organizations
that use SPDX internally can be found in Alcatel-Lucent,
Texas Instruments, Samsung and the Yocto project.

On the one hand, the creation of valid SPDX files in terms
of licensing is important since they will accompany each soft-
ware component forming part of its metadata. On the other
hand, the SPDX files received through such communications
need to be used correctly to avoid violations in cases of

1http://spdx.windriver.com/pkg upload.aspx

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

FSE’16, November 13–18, 2016, Seattle, WA, USA
c© 2016 ACM. 978-1-4503-4218-6/16/11...$15.00

http://dx.doi.org/10.1145/2950290.2983939

1047

http://spdx.windriver.com/pkg_upload.aspx

software combinations. Based on the above, the availability
of appropriate mechanisms and tools that assist the use of
SPDX in the framework of license compliance is vital. In this
demonstration paper we present the SPDX License Valida-
tion Tool (SLVT2) that examines license violations that may
exist in a single or multiple SPDX files. The SPDX License
Validation Tool bases the license violation process on the
directed acyclic license graph presented in previous works
of the authors [7, 8]. The graph has been expanded from
its original version and may be further expanded by SLVT
users. The contributions of the SPDX License Validation
online Tool are the following: 1) we provide an online tool
for the analysis of a single SPDX file for violation purposes
and the examination of the combination of SPDX files into a
single software product, 2) we provide a visualization of the
license compatibility graph [7, 8] that can be expanded by
SLVT users, and 3) we expose a RESTful API for the license
violation analysis and the graph expansion services that can
be used for integrating license violation examination into
new systems. A video presenting the functionalities of SLVT
is available online3.

2. BACKGROUND AND RELATED WORK
License compatibilities are targeted in previous works,

but no existing tool provides an automated approach for
validating license combinations. Some previous approaches
focus on modeling license compatibilities via a graph that
captures main open source licenses [2]. The license slide of
Wheeler [15] presents compatibilities among the following
licenses: MIT/X11 license, BSD-new, Apache-2.0, LGPL-
2.1 and LGPL-2.1+, LGPL-3.0 and LGPL-3.0+, MPL-1.1,
GPL-2.0 and GPL-2.0+, GPL-3.0 and GPL-3.0+, and AGPL-
3.0. The more recent license graph captures a total of 22
licenses [7]. As aforementioned we have adopted the latter
graph in this work enriched with additional licenses. Note
that the license name and version notation used throughout
this paper follows the SPDX notation.

Other works provide more detail on the license structure
referring to rights and obligations present in the license text.
In Qualipso [5] an ontology for the modeling of software
systems using the Web Ontology Language (OWL) contains
8 licenses [13]. A more recent work uses license rules ex-
pressed in a legal rule language in XML (Extensible Markup
Language) format applying them to the model of a software
system in order to detect possible licenses automatically
through the Carneades argumentation system [6]. This lat-
ter approach examines license rights in order to suggest an
applicable license for the system, although no specific license
is recommended for use at the end of the process.

In the framework of the SPDX Workgroup and its com-
munity, some tools that integrate SPDX with other systems
have been proposed, although none of them addresses license
compatibilities. An example can be found in the integration
with FOSSology resulting to the FOSSology+SPDX tool.
FOSSology is a license identification tool that can extract
different licenses contained in textual files (e.g., source code,
configuration files) [4]. It relies on an heuristic pattern-
matching algorithm expressed by regular expressions. For
an overview of further related work on license tools available
including license identification the reader is referred to [8].

2http://spdxcompatibility-licensetools.rhcloud.com/
3https://youtu.be/9fgRP24JdKs

In this work we evolve the previous work of license viola-
tions in the framework of SPDX [7] by performing validations
on the content of SPDX, considering additionally more than
one SPDX files providing a relevant tool that can be inte-
grated in new systems. To the best of our knowledge, there
is no online system that provides the opportunity to perform
examination of software products for license violations.

3. SPDX LICENSE VALIDATION TOOL
The SPDX License Validation Tool offers a number of

options for examining SPDX files on license use. Although
the aim is the handling of license compatibilities, the process
is applied on SPDX-structured files, since SPDX is the only
option for formalizing the description of licenses used in
a software system. The proposed tool is operating in the
following way as depicted in the process of Figure 1:

1. asks the user to upload one or more SPDX files,

2. performs validation on the structure of each input,

3. examines the compatibility of the licenses of the soft-
ware package considering the licenses used in each file
of the package independently (i.e., extracted licenses),

4. in case of more than one SPDX files as input, SLVT
proceeds with analyzing the combination of the files,

5. in case of violations but with the possibility of correc-
tion(s) to the SPDX file(s) (in the declared license),
valid SPDX file(s) created by SLVT can be downloaded
by the user.

Figure 1: Analysis steps in the SPDX License Vali-
dation Tool.

SPDX files follow the RDF (Resource Description Frame-
work) format [9]. The aforementioned declared license refers
to the product license indicated by the authors of the package
and is captured in a respective element, for example:

<licenseDeclared rdf:resource=
”http://spdx.org/licenses/Apache-2.0” />
The file contains also a number of extracted licenses that

can be found in files and libraries that comprise the main
software product. This latter category is indicated in SPDX
in licenseInfoFromFiles elements.

SLVT uses the license compatibility graph mentioned in
the previous section. License compatibility analysis depends
on iterating over the license graph to detect licenses that
can be combined without causing violations. Specifically,
the adopted algorithm applies a modified version of Breadth
First Search (BFS) [10]. The structure of the license graph
along with the previous version of the approach has been

1048

http://spdxcompatibility-licensetools.rhcloud.com/
https://youtu.be/9fgRP24JdKs

introduced in a previous publication that adopts a variant
of the Floyd-Warshall algorithm [7]. The modified BFS
has replaced the variant of the Floyd-Warshall algorithm,
as it can be faster in some cases. The traversal algorithm
considers two type of edges that can be found in the graph to
relate licenses. A transitive edge indicates that the adjacent
vertices are linked with a transitive relation, i.e., if license
A is compatible to license B and license B is compatible to
license C, then transitive edges between the vertices indicate
also that A is compatible to C. This relation does not apply
for non-transitive edges.

In short, the modified BFS does not consider non-transitive
edges: when performing BFS traversal initiating from a
specific license vertex, if a vertex of the graph is visited
via a non-transitive edge, that vertex is added in the list
of reachable vertices, but its children (i.e., vertices reached
by its outgoing edges) are not. This modification ensures
that incompatible licenses are not reached. If however, that
same vertex (reached through the non-transitive edge) is also
reachable through another transitive path its children are
considered in the set of reachable vertices to be examined:

SLVT applies the modified BFS algorithm on each SPDX
file by taking into account each extracted license from the
different files of the software. This way SLVT determines a
set of applicable license(s) among the extracted licenses, i.e.,
licenses that can be applied on the software package without
causing violations. Based on this information SLVT examines
whether the declared license(s) of the software package (as
indicated by its creators) is(/are) contained in the applicable
license(s) set.

Using the above procedure if the result of the compatibility
analysis fails (i.e., violations are found), SLVT determines
whether new declared licenses that can resolve these viola-
tions can be used (i.e., so that all licenses in the software
product are compatible). The process performs an iteration
over all possible paths having as starting point each extracted
license of the SPDX file, and if a license compatible with all
other licenses is detected, then this license is considered an
appropriate suggestion. The license(s) suggested can be used
to replace the declared license of the SPDX file.

Note that SLVT requires the use of SPDX files that can
be generated manually or automatically. For the latter case
support is provided by the aforementioned FOSSology that
offers two agents for license extraction purpose: the Nomos
and the newer Monk agent. The FOSSology+SPDX tool of
the SPDX community offers the possibility to create SPDX
files (in tag format) from the licenses extracted from a soft-
ware product. These tag files can be subsequently converted
to RDF format for processing by SLVT. Similar function-
ality is provided by the tool of Wind River4 that performs
license identification on a software package giving as output
an SPDX file (including tag format).

4. IMPLEMENTATION NOTES
The architecture of the SLVT system is shown in Fig-

ure 2), whereas its source code along with some examples for
use are available on GitHub5. SLVT is available under the
GPL-2.0 license or any higher version of the license (GPL-
2.0+). RESTful services expose the different functionalities
providing responses in JSON (JavaScript Object Notation)

41
5https://github.com/dpasch01/spdx-compat-tools

format:

• SPDX Validation Analysis Services: expose the main
functionality of SDPX license validation, whereas the
possibility of retrieving corrected SPDX files with the
suggested license is also provided (for cases, where a
correction is feasible).

• License Compatibility Services: give the possibility to
check compatibilities among licenses relying on the
license graph without using SPDX. This service uses
as input any number of licenses (with license name and
version) and returns whether the licenses are compatible
along with information about applicable license(s) in
case they are.

• Graph Expansion Services: integrate license graph ex-
pansion functionalities giving users the possibility to
add new vertices and edges to the license graph.

Figure 2: Architectural elements of SLVT.

For implementation purposes Java, PHP and JavaScript li-
braries have been used. Regarding the handling of SPDX files
the SPDX License Tools 2.0 provided by the SPDX work-
group has been employed. For instance, the SPDX Viewer
forming part of the tools validates the SPDX document for its
format and provides warning messages when parsing issues
are encountered. The license graph implementation has been
mainly based on the JGraphtl6 library: a free Java graph
library that provides mathematical graph-theory objects and
algorithms.

Regarding the results of SLVT the screenshot of Figure 3
shows the analysis of SLVT for the software product Jex-
celapi. Users are able to view information on the different
licenses used in the software package (i.e., extracted licenses),
the declared license and the analysis results indicating a
validation success or failure with errors in the file. Warnings
are also provided, e.g., if the SPDX files does not contain
any concluded license that indicates the license that the cre-
ator of the SPDX file concluded (according to the SPDX
specification).

5. USE DEMONSTRATION
We have evaluated the SPDX License Validation Tool

using a number of SPDX files generated by Wind River (for

6http://jgrapht.org/

1049

https://github.com/dpasch01/spdx-compat-tools
http://jgrapht.org/

Table 1: SPDX file testing set and results of SLVT.
Software package Package Size License(s) Valid Extracted licenses

Anomos v.0.9.5 824.2 KB GPL-3.0 X GPL-3.0, GPL-3.0+, GPL, LGPL-3.0+

CuteFlow v.2.11.2 3.81 MB BSD-3-Clause x LGPL-2.1+, MIT-style, GPL-3.0+, GPL-2.0, LGPL-2.0+, ClearSilver,

BSD-3-Clause, GPL, MIT, BSD, W3C-possibility, LGPL, GPL-2.0+

HandBrake v.0.10.1 9.96 MB GPL-2.0 x BSD-3-Clause, GPL, LGPL-2.0+, GPL-exception, BSD, GPL-2.0, MIT,

AGPL, Sun-possibility, LGPL-2.1+, MIT-style, GPL-2.0+, MPL-1.1

Jexcelapi v.2.6.12 1.82 MB LGPL-3.0 X LGPL, BSD-style, LGPL-2.1+

Joda-Time v.2.8 940.72 KB Apache-2.0 X Apache-possibility, Apache-2.0, BSD

MrBayes v.3.2.5 5.9 4MB GPL-3.0 X GPL-3.0+, GPL-3.0, GPL-2.0+

opencsv v.3.4 303.41 KB Apache-2.0 X BSD-3-Clause, Apache-2.0

Previsat v.4.4.5 1.24MB GPL-3.0 X Microsoft-possibility, GPL-3.0+, Sun-possibility

Samba v.4.1.0 33.4MB GPL-3.0 X LGPL-3.0+, MIT, PostgreSQL, BSD-2-Clause, GPL-2.0+, BSL-1.0, Zlib

GPL-1.0+, Apache-2.0, BSD-3-Clause,LGPL-2.0+, ISC, Python-2.0

VirtualDub v.1.10.4 2.1MB GPL-2.0 X GPL-2.0+, GPL-2.0

Figure 3: Results of SLVT analysis for Jexcelapi.

Samba) and FOSSology (for the remaining software after
undergoing the license identification process offered by the
Nomos identification agent of FOSSology). Single SPDX
files and some combinations have been used as input. The
software projects considered are depicted in Table 1 along
with their respective sizes and the official software license(s)
as indicated by their creators on the project website. The
projects were randomly selected. Permissive (i.e., Apache-
2.0, BSD 3-Clause, MIT/X11), weak copyleft (i.e., MPL-
1.1, LGPL-3.0) and strong copyleft (i.e., GPL-2.0, GPL-3.0)
licenses are considered, whereas the projects differ also in
size.

Table 1 indicates also the results of the SLVT analysis
on whether the SPDX file is valid and shows the extracted
licenses from the different files as appearing in the SPDX
file. Note that cases with possible license appearance (e.g.,
Sun-possibility) are not taken into account for licenses not
covered in the license graph. For the licenses in the graph, the
latest version of that license category is used when no license
version is indicated (e.g., GPL-3.0 would replace GPL). The
majority of software projects considered do not have any
license violations (80%). In one of the incompatibility cases,
the presence of MPL-1.1 causes violations, since this license
is considered incompatible with many other licenses (e.g.,
LGPL and GPL families). For all three projects that contain
violations no corrective solution exists.

Regarding combinations projects that were known to be
compatible or incompatible were selected in order to verify
whether SLVT would provide the correct result:

• compatibility cases: 1) Jexcelapi combined with Joda-
Time, 2) Previsat combined with VirtualDub.

• incompatibility cases: opencsv, Previsat and Virtual-
Dub are incompatible because Apache-2.0 from opencsv

is incompatible with GPL-2.0 from VirtualDub, even
though each independent file is valid and opencsv can
be combined with Previsat without violations. The
result of this case in SLVT is depicted in Figure 4.

Note that the results of all experiments have been manu-
ally verified in order to assess the accuracy of SLVT. This
was performed by using the license graph in order to investi-
gate whether the licenses of the SPDX file are compatible.
However, errors resulting from false positives of the license
identification tools used cannot be detected.

Figure 4: Results of SLVT analysis among opencsv,
Previsat and VirtualDub.

6. CONCLUSIONS
In this demonstration paper we have presented the on-

line SPDX License Validation Tool that performs license
compatibility examination on SPDX files. The evaluation
performed demonstrates that SLVT provides accurate results
identifying violations caused by incompatibilities in licenses
used in different files of a software package. Regarding the
license compatibility graph expansion we rely on users, but
do not provide currently any mechanism for validating user
input. Our current aim is to evolve the process allowing in-
put from multiple users and their votes for or against graph
updates. Further improvements will focus on the decrease of
the execution time that is currently high when large files are
considered (>10 MB). We are also working on the extension
of SLVT by allowing a more detailed modeling and compat-
ibility check based on license content - divided into rights,
obligations and additional conditions - instead of relying only
on the license name and version captured in the license graph.
In that respect modeling approaches of license text captured
in ontologies or UML diagrams can be utilized [5].

1050

7. REFERENCES
[1] R. M. Azzi. Cpr: how jacobsen v. katzer resuscitated

the open source movement. U. Ill. L. Rev., page 1271,
2010.

[2] I. E. Foukarakis, G. M. Kapitsaki, and N. D. Tselikas.
Choosing licenses in free open source software. In
SEKE, pages 200–204, 2012.

[3] L. Foundation and its Contributors. A common
software package data exchange format, version 2.0.
2015.

[4] R. Gobeille. The fossology project. In Proceedings of
the 2008 international working conference on Mining
software repositories, pages 47–50. ACM, 2008.

[5] T. Gordon. Report on prototype decision support
system for oss license compatibility issues. Qualipso, 79,
2010.

[6] T. F. Gordon. Analyzing open source license
compatibility issues with carneades. In Proceedings of
the 13th International Conference on Artificial
Intelligence and Law, pages 51–55. ACM, 2011.

[7] G. M. Kapitsaki and F. Kramer. Open source license
violation check for spdx files. In Software Reuse for
Dynamic Systems in the Cloud and Beyond, pages
90–105. Springer, 2014.

[8] G. M. Kapitsaki, N. D. Tselikas, and I. E. Foukarakis.
An insight into license tools for open source software

systems. Journal of Systems and Software, 102:72–87,
2015.

[9] G. Klyne and J. J. Carroll. Resource description
framework (rdf): Concepts and abstract syntax. 2006.

[10] C. Y. Lee. An algorithm for path connections and its
applications. Electronic Computers, IRE Transactions
on, (3):346–365, 1961.

[11] V. Lindberg. Intellectual property and open source: a
practical guide to protecting code. ” O’Reilly Media,
Inc.”, 2008.

[12] F. Mancinelli, J. Boender, R. Di Cosmo, J. Vouillon,
B. Durak, X. Leroy, and R. Treinen. Managing the
complexity of large free and open source package-based
software distributions. In Automated Software
Engineering, 2006. ASE’06. 21st IEEE/ACM
International Conference on, pages 199–208. IEEE,
2006.

[13] D. L. McGuinness, F. Van Harmelen, et al. Owl web
ontology language overview. W3C recommendation,
10(10):2004, 2004.

[14] A. Morin, J. Urban, and P. Sliz. A quick guide to
software licensing for the scientist-programmer. PLoS
Comput Biol, 8(7):e1002598, 2012.

[15] D. A. Wheeler. The free-libre/open source software
(floss) license slide. Online http://www. dwheeler.

com/essays/floss-license-slide. pdf, 2007.

1051

	Introduction
	Background and Related work
	SPDX License Validation Tool
	Implementation Notes
	Use Demonstration
	Conclusions
	References

