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ABSTRACT
Recent research has successfully applied the statistical n-
gram language model to show that source code exhibits a
good level of repetition. The n-gram model is shown to have
good predictability in supporting code suggestion and com-
pletion. However, the state-of-the-art n-gram approach to
capture source code regularities/patterns is based only on
the lexical information in a local context of the code units.
To improve predictability, we introduce SLAMC, a novel sta-
tistical semantic language model for source code. It incorpo-
rates semantic information into code tokens and models the
regularities/patterns of such semantic annotations, called se-
memes, rather than their lexemes. It combines the local con-
text in semantic n-grams with the global technical concerns/
functionality into an n-gram topic model, together with pair-
wise associations of program elements. Based on SLAMC,
we developed a new code suggestion method, which is empir-
ically evaluated on several projects to have relatively 18–68%
higher accuracy than the state-of-the-art approach.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms
Algorithms, Documentation, Experimentation, Measurement

Keywords
Statistical Semantic Language Model, Code Completion

1. INTRODUCTION
Previous research has shown that source code in program-

ming languages exhibits a good level of repetition [5, 8].
Studying 420 million LOCs in 6,000 software projects in
SourceForge, Gabel et al. [5] reported syntactic redundancy
at the levels of granularity from 6–40 tokens. For example, a
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for loop such as “for (int i = 0; i < n; i++)” or a printing state-
ment “System.out.println(...)” occur frequently in many source
files. Hindle et al. [8] found that such code regularities/-
patterns can be captured by the n-gram statistical language
model [15] via training on existing codebases. The model is
then leveraged to support code suggestion and completion 1.

The state-of-the-art statistical n-gram language model for
capturing such code repetitions/patterns and code sugges-
tion relies on the lexical information and local context of code
tokens [8]. Lexical analysis is performed on source code to
break it into tokens. The sequences of the tokens, called
n-grams, are collected with different sizes. For a token, only
its textual representation, called lexeme, is extracted. The
n-grams with high occurrence counts correspond to highly
frequent code, called code regularities/patterns.

Using only lexical information, the n-gram model focuses
on capturing code patterns at the lexical level. However,
source code written in programming languages has well-
defined semantics. Programming patterns at the higher lev-
els of abstraction would be useful for code suggestion/compl-
etion as well. For example, let us consider two simple statem-
ents“int len = str.length()”and“int l = s.length()”, when len and
l are of the same type int, and str and s are of the same type
String. Both of them are the instances of the same pattern
of getting the length of a String object and assigning it to an
int variable. It could not be captured at the lexical level due
to the differences of lexemes (e.g. str versus s, len versus l).

Furthermore, such lexical n-grams can provide only the lo-
cal context. However, several programming regularities/pat-
terns might involve program elements that scatter apart and
cannot be captured within n-grams with reasonable sizes.
The first kind of such patterns includes the pairs of program
tokens that are required to occur together due to the syntactic
rules of a programming language (e.g. the pair of try/catch

in Java) or due to the usage specification of a software li-
brary (e.g. lock and unlock in the mutual exclusion library).
Let us call it pairwise association among tokens.

The second kind of such patterns involves multiple co-
occurring tokens that often come together to realize the same
technical functionality/concerns. The API elements such as
methods and data types that are used to implement certain
functionality/concerns will appear together more frequently
in the files related to those concerns. For example, in a
source file relevant to file I/O functionality, the related APIs
such as File, fopen, fread, etc would be more likely to occur

1Code completion refers to completing a partially typed-in token.
Code suggestion means the suggestion of a complete code token
following a code portion [8].
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than the APIs for other concerns. Moreover, with software
modularity, a source file often involves a few technical func-
tionality. Thus, knowing the technical concerns of a source
file could benefit for the prediction of the next token.

In this paper, we introduce SLAMC, a novel statistical
Semantic LAnguage Model for source Code that incorpo-
rates semantic information into code tokens and models the
regularities on their semantic annotations (called sememes),
rather than their lexical values (lexemes). A token is anno-
tated with its data type and semantic role if available. For
example, the token str is semantically annotated as the se-
meme VAR[String], denoting it to have the role of a variable
and String data type. Scopes and dependencies among to-
kens are also used. In addition to the local context of code
tokens, we also consider the global technical concerns of the
source files and the pairwise associations of code tokens. We
combine n-gram modeling and topic modeling into a novel
n-gram topic model to capture the influence of both local
context and global concerns on the next token’s occurrence.

Based on SLAMC’s ability to suggest next tokens, we de-
veloped a new code suggestion engine that is configurable for
Java or C#. Unlike traditional code completion with tem-
plate code, our engine suggests a ranked list of sequences
of tokens that would complete the current code to form a
meaningful code unit and most likely appear next. Meaning-
ful code units are defined based on the language, and appear-
ance likelihood is computed based on the generating proba-
bilities of the sequences. The top-ranked sequences are un-
parsed into lexemes and suggested. Our empirical evaluation
on several subject systems shows that our code suggestion
engine improves from 18–68% accuracy over the state-of-the-
art lexical n-gram approach. Our key contributions are

1. SLAMC, a novel statistical semantic language model
for source code with the integration of semantic n-grams,
global concerns, and pairwise association (Section 3);

2. A code suggestion engine based on SLAMC (Section 4);
3. An empirical evaluation on its accuracy and compari-

son to the state-of-the-art lexical n-gram model (Section 5).

2. BACKGROUND
Statistical language models are used to capture the reg-

ularities/patterns in natural languages by assigning occur-
rence probabilities to linguistic units such as words, phrases,
sentences, and documents [15]. Since a linguistic unit is
represented as a sequence of one or more basic symbols, lan-
guage modeling is performed via computing the probability
of such sequences. To do that, a modeling approach assumes
that a sequence is generated by an imaginary (often stochas-
tic) process of the corresponding language model. Formally:

Definition 1 (Language Model). A language model
L is a statistical, generative model defined via three compo-
nents: a vocabulary V of basic units, a generative process G,
and a likelihood function P (.|L). P (s|L) is the probability
that a sequence s of the elements in V is “generated” by the
language model L following the process G.

When the context of discussion is clear regarding the lan-
guage model L, we use P (s) to denote P (s|L) and call it
the generating probability of sequence s. Thus, a language
model could be simply considered to have a probability dis-
tribution of every possible sequence. It could be estimated
(i.e. trained) from a given collection of sequences (called a
training corpus).

Table 1: Lexical Code Tokens from “len = str.length();”

Lexeme Token Type

len Identifier
= Equal (Symbol)
str Identifier
. Period (Symbol)
length Identifier
( Left parenthesis (Symbol)
) Right parenthesis (Symbol)
; Semicolon (Symbol)

2.1 Lexical Code Tokens and Sequences
Statistical language models have been applied to software

engineering, such as in code suggestion/completion [8]. To
apply such a model to source code, one first needs to define
the vocabulary, i.e. the collection of basic units (also called
terms or words) that are used to make up a sequence. A vo-
cabulary can be constructed via performing lexical analysis
on source code (as a sequence of characters), i.e. breaking it
into code tokens based on the specification of the program-
ming language. The lexemes (lexical values) of the tokens
are then collected as the basic units in the vocabulary. The
input source code is represented as a sequence of lexical code
tokens, which is called lexical code sequence. Formally:

Definition 2 (Lexical Code Token). A lexical code
token is a unit in the textual representation of source code
and associated with a lexical token type including identifier,
keyword, or symbol, specified by the programming language.

Definition 3 (Lexeme). The lexeme of a token is a
sequence of characters representing its lexical value.

Definition 4 (Lexical Code Sequence). A lexical
code sequence is a sequence of consecutive code tokens rep-
resenting a portion of source code.

For example, after lexical analysis, the piece of code “len =

str.length();” is represented by a lexical code sequence of eight
tokens, with their token types and lexemes shown in Table 1.
len, str, and length are three Identifier tokens, while the other
tokens have different types of symbols. In lexical analysis,
no semantic information (e.g. data type) is available. For
example, str is not recognized as a String variable, and length

is not recognized as the name of a method in the String class.

2.2 Lexical N-gram Model for Source Code
A n-gram model is a language model with two assump-

tions. First, it assumes that a sequence could be generated
from left to right. Second, the generating probability of a
word in that sequence is dependent only on its local context,
i.e. a window of previously generated words (a special case of
Markov assumption). Such dependencies are modeled based
on the occurrences of word sequences with limited lengths.
A sequence of n words is called a n-gram. When n is fixed at
1, 2, or 3, the model is called unigram, bigram, or trigram.

Definition 5 (Lexical n-gram). The lexeme of a seq-
uence of n consecutive code tokens is called a lexical n-gram.
It is defined as the sequence of the lexemes of those tokens.

Those assumptions are reasonable for source code. That
is, the next code token could be predictable/dependent on
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the previously written code tokens [8]. For example, in a
source file, the code sequence “for (int i = 0; i <n; ” is con-
sidered as the local context of the next token. This piece of
code could be recognized as a for loop with i as the iterative
variable, and thus, in many cases, the next code token is i.

With the assumption of generating tokens from left to
right, the generating probability of code sequence s = s1s2...
sm is computed as

P (s) = P (s1).P (s2|s1).P (s3|s1s2)....P (sm|s1...sm−1)

That is, the generating probability of a code sequence is
computed via that of each of its tokens. Thus, a language
model needs to compute all possible conditional probabili-
ties P (c|p) where c is a code token and p is a code sequence.
With Markov assumption, the conditional probability P (c|p)
is computed as P (c|p) = P (c|l) in which l is a subsequence
made of the last n − 1 code tokens of p. With this approx-
imation, a model only needs to compute and store the con-
ditional probabilities involving at most n consecutive code
tokens. P (c|l) is often estimated as:

P (c|l) ' count(lex(l, c)) + α

count(lex(l)) + V.α

lex is the function that builds the lexeme of a code se-
quence. For instance, the code sequence i < n might occur in
several places, e.g. in a for or if statement. The same lexeme
sequence (i lparen n) would be created for them, and they are
all counted as the occurrences of the same code sequence. α
is a smoothing value for the cases of small counting values.

2.3 Discussions and Motivation
The lexical n-gram model has been shown to capture well

code regularities/patterns at the lexical level to support code
completion/suggestion [8]. Code patterns at higher levels of
abstraction could be also useful for that task. However, such
patterns with well-defined semantics could not be captured
well with the lexical n-gram model. Moreover, n-grams pro-
vide only the local context for code suggestion, while other
influence factors such as the global context of the source files
could be also useful to predict the next token. In this work,
we aim to address those by 1) adding semantic information,
and 2) adding global influence factors in the model.

2.3.1 Motivation on Adding Semantic Information
Let us consider the following statement“len = str.length();”.

The lexical n-gram model represents it as a lexical sequence
(Table 1). However, an editor with semantic analysis capa-
bility will recognize it as an assignment statement, with the
left-hand side being a variable, and the right-hand side be-
ing an expression, which in turn contains a method call to a
method named length. If the code under editing is sufficient-
ly complete, further semantic analysis such as typing and
scoping will help identify the data types, e.g. len being of
the type int and str being of the type String. Semantic anal-
ysis will also help verify the applicability of the method call
to length on the variable str, and type compatibility of the as-
signment of the returned value from length to the variable len.

A language model could benefit from such semantic infor-
mation to detect the pattern “getting the length of a String

object and assigning it to an int variable”. Without seman-
tic information, it is challenging for a language model to
detect that pattern if the variable names are different in dif-
ferent places. Moreover, the pattern could then help in code

suggestion. For example, assume that the statement was in-
complete as “len = str.” and code completion is requested. If
the above semantic information is available, a model could
determine that a method of a String object is sought and the
returned value will be assigned to an int variable. Thus, the
method length would be a candidate for the next suggested
token. In brief, using semantic information, a language
model would capture better the code patterns at higher ab-
straction levels, thus, produce better code suggestion.

2.3.2 Motivation for Adding Other Influence Factors
During programming, the next code token could be chosen

based on not only the local context, but also the broader
factors of source code. The first factor is the system-wise,
global technical concerns/functionality. For example, if the
current source file involves the file I/O functionality, the
API functions related to I/O operations such as fopen, fread,
fwrite, and fclose would be more likely to occur than the ones
related to other concerns, such as graphics or database.

Another factor is the pair-wise association of program el-
ements. In source code, some program elements often go to-
gether, due to the syntax specification of the programming
language or the usage specification of the APIs in libraries.
For example, the pairs of API functions such as lock/unlock,
and fopen/fclose often co-occur. Thus, the occurrence of one
token would likely suggest that of the other. Pairwise asso-
ciation complements to the local context factor in n-gram.
The rationale is that two associated tokens might locate so
far apart that the local context in n-grams cannot capture
their association. For example, there are often many code
tokens in-between the pair fopen and fclose.

Combining these factors could help detect local and global
trends/patterns and recommend better the next code to-
kens. For example, the local context could suggest that, in
the currently editing code, there is likely a function call after
an IF token. Then, if the current concern is about file I/O,
the functions feof or fread would be the better candidates
since they relate to file I/O and appear frequently after an
IF token. Moreover, if fopen appeared previously, the pair-
wise association could suggest fclose to be the next token.

3. SEMANTIC LANGUAGE MODEL
Let us present SLAMC, a statistical Semantic LAnguage

Model designed for source Code. SLAMC encodes semantic
information of code tokens into basic semantic units, and
captures their regularities/patterns. It also combines local
context with global concern information as well as the pair-
wise association of tokens in the modeling process.

3.1 Overview and Design Strategies
Let us first explain our design strategies in selecting the

kinds of semantic information to be incorporated into our
model. The first semantic information is the role of a token
in a program with respect to the written programming lan-
guage, i.e., whether it represents a variable, data type, op-
erator, function call, field, keyword, etc. With that, SLAMC
will be able to learn the syntactical regularities/patterns such
as “after a variable, there is often an assignment operator”.
Second, it is useful to include the data types of the tokens,
especially the types of variables, fields, and literals. Data
types would help us capture both syntactical patterns and
the patterns at higher abstraction levels, e.g. “the param-
eter of function System.out.println is often a String or Inte-
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Table 2: Construction Rules for Sememes of Semantic Code Tokens

Token Role Construction Rule Example

Data type T TYPE[T ] String → TYPE[String]
Variable x VAR[typeof(x)] str (String) → VAR[String]
Literal v LIT[typeof(v)] “Java”→ LIT[String]
Function decl m FUNC[type(m),lexeme(m),paralist(m),rettype(m)] indexOf → FUNC[String,indexOf,PARA[String],Integer]
Function call m CALL[type(m),lexeme(m),paracount(m),rettype(m)] length → CALL[String,length,0,Integer]
Parameter x PARA[typeof(x)] str (String) → PARA[String]
Field f FIELD[type(f), lexeme(f)] left → FIELD[Node,left]
Operator o OP[name(o)] = → OP[assign], . → OP[access]
Cast (T ) CAST[T ] (Integer) → CAST[Integer]
Keyword To corresponding reserved token if → IF, class → CLASS
Block open & closeTo corresponding reserved token } (of a for loop) → FOREND
Special literal To corresponding reserved token “”→ EMPTY, null → NULL
Unknown To special lexical token LEX abc → LEX[abc]

ger literal”. For a method, the return type, the declared
parameter list, and the number of passing parame-
ters are important to identify and characterize the method.
Thus, for a method, we incorporate its signature, including
its name, class name, return type, and parameter list.

Those kinds of information are encoded as the semantic
values of the code tokens, which we call sememes (will be
formally defined later). The sememes are included in the
vocabulary of our model and used to construct the n-gram
sequences and associated pairs in the modeling process. To
extract meaningful sequences and pairs, SLAMC uses the
scopes and dependencies of code tokens. That is, it con-
siders only the associated pairs of the code tokens that have
dependencies and in the proper scopes. For example, only
the pairs of function calls having data dependencies are con-
sidered. Moreover, it considers only the sequences that are in
appropriately structural scopes. For example, the sequences
spanning across block, function or class boundaries are ex-
cluded. Let us formally describe the concepts.

3.2 Semantic Code Tokens and Sequences

3.2.1 Semantic Code Tokens

Definition 6 (Semantic Code Token). A semantic
code token is a lexical code token with associated semantic
information including its ID, role, data type, sememe, scope,
and structural and data dependencies.

Definition 7 (Role). The role of a semantic code to-
ken refers to the role of the token in a program with respect
to a programming language. The typical token roles include
type, variable, literal, operator, keyword, function call, func-
tion declaration, field, and class.

For example, in “str.length()”, after semantic analysis, str

is recognized as a semantic code token with its role of a
variable, while the role of length is a function call.

Definition 8 (Sememe). The sememe of a semantic
code token is a structured annotation representing its seman-
tic value/information, including its token role and data type.

Definition 9 (Vocabulary). A vocabulary is a col-
lection of distinct sememes of all semantic code tokens.

Table 2 lists the construction rules to build the sememes
for the popular types of semantic code tokens. For exam-
ple, length in str.length() has the semantic role of a function

call, its sememe consists of the annotation “CALL”, “[”, its
class name String, its name length, the number of passing pa-
rameters(0), the returned type Integer, and “]” as shown in
the fifth row. That sememe represents the semantic value of
that semantic code token, i.e. a method call to length. The
separator tokens, e.g. semicolons and parentheses, are not
associated with semantic information, thus are excluded.

Semantic information might be unavailable, e.g. when the
current code is incomplete, leading to no typing information
or un-deciding whether an identifier is a variable, data type,
or a method name. In such cases, the lexical token is kept
and annotated with the sememe of type LEX (the last row).

For a variable, its sememe does not include its name, e.g.
the variable str is encoded as VAR[String] to denote it as a
String variable. This allows us to capture more general code
patterns involving variables because variables’ names are of-
ten individuals’ choices and the naming convention might be
even different across projects. For example, two statements
“len = str.length()” and “l = s.length()” express the same code
pattern when l and len are of type int, and s and str are of
type String, although the variables’ names are different (e.g.
len versus l, and str versus s). To capture that pattern and
improve predictability, SLAMC represents those statements
by two code sequences with the same sememe sequence:

VAR[Integer] OP[assign] VAR[String] OP[access] CALL[String, length,

0, Integer]

Similarly, the concrete literals’ values could vary in con-
crete usages. For example, the pattern of printing a string
could be instantiated with different string literals in dif-
ferent usages (e.g. System.out.println(“Hello World!”), or Sys-

tem.out.println(“File not found!”)). To capture code patterns
with higher abstraction levels and enhance predictability for
code suggestion, SLAMC annotates the sememe of a literal
with its data type rather than its lexeme. Thus, those two
printing statements will have the same sememe sequence.

In other cases, programming patterns could involve special
literal values. For example, many functions use a 0 (zero) as
the returned value indicating a successful execution. Objects
are frequently checked for nullity before being processed, for
example “if (node != null)”. Thus, SLAMC has also special
sememes representing such values (including null, zero, and
empty string). For instance, the expression “if (node != null)”
is captured as the sequence IF VAR[Node] OP[neq] NULL.

Definition 10 (Scope). A scope associated with a se-
mantic code token identifies the block containing that token.
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Table 3: Associated Information of Semantic Code
Tokens for len=str.length()

ID Role Sememe Lexeme Scope Depend

T1 Variable VAR[int] len C1.M2.B3 [T3,T5]
T2 Operator OP[assign] = C1.M2.B3 NA
T3 Variable VAR[String] str C1.M2.B3 [T1,T5]
T4 Operator OP[access] . C1.M2.B3 NA
T5 Method CALL[String,...] length C1.M2.B3 [T1,T3]

For a program, a scope is modeled by a sequence of blocks’
identifiers in its abstract syntax tree (AST). For example,
the scope C1.M2.B3 identifies the third block in the second
method of the first class in the current source file.

Definition 11 (Dependency). The dependency set of
a semantic code token t is a set of IDs of the other code to-
kens that have structural or data dependencies with t.

Structural dependencies are defined as child-parent rela-
tions in an AST. Data dependencies are defined among pro-
gram elements and currently computed via data analysis on
variables. Table 3 illustrates the semantic code tokens for
the example “len = str.length();”. The variable len (with the
ID of T1) depends on the String variable str (T3), and the
method call length (T5), thus its dependency set is [T3, T5].

Note that lexemes of semantic code tokens are used in code
suggestion (Section 4). The patterns with sememes only
suggest the token role and data type of the next token (e.g.
a variable of type String). SLAMC needs to find the most
suitable semantic token and use the lexeme to fill in the code.

3.2.2 Semantic Code Sequences

Definition 12 (Semantic Code Sequence). A sem-
antic code sequence is a sequence of semantic code tokens.

Definition 13 (Semantic n-gram). The sememe of a
semantic code sequence of size n, called a semantic n-gram,
is the sequence of the sememes of the corresponding tokens.

For example, SLAMC represents the piece of code“if (node

!= null)” as the semantic code sequence of four semantic to-
kens (keyword if, variable node, operator !=, and special lit-
eral null). The sememe of this sequence, computed from
those of its tokens, is a semantic 4-gram IF VAR[Node] OP[neq]

NULL. For brevity, we will use the terms code token, code se-
quence, and n-gram to refer to the semantic counterparts.

3.3 N-gram Topic Model
Prior research [1, 17] shows that the latent topics recov-

ered by topic modeling on source files correspond well to the
technical concerns in a system. Thus, if the topics of the
code sequences are recovered, they could provide a global
view on the current concern/functionality of the code, thus,
could help in predicting the next token. Inspired by topic
modeling by Wallach [20], we have developed an n-gram
topic model that integrates the information of both local
contexts (via n-grams) and global concerns (via topics). The
key idea is that the probability that a token c appears at a
position is estimated simultaneously based on the global in-
formation k and the local sequence of n−1 previous tokens.

Our model assumes a codebase to have K topics (corre-
sponding to its concerns/functionality). Since a source file

1 function Train(B, α, β, K, N , Nt)
2 for each source file f in training codebase B
3 extract its semantic code sequence s
4 collect available sememes into V
5 randomly initiate its θ, z
6 loop Nt times
7 for each available topic k and n−gram l
8 for each token c ∈ V
9 φk,l(c) =

count(l,c,k)+β
count(l,k)+KV β

10 for each code sequence s in B
11 [θ, z] = Estimate(s, φ)
12 return φ
13
14 function Estimate(s, φ)
15 repeat
16 for each position i in s
17 sample zi where P (zi = k) = θk · φk,sn,i (si)
18 for each topic k

19 θk =
count(zi=k)+α

length(s)+Kα

20 until θ is stable
21 return θ, z

Figure 1: N-gram Topic Model Training/Predicting

might involve several concerns, SLAMC allows a code se-
quence to contain all K topics with often different percent-
ages (some might potentially be zero as well). It represents
the topics of a code sequence p as a multinomial distribu-
tion θ sampled from the Dirichlet distribution Dir(α,K). θ
is called topic proportion of p and θk is the proportion of
topic k in p. The proportion of topic k could be measured
via the ratio of the number of tokens on topic k over the
total number of tokens. For example, a code sequence rep-
resenting a source file could have 40% of its tokens about
I/O, 50% about string processing, and 10% on GUI. Each
token in a code sequence is assigned with a topic.

In SLAMC, the generating probability of a code token c is
dependent on its topic assignment k as well as on its local
context l. This dependency is modeled by a multinomial dis-
tribution φk,l (called token distribution), which is a sample
of the Dirichlet distribution Dir(β, V ).

Then, to compute the probability P (c|p) for any given
code token c and code sequence p, we need to do two tasks:
1) training, i.e. estimating the multinomial distribution φk,l
for all possible topic k and local context l from a training
codebase, and 2) predicting, i.e. estimating the multinomial
distribution θ for p to compute P (c|p). We have developed
two algorithms for those two tasks based on Gibbs sampling.

3.3.1 Training N-gram Topic Model
Figure 1 illustrates our training algorithm. The input in-

cludes a codebase B, containing a collection of source files,
and other pre-defined parameters, such as the number of
topics K, hyper-parameters of Dirichlet distributions α and
β, the maximal size of n-grams N , and the number of train-
ing iterations Nt. The output includes the vocabulary V
containing all collected code tokens, the token distributions
φk,l for every topic k and every possible n-gram l. In addi-
tion, for each source file represented as a code sequence s,
the output also includes its topic proportion θ and the topic
assignment zi for every position i in s.

The training algorithm first parses all source files in the
codebase, and builds a semantic code sequence for each of
them. It collects all code tokens into the vocabulary V and
randomly initiates all latent variables (e.g. θ, φ, z) (lines
2-5). Then, it performs two-phase processing as follows.

536



Phase 1. SLAMC uses the existing topic assignments of all
sequences (variables z) (or randomly initiates for the first
iteration) to estimate the token distributions (i.e. φk,l for
every possible topic k and n-gram l). They are estimated as

in line 9: φk,l(c) = count(l,c,k)+β
count(l,k)+KV β

.

In this formula, function count(l, c, k) counts every posi-
tion i in every sequence s where si = c, sn,i = l and zi = k,
i.e. the token at position i is c and is assigned to topic k,
and n−1 previous tokens make up the sequence l. Similarly,
count(l, k) counts such positions but does not require si = c.
The positive parameter β is added to all the counts for the
smoothing purpose for the computation in later iterations.

Phase 2. SLAMC uses the estimated token distributions
(φ variables) to estimate the topic proportion θ and topic
assignment z for every code sequence s (each for a source file)
in the codebase (lines 11,14-21). First, a topic is sampled
and assigned for each position i in s. The probability that
topic k is assigned to position i is computed as in line 17:

P (zi = k|s, θ, φ) ∼ θk · φk,sn,i(si)
where si is the token of s at position i and si,n is the sequence
in s of n−1 tokens before i. Once topics are assigned for all
positions (i.e. zi is sampled for every i), the topic proportion

θ is re-estimated as line 19: θk ' count(zi=k)+α
length(s)+Kα

.

That means, SLAMC counts the number of tokens as-
signed to topic k, and approximately estimates the propor-
tion of topic k by the ratio of the number of tokens with topic
k over the length of sequence s. The positive parameter α
is added to all the counts for the smoothing purpose.

This sampling and re-estimating process is repeated on
each sequence until the topic proportion θ is stable (i.e. con-
verged, line 20). When every sequence in the codebase has a
stable topic proportion, the algorithm goes back to phase 1.
It stops when the latent variables θ and φ are stable or the
number of iterations reach the maximum number Nt.

Representation and Storage. To save storage costs and
improve running time, SLAMC does not directly store the
token distributions φk,l. It instead stores all n-grams and
their counts in a tree. Each tree node has the following fields:
a pointer to its parent, a sememe in the vocabulary as its
label c, a counting vector ϕ of size K for the counts, and the
total count σ. The root node is an empty node. The path
from a node to the root corresponds to an n-gram. Let us
use l to denote the n-gram from the parent node b of node c
to the root. The value ϕk is equal to count(l, c, k). count(l, k)
is computed by summing over ϕk in all children nodes of b.

This tree is created when the training algorithm constructs
the semantic code sequences. When a new semantic code to-
ken c is built, the algorithm extracts all possible n-grams l
that end right before c (n varies from 1 to N − 1). Then, it
traverses the tree to find the path that corresponds to each
n-gram l. If the last node of that path does not have a child
with the label c, such a child is created and its total count
σ is assigned with the value of 1. Otherwise, its total count
is increased by 1. Then, the tree is updated at the begin-
ning of every phase 1 in the training process. The algorithm
processes each code token in a sequence in the training set
similarly to when it creates the tree. However, if the topic
assignment for that token is k, it updates ϕk instead of σ.

3.3.2 Predicting with N-gram Topic Model
The prediction algorithm has the input of a trained n-

gram topic model φ, which contains the token distributions

for all topics and n-grams, and a code sequence p. It first
uses function Estimate (Figure 1) to estimate the topic pro-
portion θ of p. Then, it estimates the generating probability
P (c|p) for any available token c and sequence pn of the last
n− 1 code tokens of p, using the following formula:

P (c|p) = maxn(
∑
k θk.φk,pn(c))

3.4 Pairwise Association
We use a conditional probability to model this pairwise

association factor. P (c|b) is the probability that c will occur
as the next code token if a code token b has previously ap-

peared. This probability is estimated as: P (c|b) = count(c,b)
count(b)

.

To avoid the pairs that co-occur by chance, we consider
a pair of tokens (c, b) only if they have data dependencies.
For example, if two function calls open and close are per-
formed on the same file (i.e. having a data dependency),
they are counted. If they are used on different files, their
co-occurrences might not be semantically related.

To reduce the storage and computational cost, we do not
compute and store the probability P (c|b) for any pair c and b
(it would be a huge cost to compute/store V 2 such probabil-
ities for the entire vocabulary). We instead consider only the
tokens for control structures (including branching, loop, and
exception handling statements) and API entities (including
classes, methods/functions, and fields). We also consider
only the pairs of tokens within the boundary of a method.

There might be several code tokens b associating with c
in a code sequence p. We choose the one with the highest
conditional probability P (c|b). Then, we combine this con-
ditional probability with the generating probability P (c|p)
computed via our n-gram topic model (Section 3.3). Cur-
rently, we choose the higher between two probabilities.

4. CODE SUGGESTION
Based on SLAMC’s ability of next-token suggestion, we

have built a code suggestion engine. Let us detail it next.

4.1 Semantics, Context-sensitive Suggestion
Overview. Instead of suggesting code in a template, our en-
gine suggests a sequence of tokens that is best-fit to the con-
text of the current code and most likely to appear next. It pro-
vides a ranked list of such sequences. SLAMC is semantic-
based, thus we define a set of suggestion rules that are based
on the current context and aim to complete a meaningful
code sequence (Table 4). The idea is that such a suggested
sequence would complete the code at the current position to
form a meaningful code unit and likely appear next. Current-
ly, we implement the rules to define a meaningful code unit in
term of a member access, a method call, an infix expression,
or a condition expression. For example, if the code context
is recognized as an incomplete binary expression such as in
“x + ”, the suggestions will be an expression for the remaining
operand with a data type compatible with x in the addition.
If the context is an incomplete method call, a suggestion will
be an expression with a compatible type for the next argu-
ment. If it does not match with any pre-defined context, the
token with highest probability is suggested.

To illustrate our algorithm, let us consider an example
(Table 5). Assume that a developer is writing a statement
“if (node” and requests a suggestion (see (1)). Our engine
first converts the code into a semantic code sequence p (see
(2)). Analyzing this sequence, our engine recognizes that
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Table 4: Rules of Context-sensitive Suggestion

Context Example Suggestion

Member node. a token for method or
Access field name, e.g. size or value

Method map.get( or a type-compatible expression
Call Math.max(x, for the next argument, e.g. y

Infix x + a type-compatible expression
Expression for the other operand, e.g. y

Condition if ( or while ( a Boolean expression
Expression e.g. x != y or !set.isEmpty()

Other for (int i = 0; a next token, e.g. i

Table 5: Semantic, Context-sensitive Completion
Current code Suggestions

Lexical (1) if (node != null (4)
tokens == null

.isRoot()
Semantic (2) IF VAR[Node] OP[neq] NULL (3)
tokens OP[equal] NULL

OP[access] CALL[Node,
isRoot,0,Boolean]

it matches the rule for an incomplete condition statement.
Then, it searches for potential code sequences q that connect
with the current code to form a boolean expression. Such
sequences are ranked based on the score P (q|p). Assume
that the search returns a ranked list of three semantic code
sequences as in (3). Those sequences are transformed back
to lexical forms and presented to the user as in (4).

Our code suggestion algorithm has three main steps (Fig-
ure 2). In the first step (lines 2-3), it analyzes the code in the
current method and produces its semantic code sequence.
Since the current code might not be complete or syntacti-
cally correct, it uses Partial Program Analysis (PPA) [3] for
code analysis and then recognizes the matched code context.
PPA parses the code into an AST, which is then analyzed
by SLAMC to produce the semantic code tokens with their
sememes and other associated semantic information. If PPA
cannot parse some tokens, it marks them as Unknown nodes
and SLAMC creates the semantic tokens of type LEX for
them. It also estimates the topics using n-gram topic model
(line 3). In step 2 (lines 4-5, 11-22), it predicts the next code
sequences that connect with the current code to form a type-
compatible code unit as described in the rule of the matched
context. All such sequences are ranked based on their scores
using a search-based method. In step 3 (lines 6-9), those se-
quences are transformed to lexical forms and presented to
users for selection and filling up. Let us detail the steps 2-3.

4.2 Predicting Relevant Code
Let us use s to denote the semantic code sequence for the

entire source file under editing, and θ for its estimated topic
proportion. Since the current editing position edpos might
not be at the end of s, the engine starts the search from a
sub-sequence p of s, containing all tokens prior to edpos. It
looks for sequence(s) q = c1c2...ct. The relevant score of q is:

P (q|p) = P (c1|p, θ).P (c2|pc1, θ)...P (ct|pc1c2...ct−1, θ) (∗)

This suggests that we could expand the sequences token-by-
token and compute the score of a newly explored sequence
from the previously explored ones. Thus, our engine gen-
erates relevant next sequences by searching on a lattice of

1 function Recommend(CurrentCode F, NGramTopicModel φ)
2 s = BuildSequence(F ) //sequence of semantic code tokens
3 θ = EstimateNGramTopic(s, φ) //topic proportion of F
4 p = GetCodePriorEditingPoint(s, edpos)
5 L = Search(p, θ)
6 foreach q ∈ L
7 lex[q] = Unparse(q)
8 u = UserSelect(lex)
9 Fillin(u)

10
11 function Search(p, θ)
12 L = new sorted list of size topSize, Q = new queue
13 Q.add(‘‘’’, 1) //empty sequence, score = 1
14 repeat
15 q = Q.next()
16 if length(q) ≥ maxDepth then continue
17 C(q) = ExpandableTokens(p, q)
18 for each c ∈ C(q) Q.add(qc)
19 if ContextFit(p, q) then L.add(q, Score(q, p, θ, φ))
20 until Q is empty
21 if L is empty then add the top relevant tokens to L
22 return L

Figure 2: Code Suggestion

tokens of which each path is a potential suggestion using a
depth-limited strategy. That is, it keeps a queue Q of explor-
ing paths and chooses to expand a path q if it has not reached
the maximum depth (maxDepth), which is a pre-defined max-
imum length for q (lines 15-18). If q satisfies a context rule,
its score will be computed and it will be added to the ranked
list L of suggested sequences (line 19). If no sequences sat-
isfy the context, the top relevant tokens are added (line 21).

4.2.1 Expanding Relevant Tokens
Theoretically, at each search step, every token should be

considered. However, to reduce the search space, we choose
only the tokens “expandable” for the current search path q
(function ExpandableTokens at line 17). To do that, we use
the trained n-gram topic model φ to infer the possible se-
memes V (q) for the next token of q, and then choose se-
mantic tokens matching those sememes. Assume that the
current search path is q = c1c2...ci. To find the set of pos-
sible sememes V (q) of the next token c, we connect p and q
and extract any possible n-grams l ending at ci (l might have
tokens in both p and q). Then, we look for l on the prefix
tree of n-grams (see Section 3.3.1). If l exists, all sememes
of its children nodes are added to V (q).

For each sememe v ∈ V (q), we create a corresponding se-
mantic code token and put it into the set of expandable to-
kens C(q). We use the rules in Table 2 to infer necessary in-
formation, e.g. role or lexeme. For instance, if the sememe is
CALL[Node,isRoot,0,Boolean], the semantic code token has the
role of function call and the lexeme of isRoot. It has the
same scope as the previous token ci in q and no dependency.

The sememes of variables and literals in n-gram topic mod-
el do not have lexemes. Thus, we infer the lexemes for sem-
emes of variables using a caching technique. If v is a sem-
eme for a variable, we select all existing semantic code tokens
in the sequence s that represent variables. Then, all tokens
for variables that belong to the same or containing scope of
the last code token ci of the search path and have the same
type as specified in the sememe v will be added to C(q). For
example, if ci has the scope C1.M2.B3 and v is a VAR[String],
all String variables in the scopes C1.M2.B3, C1.M2, and C1 are
considered. For a literal sememe, we create a semantic token
with the default value for its type (e.g. 0, null).
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4.2.2 Checking of Context Fitness
Our engine uses the rules in Table 4 to check if a recom-

mended sequence q produced by the above process fits with
the context of the current code sequence p (function Con-

textFit, line 19). For example, from analyzing the current co-
de via PPA to build semantic tokens, our engine knows that
the last method call in the current code p has less number of
arguments than that of parameters specified in its sememe,
the context is then detected as an incomplete method call.

Then, based on the type of context of p, our engine checks
if q fits with p as they are connected. If an expression is ex-
pected, our engine will check if q is a syntactically correct
expression and has the expected type in the context p. If the
context is a method call, it will check if q contains the ex-
pression that has the correct type of the next parameter for
the method in p. If the context is an infix expression, then
the result statement of connecting p and q must have the
form of X �Y , where X and Y are two valid expressions and
have data types compatible with operator �. Similar treat-
ment is used for a condition statement in which a boolean
expression is expected to be formed. If a context cannot be
recognized due to incomplete code, ContextFit returns false.

4.2.3 Computing Relevance Scores
The relevance score of a new path qc is computed incre-

mentally by (*) as P (qc|p) = R(c).P (q|p), in which R(c) is
the relevance score of the token c to the current search path.
Initially, R(c) is computed as P (c|pc1c2...ci, θ) using the n-
gram topic model φ (see Section 3.3.2). Since φ models only
local context and global concern, R(c) is adjusted for other
factors. First, if c is a token for a control keyword, or a
method call, the maximal pair-wise association probability
P (c|b) for every b ∈ pc1c2...ci is selected for adjusting (Sec-
tion 3.4). Otherwise, if c is a token for a variable, R(c) is
adjusted based on the distance r, in term of tokens, from the
position of its declaration to the current position. In our cur-
rent implementation, R(c) is multiplied by λ = 1/log(r+1).
That is, the more distant the declaration of a variable, the
lower its relevance to the current position.

4.3 Transforming to Lexical Forms
The transformation of a sequence q is done by creating the

sequence of lexemes for the tokens in q. This task is straight-
forward since the lexeme is available in a token. However,
our engine also adds the syntactic sugars for correctness (line
7). For instance, in CALL[String,length,0,Integer], the lexeme is
length, and the method call has no argument. Thus, the lex-
ical form length() is created with added parentheses. Finally,
the lexical forms will be suggested in the original ranking.

5. EMPIRICAL EVALUATION
We conducted several experiments to study SLAMC’s code

suggestion accuracy with various configurations and to com-
pare it with the lexical n-gram model [8]. Experiments were
conducted on a computer with AMD Phenom II X4 965 3.0
GHz, 8GB RAM, and Linux Mint. For comparison, we col-
lected the same data set of Java projects with the same revi-
sions used in Hindle et al. [8] (Table 6). The data set consists
of nine systems with a total of more than 2,039KLOCs. To
evaluate on C# code, we also collected nine C# projects.

Procedure and Setting. We performed 10-fold cross val-
idation on each project. We first divided the source files of

Table 6: Subject Systems

Java Proj. Rel.Time LOCs C# Proj. Rel.Time LOCs

Ant 01/23/11 254,457 Banshee 01/23/13 166,279
Batik 01/18/11 367,293 CruiseControl 07/25/12 260,741
Cassandra 01/22/11 135,992 db4o 05/22/08 218,481
Log4J 11/19/10 68,528 Lucene.Net 03/08/07 169,413
Lucene 03/19/10 429,957 MediaPortal 01/19/13 922,765
Maven2 11/18/10 61,622 NServiceBus 03/09/12 31,892
Maven3 01/22/11 114,527 OpenRastar 09/28/11 52,018
Xalan-J 12/12/09 349,837 PDF Clown 11/13/11 66,308
Xerces 01/11/11 257,572 RASP Library 01/08/08 62,932

Table 7: Accuracy (%) with Various Configurations

Model Top-1Top-2Top-5Top-10

1. Lexical n-gram model ([8]) 53.6 60.6 66.1 68.8
2. Seman. 58.0 65.8 72.7 76.3
3. Seman. + cache 58.7 66.9 75.7 80.3
4. Seman. + cache + depend. 58.8 67.0 75.8 80.4
5. Seman. + cache + depend. 59.3 67.5 76.1 81.4

+ pair.assoc
6. Seman. + cache + depend.+ LDA 58.9 67.1 76.0 81.3
7. Seman. + cache + depend. 63.0 70.8 77.1 81.8

+ n-gram topic
8. Seman. + cache + depend. 64.0 71.9 78.2 82.3
+pair.assoc +n-gram topic [SLAMC]

a project into 10 folds (with similar sizes in term of LOCs).
Each fold was chosen for testing, while the remaining ones
were used for training. We performed training and testing
for both SLAMC and the lexical n-gram model [8]. To evalu-
ate the impact of different factors in SLAMC, we integrated
various combinations of factors and performed training and
testing for each newly combined model. For comparison, all
models are configured to produce a single next lexical token.

Suggestion accuracy is measured as follows. For a source
file in the test data, our evaluation tool traverses its code
sequence s sequentially. At a position i, it uses the language
model under evaluation to compute the top k most likely
code tokens x1, x2, ..., xk for that position based on the pre-
vious code tokens. Since the previous tokens might not be
complete, we used PPA tool [3] to perform partial parsing
and semantic analysis for the code from the starting of the
file to the current position to build semantic code tokens.
If the actual token si at position i is among k suggested
tokens, we count this as a hit. The top-k suggestion accu-
racy for a code sequence is the ratio of the total hits over
the sequence’s length. For example, if we have 60 hits on a
code sequence of 100 tokens for a test file, accuracy is 60%.
Total accuracy for a project is computed on all positions of
its source files in the entire cross-validation process.

5.1 Sensitivity Analysis: Impact of Factors
In our first experiment, we evaluated the impact of differ-

ent factors on code suggestion accuracy. We chose Lucene,
our largest Java subject system. Table 7 shows accuracy
with different combinations of factors. The first row cor-
responds to the lexical n-gram model [8]. The second row
shows accuracy of the model with the n-grams of semantic
tokens, i.e., only semantic tokens and n-gram local context
are considered. The 3rd model is similar to the second one,
however, the recently used variables’ names are cached (Sec-
tion 4.2.1). The 4th row is for the model similar to the third
one, however, the data dependencies among tokens in an n-
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Table 8: Accuracy of Code Suggestion (Java)

Java Proj. Rec. Lexical SLAMC Abs. Rel.
size n-gram [8] Improv Improv.

Ant Top 1 44.7% 63.5% 18.8% 42.1%
Top 5 55.4% 79.5% 24.1% 43.5%

Batik Top 1 44.7% 65.5% 20.8% 46.5%
Top 5 55.4% 80.7% 25.3% 45.7%

Cassandra Top 1 44.9% 65.9% 21.0% 46.8%
Top 5 51.3% 73.5% 22.2% 43.3%

Log4J Top 1 45.2% 67.4% 18.8% 41.6%
Top 5 55.5% 79.2% 24.1% 43.4%

Lucene Top 1 53.6% 64.0% 10.4% 19.5%
Top 5 66.2% 78.2% 12.0% 18.1%

Maven-2 Top 1 41.3% 64.4% 23.1% 55.9%
Top 5 51.0% 74.8% 23.8% 46.7%

Maven-3 Top 1 47.7% 65.0% 17.3% 36.3%
Top 5 59.2% 74.1% 14.9% 25.2%

Xalan Top 1 48.1% 68.6% 20.5% 42.6%
Top 5 58.9% 82.4% 23.5% 39.9%

Xerces Top 1 46.4% 66.6% 20.2% 43.5%
Top 5 58.1% 81.8% 23.7% 40.8%

gram are considered. The n-grams with dependencies among
their tokens are assigned twice as weights as the ones with-
out dependencies. The 5th model contains an addition of
pairwise association factor to the 4th one. To build the 6th

and 7th models, we replaced pairwise association in the 5th

model with LDA and n-gram topic model, respectively. The
last row corresponds to SLAMC model with all factors.

As seen, the models based on semantic tokens achieved
better accuracy than the lexical n-gram model in [8]. With
the addition of only semantic tokens, the relative improve-
ment in accuracy is from 8.2% (top-1) to 10.9% (top-10)
(comparing the first two rows). Adding the cache of re-
cently used variables’ names also improves over the lexical
n-gram model, especially at top-5 (14.5%) and top-10 ac-
curacy (16.7%). This suggests that for the practical use of
SLAMC in code completion, considering the variables in the
surrounding scopes helps much in filling in the next variable.
We also found that requiring dependencies within an n-gram
does not improve much accuracy (rows 3 and 4). This could
be due to short sequences as n is 4 in this study. Interest-
ingly, adding pairwise association improves slightly better
than adding LDA topic model (rows 5 and 6). We examined
concrete cases and found that pairwise association requires
the co-occurrences of two tokens while LDA captures the
topic via the co-occurrences of two or more tokens. Thus,
LDA is too strict in those cases. Adding n-gram topic model
improves better than adding pairwise association (rows 5
and 7). Importantly, SLAMC achieves even higher accuracy
(last row). In comparing to the state-of-the-art lexical n-
gram model [8], SLAMC has a good relative improvement
in accuracy: 19.41% (top-1) and 19.62% (top-10).

5.2 Accuracy Comparison
Our second experiment was to compare SLAMC with the

lexical n-gram model in two data sets of Java and C# projects.
Tables 8 and 9 show the comparison results. First, for Java
projects, accuracy with a single suggestion is 41.3–53.6%
for the lexical n-gram model and 63.5–68.6% for SLAMC.
For C# projects, top-1 accuracy with SLAMC is 59–69%,

Table 9: Accuracy of Code Suggestion (C#)

Project Rec. Lexical SLAMC Abs. Rel.
size n-gram [8] Improv Improv.

Banshee Top 1 37.2% 62.5% 25.3% 68.0%
(BS) Top 5 47.8% 72.7% 24.9% 52.1%

Cruise Top 1 42.8% 64.8% 22.0% 51.4%
Control (CC) Top 5 54.4% 74.2% 19.8% 36.4%

db4o Top 1 44.8% 65.0% 20.2% 45.1%
(DB) Top 5 57.5% 77.3% 19.8% 34.4%

Lucene. Top 1 47.0% 69.0% 22.0% 46.8%
Net (LN) Top 5 58.6% 82.0% 23.4% 39.9%

Media Top 1 47.1% 66.7% 19.6% 41.6%
Portal (MP) Top 5 58.0% 79.4% 21.4% 36.9%

NService Top 1 44.5% 61.4% 16.9% 38.0%
Bus (NB) Top 5 55.6% 69.1% 13.5% 24.3%

Open Top 1 36.3% 59.1% 22.8% 62.8%
Rastar (OR) Top 5 46.1% 65.8% 19.7% 42.7%

PDF Top 1 44.8% 66.8% 22.0% 49.1%
Clown (PC) Top 5 56.2% 75.7% 19.5% 34.7%

RASP Top 1 47.2% 68.3% 21.1% 44.7%
Library (RL) Top 5 57.2% 77.6% 20.4% 35.7%

Table 10: Training Time Comparison (in seconds)

Model BS CC DB LN MP NB OR PC RL

Lexical n-gram 46 150 117 80 957 9 14 10 11
SLAMC 300 592 1432 1150 4958 47 32 146 142

while lexical n-gram model achieves only 36.3–47.2%. With
top-5 suggestions, SLAMC’s accuracy could be as high as
82.4% (Java) and 82% (C#). Second, SLAMC is able to re-
latively improve over the lexical n-gram model from 18.1–
55.9% (Java) and 24.3–68% (C#) in different top-ranked ac-
curacy. Third, the suggesting time in both models is about
a few seconds (not shown), and training time for all folds in
the entire cross-validation process in SLAMC is much higher
(2–15 times) (Table 10). However, it is still within a couple
hours for the largest system. Finally, the result suggests dif-
ferent levels of code repetitiveness in different projects. It
could be due to their nature and developers’ coding style.

Examples. Here are some interesting patterns detected by
SLAMC. The sememe sequence FOR TYPE[Map.Entry<String,

Object>] VAR[Map.Entry<String,Object>] VAR[Map<String, Ob-

ject>] CALL[Map<String,Object>,entrySet,0, Set<Map.Entry<Str-

ing, Object>>] captures a pattern for accessing a Map object’s
entries. One of its instances is for (Map.Entry<String, Object>

entry: map.entrySet()). Lexical n-gram model did not suggest
correctly in an instance of this pattern with a different vari-
able name: for (Map.Entry<String, Object> e: values.entrySet()).

The pattern WHILE VAR[StringTokenizer] CALL[StringTokenizer,

hasMoreTokens, 0, boolean] VAR[String] OP[assign] VAR[String-

Tokenizer] CALL[StringTokenizer, nextToken,0, String] is frequently
used for accessing all tokens of a StringTokenizer. One of its
instances is while (st.hasMoreTokens()) { t = st.nextToken(); ....
When the variable names change, as in while (qtokens.hasMore-

Tokens()) { tok = qtokens.nextToken();, SLAMC still recom-
mends correctly, while the lexical n-gram model does not.

5.3 Cross-Project Training and Prediction
We performed another experiment to study SLAMC’s ac-

curacy when it is trained and used for prediction with data
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Table 11: Cross-Project Prediction Accuracy

Java Rec. Lexical SLAMC Abs. Rel.
Project Size n-gram [8] Improv. Improv.
Ant Top 1 44.5% 64.5% 20.0% 44.9%

Top 5 56.6% 80.0% 23.4% 41.3%
Batik Top 1 43.5% 66.5% 23.0% 52.8%

Top 5 56.1% 81.1% 25.0% 44.6%
Cassandra Top 1 45.4% 66.2% 20.8% 45.8%

Top 5 57.7% 77.4% 19.7% 34.1%
Log4J Top 1 47.5% 68.4% 20.9% 44.0%

Top 5 59.6% 82.1% 22.5% 37.8%
Lucene Top 1 53.6% 65.0% 11.4% 21.3%

Top 5 66.2% 79.2% 13.0% 19.6%
Maven-2 Top 1 56.5% 70.4% 13.9% 24.6%

Top 5 71.0% 83.9% 12.9% 18.2%
Maven-3 Top 1 54.2% 67.0% 12.8% 23.6%

Top 5 68.6% 77.7% 9.1% 13.3%
Xalan Top 1 49.6% 70.4% 20.8% 41.9%

Top 5 61.0% 84.4% 23.4% 38.4%
Xerces Top 1 46.6% 66.8% 20.2% 43.3%

Top 5 59.5% 81.9% 22.4% 37.6%

across projects. For each Java project in Table 8, we per-
formed 10-fold cross-validation as in Section 5.2. However,
to predict for one fold, we used not only the other nine
folds but also the other eight Java projects for training. As
seen, when both models used the training data from other
projects, SLAMC relatively improves over the lexical n-gram
model from 13.3%–52.8% for top-1 and top-5 accuracy. This
is consistent with the relative improvement of 18.1%–55.9%
in Table 8 when training data was from only a single project.

Comparing SLAMC’s accuracy in Tables 11 and 8, we can
see that prediction accuracy is not improved much as using
cross-project data for training (0.1%–9.1%). This is also true
for the lexical n-gram model (also reported by Hindle et al.
[8]). Similar accuracy implies that the degree of regularity
across projects is similar to that in a single project.

Threats to Validity and Limitations. Our selected
projects are not representative. However, we chose a high
number of projects with large numbers of LOCs. Our sim-
ulated code suggestion procedure is not true code editing.
We re-implemented lexical n-gram model, rather than using
their tool. Inaccuracy is caused by the fact that SLAMC
does not consider class inheritance and cannot correctly re-
solve types/roles sometimes due to incomplete code. It also
faces out-of-vocabulary issue (code un-seen in training data).

6. RELATED WORK
Statistical language models [15] have been successfully

used in software engineering. Hindle et al. [8] use n-gram
model with lexical tokens to show that source code has
high repetitiveness. Thus, the n-gram model has good pre-
dictability and is used to support code suggestion. In com-
parison, SLAMC has key advances. First, its basic units are
semantic code tokens, which are incorporated with semantic
information, thus providing better predictability. Second,
SLAMC’s n-grams are also complemented with pairwise as-
sociation. It allows the representation of co-occurring pairs
of tokens that cannot be efficiently captured with n consecu-
tive tokens in n-grams. Finally, a novel n-gram topic model
is developed in SLAMC to enhance its predictability via a
global view on current technical functionality/concerns.

Code repetition is also observed by Gabel et al. [5]. They
reported syntactic redundancy at levels of granularity from
6-40 tokens. They considered only syntactical tokens and re-

named IDs in the code sequences, while SLAMC operates at
the semantic level. Han et al. [6] have used Hidden Markov
Model (HMM) to infer the next token from user-provided ab-
breviations. Abbreviated input is expanded into keywords
by an HMM learned from a corpus. In comparison, their
model has only local contextual information, while SLAMC
has also n-gram topic modeling and pairwise association. n-
gram model has been used to find code templates relevant
to current task [13]. n-grams are built over clone groups.

Other line of approaches to support code completion re-
lies on the programming patterns mined from existing code.
Grapacc [16] mines and stores API usage patterns as graphs
and matches them against the current code. The patterns
most similar to the code are ranked higher. Bruch et al. [2]
propose three algorithms to suggest the method call for a
variable v based on a codebase. First, FreqCCS suggests the
most frequently used method in the codebase. Second, Ar-
CCS is based on mined associate rules where a method is of-
ten called after another. The third algorithm, best-matching
neighbors, uses as features the set of method calls of v in the
current code and the names of the methods that use v. The
features of methods in examples are matched against those
of the current code for suggestion. Precise [21] completes
the parameter list of a method call. It mines a codebase to
build a parameter usage database. Upon request, it queries
the database to find best matched parameter candidates and
concretizes the instances. Omar et al. [18] introduce active
code completion in which interactive and specialized code
generation interfaces are integrated in the code completion
menu to provide additional information on the APIs in use.

Other strategies have been proposed to improve code com-
pletion. Hill and Rideout [7] use small cloned fragments for
code completion. It matches the fragment under editing
with small similar-structure code clones. Robbes and Lanza
[19] introduced six strategies to improve code completion us-
ing recent histories of modified/inserted code during an edit-
ing session and on the methods and class hierarchy related
to the current variable. Hou and Pletcher [10] found that
ranking method calls by frequency of past use is effective.
Eclipse [4] and IntelliJ IDEA [12, 11] support template-based
completion for common constructs/APIs (for/while, Iterator).

MAPO [22] mines API patterns and suggests associated
code examples. Strathcona [9] extracts structural context of
the current code and finds its relevant examples. Mylyn [14],
a code recommender, learns from a developer’s personal us-
age history and suggests related methods.

7. CONCLUSIONS
We introduce SLAMC, a novel statistical semantic lan-

guage model for source code. It incorporates semantic in-
formation into code tokens and models the regularities/pat-
terns of such semantic annotations. It combines the local
context in semantic n-grams with the global technical con-
cerns into an n-gram topic model. It also incorporates pair-
wise associations of code elements. Based on SLAMC, we
have developed a new code suggestion technique, which is
empirically evaluated on open-source projects to have rela-
tively 18–68% higher accuracy than the lexical n-gram model.
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