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ABSTRACT
In object-oriented code, atomicity is ideally isolated in a li-

brary which encapsulates shared program state and provides
atomic APIs for access. The library provides a convenient
way for programmers to reason about the needed synchro-
nization. However, as the library exports a limited set of
APIs, it cannot satisfy every unplanned atomicity demand;
therefore, clients may have to compose invocations of the
library APIs to obtain new atomic functionality. This process
is error-prone due to the complexity of reasoning required,
hence tool support for uncovering incorrect compositions
(i.e., atomic compositions that are implemented incorrectly)
would be very helpful. A key difficulty is how to determine
the intended atomic compositions, which are rarely docu-
mented. Existing inference techniques cannot be used to
infer the atomic compositions because they cannot recog-
nize the library and the client, which requires understanding
the related program state. Even if extended to support the
library/client, they lead to many false positives or false nega-
tives because they miss the key program logic which reflects
programmers’ coding paradigms for atomic compositions.
We define a new inference technique which identifies in-

tended atomic compositions using two key symptoms based
on program dependence. We then check dynamically whether
these atomic compositions are implemented incorrectly as
non-atomic. Evaluation on thirteen applications shows that
our approach finds around 50 previously unknown incorrect
compositions. Further study on Tomcat shows that almost
half (5 out of 12) of discovered incorrect compositions are
confirmed as bugs by the developers. Given that Tomcat
is heavily used in 250,000 sites including Linkedin.com and
Ebay.com, we believe finding multiple new bugs in it auto-
matically with relatively few false positives supports our
heuristics for determining intended atomicity.
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1. INTRODUCTION
The difficulty of debugging concurrent programs has in-

spired the development of a range of tools, based on concepts
from race conditions to higher-level concepts like atomic-
ity [8]. Atomicity expresses the intuitive idea that shared
state must be accessed by some code without interference.
Ideally, atomicity is isolated in a library which encapsulates
the shared state and provides the atomic APIs for accessing
it without interference. Consider the code snippet (List-
ing 1) from the Bayesian application [20]: learnerNet is an
instance of the class BayesianNet. The class BayesianNet
and the referenced class Node (not shown) form a library,
which encapsulates the fields defining the structure of the
Bayesian net. The library also provides two atomic APIs,
hasEdge, which checks atomically the existence of an edge
between two nodes fromId and toId, and applyOp, which
inserts atomically an edge between the nodes.

Listing 1. Code snippet of Bayesian application

1 isTaskValid= true;
if(op== INSERT)

3 {
if(learnerNet.hasEdge(fromId , toId))

5 isTaskValid=false;
}

7 else {...}
if(isTaskValid)

9 learnerNet.applyOp(op, fromId , toId);

Many promising approaches [31, 28, 27] have been pro-
posed recently to test whether the library implements its own
atomic APIs correctly, which have been relatively successful
for two reasons: (1) the code responsible for the atomic ac-
cesses can be easily identified as the library API methods; (2)
the library typically involves a small code base which can be
tested exhaustively. However, even if the library implements
its atomic APIs correctly, the application may still malfunc-
tion because the client code composes new functionality with
the library APIs that is intended to be atomic, but does so
incorrectly. For example, in Listing 1, two invocations (line
4 and line 9) of library APIs are composed at the client side
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to realize new atomic functionality, i.e., to add a given edge
between two nodes only if they are not connected by any
existing edge.
In general, client-side atomic composition commonly ex-

ists because the library designers cannot predict all desired
atomic usages. Unfortunately, client-side atomic composi-
tions may be implemented incorrectly, due to the inherent
difficulties in reasoning about concurrent behavior: (1) clients
compose quite often, e.g., 100+ compositions per evaluated
large program (Column AC in Table 1); (2) the reasoning for
each composition is non-modular, e.g., each studied buggy
composition spans multiple methods. Incorrect compositions,
i.e., atomic compositions that are implemented incorrectly,
commonly lead to unwanted behaviors. For example, in List-
ing 1, if the two invocations are interleaved non-atomically
by an invocation in another thread that inserts an edge be-
tween the two nodes, the connectivity state returned by the
former invocation becomes stale, the latter invocation which
depends on the stale state proceeds to insert another edge.
Consequently, two edges are inserted between the two nodes,
violating the invariant.
We identify the problem of the incorrect client-side compo-

sition and address it automatically in this paper. Based on
the automatic discovery of the library and the client, we infer
the intended client-side atomic composition automatically,
after which we adopt existing atomicity violation detection
analyses [8, 26] to find the incorrect implementation of the
atomic composition.
Automatic inference of atomic composition is required to

free programmers from the daunting task of manually speci-
fying 100+ compositions per large program. However, the
inference is challenging. The first challenge lies in recognition
of the library and the client, which is a prerequisite for atomic
composition inference. Existing inference [18, 22, 40, 4, 17,
34] of atomicity, which reasons about the field accesses di-
rectly, cannot recognize the library or the client. Specifically,
recognition of the library requires understanding what fields
are related, e.g., some fields from the class BayesianNet and
the class Node are related in describing the structure of the
Bayesian net, therefore, both classes are included in the same
library. Most existing inference techniques [18, 22, 40, 4, 34],
which understand only the single-variable atomicity, would
isolate the fields in different libraries and accordingly miss
the atomicity on the related fields. Furthermore, recogni-
tion of the irrelevant client-side uses of a library requires
understanding independent portions of the library state, e.g.,
the independence between the fields describing the structure
of the net and the fields describing the domain-specific val-
ues stored in the net. The second challenge posed to the
inference is it needs to achieve high fidelity, i.e., it neither
misses many real atomic compositions nor introduces many
false ones. Existing inference [18, 22, 4, 17, 34] of atomicity,
even if extended to support the library/client, fails to achieve
the high fidelity. Specifically, the inference techniques [18,
22, 4, 34] identify the atomicity with the dynamic instruc-
tion adjacency or the lexical adjacency, which introduce too
many atomic compositions conservatively; the inference tech-
niques [17] identify the atomicity with the frequency-based
(or statistic-based) symptom, which miss many real atomic
compositions. For example, the atomic composition in our
running example is missed because it appears only once.
We propose a new approach to address these challenges.

First, we identify the library and the client based on the

notion of atomic set [36, 5], which characterizes a group
of related fields. As the related fields are linked by field
references and occur in existing atomic regions, we infer
them from existing atomic regions and the field reference
logic indicating the relevance. Second, to achieve the high
fidelity, we identify atomic compositions by finding definitive
code paradigms for them. According to our study, most
compositions coded as atomic fall into two general cases:

• One invocation leaks the state of the atomic set encap-
sulated by the library and the other invocation uses it,
e.g., the latter invocation in the exemplary atomic com-
position (Listing 1) uses the connectivity state leaked
by the former invocation. Atomicity is required because
otherwise the latter invocation would use the stale state
and lead to unwanted behavior, e.g., inserting multiple
edges between two nodes in our running example.

• Instead of depending on the return value of each other,
two invocations are inseparable and complement each
other to fulfil a combined atomic functionality, e.g., the
invocations setCity and setZipcode are combined to
achieve the atomic functionality setCityAndZipcode.

Both coding paradigms can be captured by the program
dependence logic, and we use them as definitive symptoms
to identify the atomic compositions.
Once we have identified the compositions intended to be

atomic, existing atomicity violation detection [26, 13] can
check whether the compositions are actually atomic. We
customize existing predictive analyses [30, 13, 38] to find
incorrectly implemented compositions. Predictive analysis
searches for non-atomic interleavings of the atomic composi-
tion by adjusting the scheduling order of events. Specially,
we customize the analysis so that it is aware of the library
APIs involved in the atomic compositions. Since some atomic
compositions reported by the conservative static inference
may be false, our dynamic analysis does runtime checking
to filter out such false positives. Our dynamic analysis is
optimized for our specific task: it analyzes at the invocation
level and analyzes only invocations accessing the same atomic
set. This reduces the number of events to analyze and re-
duces the interleaving space to explore without compromising
effectiveness.
We implement our approach as a tool ICfinder and evaluate

it on a set of large scale applications such as Tomcat. ICfinder
has been successfully evaluated by the ESEC/FSE artifact
evaluation committee and found to meet expectations. Our
results show that ICfinder finds around 50 incorrect com-
positions in all applications. Further manual study of our
Tomcat results shows that five out of the twelve incorrect
compositions identified in Tomcat are bugs as confirmed by
the developers. Considering that Tomcat is heavily used
in around 250,000 sites [3] including the famous ones [37]
such as Linkedin.com and Ebay.com, and the easy bugs have
already been found, we believe finding newly reported bugs
automatically supports our heuristics for detecting incorrect
compositions. Overall, the static analysis of ICfinder finds up
to 391 atomic compositions for a program. More than half
of them appear infrequently and are missed by the previous
statistic-based approach. The efficient dynamic analysis of
ICfinder finishes within 1 second.
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We make the following contributions in this paper.

1. We identify the problem of incorrect compositions of
atomic library APIs, i.e., the compositions which are
intended as atomic but implemented as non-atomic.

2. We evaluate our approach extensively on a set of large
applications and conduct the empirical study to confirm
the severity of incorrect compositions.

3. We propose an automatic approach to find incorrect
compositions. Specifically, we propose high-fidelity in-
ference of intended atomic compositions, which respects
atomicity among related fields and respects the inher-
ent program logic involved in atomic composition. We
customize existing dynamic analysis to check whether
these atomic compositions are implemented correctly.

2. OVERVIEW
Our approach has four steps: first inferring atomic sets of

related fields in a given application, next finding libraries that
encapsulate them and the clients that use the libraries else-
where in the program, then inferring atomicity requirements
of these uses, and finally attempting to exhibit executions
that violate these atomicity requirements.
Inferring Atomic Sets. This step determines groups

of related fields that implement abstractions of atomic sets,
which require atomicity for keeping state consistent. The
atomic set aSet consists of the related fields sharing a single
root, each denoted as a reference chain from the root:

{�root, f1.f2 . . . fi.fi+1 . . . � |fi+1 ∈ Type(fi)}

While the atomic set abstraction could be declared by pro-
grammers, we infer them automatically. Our static inference
is described in Section 3. Besides, the dynamic checking in
Section 6 prunes the false positives produced by the static
inference.
Identifying Library and Client. Given an atomic set

aSet, the library consists of the classes encapsulating the
fields in aSet, which provide the atomic APIs for accessing
the fields in aSet. The next step is to find the client methods
that use the APIs provided by the library to access aSet.
The details are explained in Section 4. The abstraction of
library and client also provides the intuitive bug reports
based on the high-level view of APIs, as contrasted with the
bug reports based on the low-level view of field accesses.
Inferring Atomic Compositions. The uses of the li-

brary in the client methods may or may not form the atomic
composition. Learning from existing atomic compositions,
we find they exhibit two common symptoms. We formalize
the symptoms and use them as the definition for atomic
compositions. The formalization and the inference of atomic
compositions are in Section 5.
Exhibiting Synchronization Errors. The atomicity

requirement of the composition may not be implemented
correctly. The final step is the dynamic execution to force
the atomicity violations to manifest themselves. The details
and optimization of the dynamic analysis are explained in
Section 6.
The rest of the paper presents the above steps in details.

In addition, Section 7, Section 8 and Section 9 present the
implementation, evaluation and related work respectively.

Figure 1. Atomic set in the class Linkedlist

3. INFERENCE OF ATOMIC SETS
An Atomic Set [36] denotes a set of heap locations that

have some consistency property that is maintained by the
units of work that operate upon the set. Correctness thus
requires that units of work on a given atomic set operate as
if they are never interleaved at runtime. Note that a unit
of work is subtly different from an atomic region, since it
pertains to a specific subset of state.

Definition 1 (Atomic Set). In object-oriented programs,
where objects form reference hierarchies via field references,
an atomic set is a set of instance fields, each of which is
reachable from the root object along a field chain.

Figure 1 shows a reference hierarchy rooted at a LinkedList
object list, where ellipses stand for objects and lines stand
for field references. The atomic set consists of the highlighted
instance fields (grey), list.size, list.head, n1.next and
n2.next. Each instance field is reachable from the root ob-
ject list along one of the following field chains: size, head,
head.next or head.next.next.
While atomic set was originally presented as a program-

ming model [5], we need to infer it since we are looking for
bugs in existing code. Furthermore, we are looking for incor-
rect usage of libraries that are themselves well synchronized.
Hence, our inference is based on the observation that the re-
lated fields in the atomic set are accessed in the same existing
synchronized blocks (or methods) and organized by the field
reference logic. For each synchronized block (or method), we
define an atomic set constituted by fields of the receiver this
object accessed within the block and also any fields accessed
transitively via the receiver’s fields. Given all the atomic
sets, we merge atomic sets that share fields, to conform with
the rule that all atomic sets should be disjoint [5].
Atomicity only applies to shared program state, so we con-

duct the optimization by leaving out all non-shared program
state. We apply the off-the-shelf escape analysis implemented
in the Soot [35] compiler framework to prune the thread-local
objects.

4. IDENTIFICATIONOFCLIENT-SIDE IN-
VOCATIONS

In this section, we identify client-side invocations of li-
brary APIs, which access atomic sets encapsulated by the
libraries. The next section infers whether such invocations
are composed atomically. To identify the invocations, we
first determine the library and the client based on the formal
description in Definition 2.

Definition 2 (Library Module and Client Module). A
module is a logic unit, which consists of the classes related to
a specific property. Two types of modules are of interest. The
library module defines the atomic set and the client module
uses it. The library module consists of the classes which
declare the fields in the atomic set and provide atomic APIs
for accessing the fields. The client module consists of the
class of which the methods invoke the atomic library APIs.
The methods are referred to as client methods accordingly.
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Figure 2. Client module and library module

Figure 2 illustrates the terms: The module B is a library
module which provides the atomic APIs, while the module A
is a client module, of which the method invokes the APIs in
the module B. The modules A and B are often not the same.
We also consider the degenerated case where the module A
and the module B are the same because the library may
compose its own atomic APIs.
We derive the library module directly from each atomic set.

Given an atomic set aSet, the classes that declare the fields
in it form a library module. The client module is identified
as the class containing the client method. The client method
is further identified as the method containing the invocations
of the library APIs that access the atomic set aSet.

ALGORITHM 1: The function isClient
Input: The method m, the atomic set aSet

1 foreach stmt: m.stmts() do
2 if stmt.isInvocation() then
3 effects=transitiveSideEffects(stmt);
4 if effects ∩ aSet �= ∅ then
5 print: the invocation stmt accesses aSet, m is

the client method;

6 end

7 end

8 end

We traverse all methods in the application, during which
we judge whether each method is a client method following
Algorithm 1. If an invocation stmt in the method m accesses
a set of instance fields effects, according to the side effect
analysis (line 3), and some of the instance fields effects
belong to the atomic set aSet (line 4), according to the result
of the analysis in Section 3, the invocation stmt accesses the
atomic set aSet.
Specifically, the side effect analysis computes the transitive

side effects (line 3), i.e., the fields accessed in the transitive
callee methods of stmt. We compute the side effects by
identifying the callee methods in the call graph and resolving
the field accesses intra-procedurally. The resultant side effects
of each invocation statement are used to judge the accessing
relations with respect to each atomic set.
We are trying to infer the atomic sets and clients in a

program, and we will get a better approximation given better
static analysis. Inevitably, however, static analysis may have
unsoundness: it can miss code when it is invoked dynamically
using reflection, and it is an over-apporiximation in general
of the code. Such issues may reduce the effectiveness of our

heuristics, but we show in our results that our static analysis
is good enough to give useful results.

5. AUTOMATIC INFERENCE OF ATOMIC
COMPOSITIONS

After the invocations potentially accessing the same atomic
set are identified, we infer whether they form atomic compo-
sitions, using the symptoms capturing the definitive program
logic for atomic compositions. According to our observations,
compositions of invocations are commonly programmed as
atomic if (1) one invocation uses the result produced by the
other, or (2) the invocations complement each other indis-
pensably, i.e., in the path conditions that one invocation is
executed, the other invocation must be executed. Therefore,
we design two symptoms, namely the USE symptom and the
complementation symptom, to capture the above scenarios re-
spectively, both based on the program dependence. The USE
symptom, described in Property 1, is designed to capture
the former atomic composition scenario.

Property 1 (USE symptom). Given two invocations iden-
tified in the client method, if the program dependence exists
between them, the invocations should be composed atomically.

Figure 2 illustrates the atomic composition scenario. The
invocations (horizontal lines) in the method func1 interact
with each other via the program dependence (curve): The
first invocation leaks the state encapsulated by the library
and the second invocation depends on the leaked state. The
program dependence link strongly indicates the atomicity of
the composition as the interleavings would make the leaked
state stale and the program dependence incorrect.
The program dependence is a well studied compiler con-

cept [7, 12, 32], which can be immediate program dependence
such as control dependence and data dependence, or the tran-
sitive closure of it. Program dependence is often character-
ized graphically by the program dependence graph [7], where
nodes represent statements, edges represent control/data
dependences and paths represent program dependences.
On the other hand, the invocations in Figure 2 may not

interact with each other but are still composed as atomic. The
code from the Specjbb benchmark in Listing 2 illustrates the
atomic composition scenario of this kind. Two invocations,
which get the x scale and y scale of an image, should be
executed atomically to render a consistent view of the image.
As seen, the USE symptom cannot capture such atomic
composition as no program dependence exists between the
invocations.

Listing 2. Code snippet of Specjbb

1 GraphImage.getXscale ();
GraphImage.getYscale ();

Such atomic compositions are captured by the comple-
mentation symptom (Property 2), which specifies that the
invocations that are inseparable, i.e., they are executed to-
gether or skipped together in any execution, form a combined
atomic operation.

Property 2 (Complementation symptom). Given two in-
vocations identified in the client method, if the invocations
dominate and post-dominate each other, the invocations are
expected to be composed atomically.
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We check whether the client-side invocations form an
atomic composition by checking whether they exhibit ei-
ther of these symptoms. To check the exhibition of the USE
symptom, we examine whether any program dependence
exists between the invocations, i.e., whether any path exists
between the invocation nodes in the program dependence
graph. Checking the path in a graph is a standard reacha-
bility analysis. Practical issues about the dependence graph
are discussed in Section 7. To check for the complementation
symptom, we analyze the dominance and post-dominance
relations between the invocations, which is also the stan-
dard analysis implemented in open source compilers such as
Soot [35] and Wala [33].

6. DYNAMIC CHECKING
After atomic compositions are inferred, we check whether

their implementations violate atomicity; we adopt existing
atomicity violation detection analyses. We adopt efficient
predictive analysis [30, 13, 38], which achieves reasonably
good coverage of the buggy interleavings. Predictive analy-
sis aims at deriving, from a normal run, a new buggy run
which exhibits non-atomic interleavings. Specifically, the
predictive analysis first monitors a normal run to collect
the trace and then reorders the events (nodes) in the trace,
simulating the rescheduling of the runtime. Finally, the re-
ordered trace is exercised by an execution which enforces the
non-atomic interleavings. To serve our specific application,
we customize the predictive analysis so that it is aware of
the atomic composition. The analysis also prunes atomic
compositions falsely reported by the static analysis. Pruning
false atomic compositions prevents false alarms, which is
important especially for future work that reuses our atomic
composition inference. In addition, we optimize the analysis
specially for efficiency. The details of the dynamic checking
are presented as follows.
Given an atomic composition, our goal is to derive a buggy

run (or trace, we may use the terms interchangeably.) from
the observed normal run. The buggy run is the run violating
atomic-set serializability, a correctness criterion [36] general-
ized to support the atomic set and commonly adopted. A
buggy run can also be defined as the run exhibiting a set
of interleaving patterns, which account for all atomic-set
serializability violations, according to the study of Vaziri et
al. [36]. One exemple bug pattern, Wu(l)Wu�(l)Ru(l), states
that the write by the unit of work1 u� to the memory location
l interleaves the write and read by the other unit of work u,
which leads to the inconsistency between the write and the
read in u. To summarize, our goal is to derive the run which
exhibits the interleavings specified by the buggy pattern.
Figure 3 illustrates the goal: In the derived run, the remote

invocation I3 interleaves the atomic sequence from invocation
I1 to invocation I2, or equivalently, the remote invocation I3
happens in parallel (denoted by the dotted line) with some
event emiddle between I1 and I2 thread-locally. Note that
any buggy interleaving can be equivalently expressed by the
happen-in-parallel relation [16].
For this example, we exhibit the buggy interleaving by

simply reordering I2 and I3. However, in general, it is non-
trivial to exhibit the buggy interleaving, or alternatively,

1Here the unit of work corresponds to the execution instance
of the atomic code such as the atomic composition or the
atomic API.

     AC

I1

I2

I3

T1 T2

Figure 3. Deriving the buggy run

to enforce the equivalent happen-in-parallel relation. Re-
ordering the events to enforce the happen-in-parallel rela-
tion is subjective to many constraints, e.g., the absence of
synchronizations and the compatibility of path conditions.
Determining whether all the constraints are satisfiable is
computationally intractable [24]. Therefore, we approximate
the feasibility of the happen-in-parallel relation with a subset
of constraints, as described in Lemma 1.

Lemma 1. Given two events e and e�, they can happen
in parallel ⇔ they are not synchronized by the same locks
or happened-before relations [15]. Here, e happened-before
e� if and only if one can reach e� from e in the trace by
moving forwards locally or moving along the inter-thread
communications (e.g., start, join, wait/notify operations.).

Given two events from the normal run, if they are not
synchronized, we re-schedule one of the events so that they
happen in parallel. In practice, we simulate the rescheduling
by collecting the trace of the normal run and moving the
event forwards/backwards in the trace. After the adjustment,
we replay[13] the execution according to the new trace. The
replay may fail when the new trace violates the constraints
that we do not model. We simply discard such infeasible
trace.
Pruning False Atomic Compositions. Due to the con-

servativeness of the static analysis (Section 3 and Section 4),
two invocations accessing disjoint atomic sets may be de-
termined as accessing the same atomic set statically. We
prune the false atomic compositions in the monitoring run by
checking whether two invocations access the same runtime
atomic set. We identify the runtime atomic sets accessed by
each invocation as follows. First, we construct the runtime
atomic sets by instantiating the root of the static atomic
set as runtime instances, which have the same type as the
root and are shared among threads. Second, we identify the
runtime atomic sets accessed by the invocation based on the
dynamic side effect analysis.
Optimization. The optimization is carried out during the

reordering of the trace events (nodes). Previous predictive
analysis explores the reordering of the memory accesses on
the same atomic set. Comparatively, our analysis operates
at the invocation level and explores the reordering of the
related invocations only, i.e., the invocations accessing the
same runtime atomic set. As a result, we reduce the number
of events to reorder and reduce the interleaving space to
explore. Specifically, we do not explore the interleavings
to the internal of the basic library API methods, i.e., the
methods which do not compose other library APIs, because
they are already well synchronized by the library module.
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7. IMPLEMENTATION
Program Dependence Graph. We implement the com-

putation of program dependence in Soot[35]. Soot already
provides the implementation for computing the control de-
pendence and the intra-procedural data dependence. We
compute the inter-procedural data dependence as follows:
(1) we add special data dependence edges to express the
inter-procedural argument passing and function return; (2)
we use the side effect analysis to check the data dependence
via the heap access, i.e., the invocation I2 is data dependent
on the invocation I1 if I1 writes to the heap location read by
I2 and I2 is reachable from I1 in the inter-procedural control
flow graph.
Atomicity. Atomicity commonly refers to the criterion

of conflict serializability, which specifies that the atomic
code region should not be interleaved by a conflicting access.
According to the recent work [28], atomicity may also refer to
the criterion of linearizability [28], which allows the atomic
code region to be interleaved by a conflicting access but
requires the atomic region to behave as if in serial settings in
terms of input/response values. In either case, our inference
captures the intended atomic composition correctly. However,
different backend dynamic analyses are needed to check the
correctness of the implementation.
For example, the class AtomInteger (Listing 3) from JDK

1.5+ composes the invocations of two atomic APIs get and
compareAndSet to implement the new atomic functionality
getAndIncrement. The atomicity of the composition refers
to the linearizability criterion: the interleavings to the invo-
cations are allowed, which lead to an extra iteration of the
execution; the eventual effect of the code is to increase the
Integer counter by one, the same as in the serial settings.
Our inference identifies the intended atomic composition cor-
rectly, but the backend dynamic analysis would report the
code as non-atomic as it violates the conflict serializability.
A dynamic analysis designed to check the linearizability is
needed to report properly for this example.

Listing 3. The getAndIncrement method

for (;;){
2 int current = get();

int next = current + 1;
4 if (compareAndSet(current , next))

return current;
6 }

...

Limitation of Static Analysis. We rely on the static
analyses to infer atomic sets (Section 3) and compute the
side effects of the client-side invocations (Section 4). It is
commonly known that static analyses are potentially un-
sound in the presence of dynamic loading mechanism, such
as reflection, because the analyses may not observe code that
will be loaded. Bodden et al. [2] mitigate the problem by
monitoring the executions and recording the code loaded.
Furthermore, if an atomic set is only ever accessed by a

single thread, the compositions of invocations that access it
do not need to be atomic. However, static analyses cannot
always determining whether the atomic set is accessed by
multiple threads concurrently, so the analysis will be con-
servative and likely report such compositions as needing to
be atomic. However, such compositions do not lead to bug
reports by ICfinder: our dynamic analysis will not be able to

exhibit non-atomic interleavings since only a single thread
exists.
Limitation of Dynamic Analysis. We use the pre-

dictive analysis to search for non-atomic interleavings. No
matter how effective the dynamic analysis is, it is not com-
plete in general, i.e., it may not cover all the executions or
all the buggy interleavings. We mitigate the problem by ex-
tensively applying the predictive analysis, aiming at finding
as many non-atomic interleavings as possible.

8. EVALUATION
In this section, we aim at evaluating the effectiveness of

the inference of atomic compositions, the efficiency of the
dynamic checking, the quality of the final reports, and the
validity of our high fidelity claim. The evaluation details
are in Section 8.1, Section 8.2, Section 8.3 and Section 8.4
respectively.
We implement our approach as a tool ICfinder2, and eval-

uate on large scale applications including Openjms, Lucene,
Jigsaw, Derby, Tomcat. The benchmarks (shown in Table 1)
that we use are from the Stamp [20] suite 3, the Dacapo [1]
suite or the research work [5, 13] related to the atomicity.
In the applications, the atomicity is required by the threads
that access the shared resources, e.g., the shared physical
connection in Openjms. All studies are performed on a x86 64
Dell workstation with 3.0GHz quad-core Intel Xeon X5450
processors based on Core 2 micro-architecture (8 cores total).
The server has 16GB RAM and 6M L2 caches, runs Ubuntu
8.04 with a Linux 2.6.22 kernel, and uses Sun’s 64-Bit 1.6.0
JVM.

8.1 Inference of Atomic Compositions
We apply the static analysis to infer the atomic compo-

sitions. The static analysis first discovers the library mod-
ule, which provides the APIs for accessing the encapsulated
atomic set and the client module, which invokes the library
APIs to access the atomic set. It then finds the atomic
compositions of the invocations at the client side with two
key symptoms. The analysis is fully automated, without
requiring extra manual specifications.
In the following, we present the details of the library/-

client modules discovered by our analysis, then we study
the effectiveness of our symptoms in identifying the atomic
compositions.
Table 1 shows the total number of classes in the library

modules and the client modules in Column LM and Column
CM respectively, It also shows the number of atomic compo-
sitions (Column AC) identified by ICfinder and the number
of the library APIs (Column API) involved in the atomic
compositions.
According to the table, the atomic compositions, although

occupying a small portion of the code base (around 1% for
large applications), are too many for programmers to manage.
For large applications, Lucene, Jigsaw, Derby and Tomcat,
the number of atomic compositions ranges from 121 to 391.
Given so many atomic compositions, manual reasoning of
them is tedious and non-modular, easily leading to incorrect

2It stands for “the finder of incorrect compositions”, which
is publicly available: http://www.cse.ust.hk/prism/AC.
3As the original Stamp benchmarks are written in C language,
we use the Java version provided by Demskey et al.http:
//demsky.eecs.uci.edu/software.php.
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compositions. The large number of atomic compositions
also necessitate the fully automated dynamic checking (Sec-
tion 8.2).

Table 1. Metrics for static inference and dynamic
checking

Benchmarks LM API CM AC IC time
Vacation 1 9 1 16 0 14
Labyrinth3D 2 4 1 5 0 8
Bayes 1 3 2 6 1 12
Cache4j 3 14 3 91 1 18
Tuplesoup 1 2 1 11 0 25
Specjbb 3 6 3 6 1 239
Jspider 2 4 3 7 0 43
Openjms 8 20 11 126 15 879
Lucene 15 91 35 391 2 142
Jigsaw 38 71 47 121 2 177
Derby 22 78 19 122 16 155
Tomcat 35 89 42 365 12 35
Avrora 2 2 2 7 0 43

Next, we study the effectiveness of our symptoms by com-
paring with the symptom used by the state of the art ap-
proach MUVI. We first briefly explain MUVI and our im-
plementation of it. MUVI operates at the memory access
level. It first learns what memory accesses appear together
frequently and then treats the frequent togetherness as the
symptom of atomicity. We extend it so that it operates at
the invocation level. We first learn what atomic library APIs
are frequently invoked together and then treat the frequent
togetherness as the symptom of the atomic composition, i.e.,
the library APIs frequently invoked together are composed
as atomic.
From the implementation view, MUVI applies a frequent

itemset mining algorithm FPclose [9]: if two accesses acc1
and acc2 appear together for more than minSupport times,
and, each time acc1 is present, acc2 is present in higher
than minConfidence probability. We use the DCI close
algorithm [19], of which the Java implementation is publicly
available 4. DCI close is similar to FPclose, except that it
relies on one threshold, minSupport. In our experiment, we
set the minSupport threshold as 2, which means the APIs
are frequently invoked together if they are invoked together
in more than 2 methods. Higher threshold is possible, but
“2” is sufficient for demonstrating the difference between our
symptom and MUVI’s symptom, as explained soon. Besides,
MUVI requires the code distance threshold for determining
the togetherness. As the threshold differs from application
to application, it requires great efforts in the fine tuning,
which limits the practical utility. We simply determine two
invocations are together if they are in the same method.
In Table 2, we show the atomic compositions detected by

MUVI and ICfinder in Column ACMUV I and Column AC
respectively. For comparison, we also show the atomic com-
positions found by ICfinder but missed by MUVI in Column
Δ, and the atomic compositions found by MUVI but missed
by ICfinder in Column Δ�.
According to Column Δ� of Table 2, ICfinder misses the

minority (often less than 33%) of the atomic compositions
found by MUVI. For four applications such as Specjbb and

4 http://www.philippe-fournier-viger.com/spmf

Avrora, ICfinder misses none of the atomic compositions found
by MUVI. On the other hand, according to Column Δ, MUVI
misses the vast majority of atomic compositions found by
ICfinder, e.g., around 80% of the atomic compositions are
missed for each large application.
We investigate these observations by comparing our two

symptoms separately with the MUVI symptom. Besides,
we investigate the atomic compositions found by MUVI but
missed by ICfinder, as well as the false positives of ICfinder.
In the following, we use ICfinder-USE or ICfinder-COMP to
refer to the ICfinder which functions with only the USE or
the complementation symptom adopted.
Effectiveness of the USE Symptom. The atomic com-

positions reported by ICfinder-USE are shown in Column
ACUSE . For comparison, we show the atomic compositions
found by ICfinder-USE but missed by MUVI in Column ΔUSE ,
and the atomic compositions found by MUVI but missed by
ICfinder-USE in Column Δ�

USE .
According to Column ΔUSE , MUVI misses a lot of atomic

compositions found by ICfinder-USE, i.e., 50%-100% atomic
compositions are missed. This is due to the natural limit of
the statistic-based approach: MUVI depends greatly on the
frequency of the composition, however, many compositions
appear only in one method, which gives insufficient support
to MUVI. For example, the bug in Listing 7 is missed by
MUVI. Note, higher minSupport threshold makes MUVI miss
more atomic compositions.
One interesting observation is that ICfinder-USE can also

identify the atomic compositions involving the exception
handling. Listing 4 shows the multiplex method from Open-
jms, which adopts the multiplex of the channels to speed up
the message passing. The former invocation addChannel()

registers the channels in the shared channel pool, an atomic
set encapsulated inside the instance _channels. The latter
invocation disconnect() is invoked in the presence of the
exception to disconnect the subset of channels registered
and connected. The two operations are expected to run
atomically to preserve the consistency of status among the
channels. ICfinder-USE identifies such atomic composition by
identifying the control dependence between the two opera-
tions upon the exceptional control flow graph (the control
flow graph with the exceptional edges modeled).

Listing 4. Code snippet of Openjms

1 multiplex ()
{

3 try{
...

5 _channels.addChannel(localChannel);
// register

7 ...
}catch(Exception e)

9 { _channels.disconnect (); // shutdown
}

11 }

Conversely, as illustrated by Column Δ�
USE , ICfinder-USE

misses atomic compositions found by MUVI. One such atomic
composition is already shown in Listing 2. ICfinder-USE
misses the atomic compositions mainly because they do not
exhibit the program dependence that ICfinder-USE relies on.
ICfinder-COMP complements ICfinder-USE as ICfinder-COMP
does not require the invocations in the atomic composition
to be linked with the program dependence.
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Table 2. Atomic compositions

Benchmarks ACMUV I AC Δ Δ� ACUSE ΔUSE Δ�
USE ACCOMP ΔCOMP Δ�

COMP

Vacation 10 16 6 0 5 5 10 11 1 0
Labyrinth3D 3 5 3 1 1 1 3 4 2 1
Bayes 3 6 3 0 3 3 3 3 0 0
Cache4j 63 91 42 14 75 36 24 43 8 28
Tuplesoup 6 11 6 1 2 0 4 9 6 2
Specjbb 3 6 3 0 3 3 3 4 1 0
Jspider 9 7 0 2 5 5 2 7 5 0
Openjms 13 126 118 5 19 16 10 110 102 5
Lucene 245 391 269 123 251 228 222 156 47 136
Jigsaw 31 121 101 11 82 76 25 43 28 16
Derby 32 122 110 20 71 61 22 53 51 30
Tomcat 217 365 204 56 233 145 129 132 59 144
Avrora 0 7 7 0 2 2 0 7 7 0

ICfinder-USE may lead to false positives. Due to the con-
servativeness of static analysis, the invocations which access
different runtime atomic sets may be judged as accessing the
same atomic set. our backend dynamic checking filters out
those false positives.
Effectiveness of the Complementation Symptom.

ICfinder-COMP finds the atomic compositions without re-
quiring the program dependence between the invocations.
ICfinder-COMP adopts the complementation symptom, i.e.,
the invocations are inseparable in forming a combined atomic
operation, i.e., they are executed together or skipped together
in any execution.
We show the atomic compositions reported by ICfinder-

COMP in Column ACCOMP , and the comparisons withMUVI
in Column ΔCOMP and Column Δ�

COMP , in analogy to
Column ΔUSE and Column Δ�

USE .
According to Column ΔCOMP , MUVI often misses more

than half of the atomic compositions found by ICfinder-COMP,
which is also due to the aforementioned limitation of the
statistic-based approach. In Column Δ�

COMP , the five entries
with “0” suggest that ICfinder-COMP can find all atomic com-
positions found by MUVI in five applications. We investigate
the rest applications where ICfinder-COMP misses the atomic
compositions found by MUVI.
On one hand, the vast majority (quantified in Section 8.4)

of atomic compositions that ICfinder-COMP miss are false
positives produced by MUVI. For the example in Listing 5,
the invocation of library APIs logTransactionState() and
close() do not form the atomic composition. However,
MUVI, which uses the lexical adjacency as the symptom,
reports it.

Listing 5. Code snippet of Openjms

1 logTransactionState ()
{

3 switch(_state.value)
case OPENED:

5 {
log.logTransactionState(_state);

7 break;
}

9 ...
case CLOSED:

11 {
log.close();

13 break;
}

15 }

On the other hand, some atomic compositions that ICfinder-
COMP misses are true positives. Listing 6 shows one such
atomic composition. The invocation of the library API
destroy() is executed only if the application is configured to
run in the GC_SYNCHRONOUS mode, while the invocation of the
other library API close() is executed without the restriction.
In the GC_SYNCHRONOUS mode, the two invocations may be
expected to function atomically, while in other modes, only
the former invocation is executed. As the invocations are
not always executed together, ICfinder-COMP misses the
atomic composition. Actually, to better express the atomicity
intention, programmers could follow the coding paradigm
in the comment, which treats the invocation of close()

at line 9 and the invocation of destroy() at line 10 as a
combined atomic operation. With such coding paradigm,
ICfinder-COMP can successfully find the atomic composition.

Listing 6. Code snippet of Openjms

1 logTransactionState ()
{

3 log.close();
if(_mode=GC_SYNCHRONOUS)

5 {
log.destroy ();

7 }
// if(_mode=GC_SYNCHRONOUS)

9 // { log.close();
// log.destroy ();}

11 // else
// log.close ();

13 }

Finally, the atomic compositions reported by ICfinder-
COMP may contain false positives. One common case is,
the invocations of APIs Log.open() and Log.close() always
match each other, and therefore are judged as the atomic com-
position. However, they are often executed non-atomically to
allow the interleaving updates to the Log instance. Another
common case is the invocations of APIs Collection.get()
and Collection.put(). Programmers commonly use the
former invocation to get an item and use the latter to put
the item back after some local updates. If the invocations
complement each other in every execution, ICfinder-COMP
identifies the atomic composition of the invocations. How-
ever, the invocations may not form the atomic composition so
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that the Collection instance allows the concurrent get/put
operations for efficiency. Such false positives could be easily
pruned based on pattern matching.

8.2 Dynamic Checking
Given the inferred atomic compositions, we check dynam-

ically the incorrect compositions, i.e., the implementation
that violates the atomicity of the composition. We run the
dynamic analysis 20 times for each program and report the
total number of incorrect compositions in Column IC (Ta-
ble 1). Compared to the atomic compositions (Column AC
in Table 2), the incorrect compositions are much fewer, i.e.,
less than 10% of atomic compositions are incorrectly imple-
mented (except in the benchmarks, Bayes, Specjbb, Openjms).
Two reasons account for it: (1) the programmers can well
synchronize the majority of the compositions; (2) due to the
nature limit of the dynamic analysis, ICfinder cannot cover all
the paths and interleavings, therefore, misses some incorrect
compositions. Our dynamic analysis allows programmers to
focus on the small fraction of incorrect compositions instead
of inspecting the large set of atomic compositions one by
one.
We also evaluate the efficiency of ICfinder and show the

analysis time (unit: msec) in Column time (Table 1). The
analysis is very efficient, i.e., it usually finishes within 1
second, which owes to the optimization (Section 6) designed
for checking atomic compositions.

8.3 Case Studies
In this section, we evaluate the quality of the final reports,

i.e., whether they are helpful to programmers in exposing
bugs. We focus on the large application Tomcat, which
has an actively maintained mailing list. We confirm the
bugs by either sending the posts or examining existing posts.
Five out of twelve incorrect compositions are confirmed by
developers as bugs. Considering that Tomcat is heavily used
in around 250,000 sites [3] including the famous ones [37] such
as Linkedin.com and Ebay.com, we believe finding the new
bugs (or newly reported bugs) automatically is significant.
Tomcat is an open source software implementation of the

Java Servlet technologies. The code in Listing 7 is from
the class JspServletWrapper, which contains a field named
_theServlet. The field together with the fields referenced
by it form an atomic set. Accordingly, the library module
includes the classes declaring these fields in the atomic set,
e.g., the JspServletWrapper class and other classes.
Two atomic APIs provided by the library module are

invoked: One API getServlet is invoked to update the
fields in the atomic set to reflect the most recent change in
the JSP file, the other API service is invoked to serve the
incoming request from the JSP file. The latter invocation
is data dependent on the former one via the heap access:
the invocation of the method service uses the fields that
are updated by the invocation of the method getServlet.
Therefore, our static analysis identifies that the invocations
form an atomic composition.

Listing 7. Code snippet of Tomcat

1 service(Request request , Response response
...)

{
3 synchronized(this) { getServlet ();}

// _theServlet =...
5 if (mt_mode) {

synchronized (this) {
7 _theServlet.service(request , response)

;
}

9 }
}

ICfinder then checks dynamically the implementation and
finds it can be non-atomically interleaved, which leads to
harmful behaviors. A remote invocation interleaves to destroy
the instance referenced by _theServlet, making the state
read at line 3 unavailable at line 7. As a consequence, line 7
may use a destroyed _theServlet instance to serve.
We report the bug to the developer. The developer con-

firms it as a real bug and fixes it in Tomcat 7.0.11 onwards
(since Revision 1078409) 5.

Listing 8. Another code snippet of Tomcat

removeAttribute(name)
2 {

found = attributes.containsKey(name);
4 if (found) {

...
6 attributes.remove(name);

}
8 }

Another confirmed Tomcat bug6 is shown in Listing 8. The
ConcurrentHashMap instance attributes and its referenced
fields form an atomic set. Accordingly, the class Concurren-
tHashMap and the referenced classes form the library module,
which provides two atomic APIs, containsKey and remove.
The two APIs are invoked at the client method removeAt-

tribute in the client module, i.e., the class Application-

Context. As the latter invocation control depends on the
former one, ICfinder identifies an atomic composition, which
indicates the invariant that the remove operation is carried
out only if the entry is present in the map.
By dynamically checking the implementation, ICfinder

finds that the atomic compositions can be interleaved non-
atomically by a remote invocation which removes the entry
for name. The non-atomic interleaving violates the above
invariant as the remove operation is carried out even if the
entry for name is not present (it is removed by the remote
invocation), which leads to the NullPointerException.

8.4 Assessment of High-fidelity Claim
We claim that our inference of atomic compositions

achieves high fidelity, which means that it has few false
negatives, i.e., it finds many of the places where atomic
composition is required, while producing few false positives.
While there is no direct way to compare our results with any
notion of absolute truth, we argue below that we use reason-
able approximations of truth. This claim has two aspects,
which we address in turn.
Few False Negatives. The first interesting question is

whether ICfinder misses many real atomic compositions. To
answer this question, we approximate the truth by evaluating
the compositions inferred by all techniques and checking if
ICfinder misses real compositions found by other techniques.

5See the discussion in the mailing list: http:
//mail-archives.apache.org/mod_mbox/tomcat-dev/
201103.mbox/thread?2
6Bug 53498: https://issues.apache.org/bugzilla/show_
bug.cgi?id=53498
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In order to get the maximal set of possible bugs, we here look
at the compositions statically inferred rather than those con-
firmed by the dynamic analysis, in case the dynamic analysis
fails to expose a real bug. While this does not represent an
absolute truth, it is not clear how to find the missing bugs
more comprehensively. Specifically, we investigate the appli-
cation Lucene, where ICfinder misses the maximal number
(123) of atomic compositions inferred by MUVI. By man-
ually inspecting the atomic compositions, we find almost
all atomic compositions that ICfinder misses are spurious.
For example, the invocations of APIs pauseAllThreads and
resumeAllThreads always pair each other and therefore are
judged as an atomic composition by MUVI, but they do
not actually require atomicity. The invocations of APIs un-
deleteAll and deleteDocument frequently pair each other
in the same method and therefore are judged as an atomic
composition, but they never run in the concurrent settings
(i.e., only a single preparation thread executes them.) and
therefore do not require atomicity. Overall, for Lucene, we
did not find any genuine bugs that ICfinder missed.
Few False Positives. The second interesting question is

whether the incorrect compositions found by ICfinder often
represent real bugs. Note that our dynamic analysis reports
only the compositions of which the atomicity violations are
exhibited at runtime; the question now is whether the lack of
atomicity leads to a genuine bug. We answer this question by
evaluating which reports can be confirmed as bugs in Tomcat.
We choose Tomcat because it is heavily used and so ought to
have relatively hard-to-find bugs, and because the number of
findings makes the manual validation practical. Recall from
Table 1 that ICfinder finds 12 incorrect compositions. 5 of
these 12 incorrect compositions uncover bugs, as confirmed
by Tomcat developers7.
In comparison, MUVI finds 53 incorrect compositions; how-

ever, with the same dynamic analysis as ICfinder, it uncovers
only 1 confirmed bug. Thus, ICfinder has a much higher rate
of actual bugs: 5/12=41.7% for ICfinder and 1/53=1.9% for
MUVI. Bug reports accepted by the developers are the closest
we can come to a gold standard of true positives, and, by this
metric, a user of a heavily-used system like Tomcat would
need to look at fewer than 3 reports to find a genuine bug
with ICfinder.

9. RELATEDWORK
Atomicity Intention Inference. SVD [40] is the first

to infer the atomicity intention (or atomic regions). It infers
the atomicity based on the single-variable serializability. Dif-
ferent from it, our work preserves the atomicity on multiple
variables. AVIO [18] and AtomTracker [22] infer the atomic
region as the longest unbreakable sequence in the correct
runs. Kivati [4] applies the data flow analysis to identify
consecutive accesses of a shared variable and treats them as
in atomic regions. TransFinder [34] assumes conservatively all
accesses of a shared variable form the same thread should be
atomic. In addition, it applies the static analysis to remove
the atomic regions which cannot be interleaved. The conser-
vativeness of the static analysis degenerates its usefulness.
MUVI [17] adopts the frequent togetherness as a symptom
to infer the atomic regions. It also supports multi-variable
atomicity.

7http://www.cse.ust.hk/prism/AC

Atomicity Violation Detection. Different from the
above category of work, atomicity violation detection work
focuses on checking whether the implementation allows non-
atomic interleavings, with the atomicity intention correctly
specified. As static analyses [6, 23] are incompetent in explor-
ing the possible interleavings, very few static detection work
of atomicity violations exists. A broad spectrum of dynamic
analyses strive to explore the buggy interleavings both effec-
tively and efficiently. Model checking [21, 29] systematically
explores the interleavings. However, the exponentially large
space makes it hard to scale to large applications. Active
testing [26, 14] adopts the randomized scheduler to explore
as many different interleavings as possible. It needs many
runs to explore the interleaving space effectively, which may
not be efficient. Predictive analyses [30, 13, 38] improve
the efficiency by computing the possible buggy interleavings
offline from a set of normal traces.
Atomicity on Multiple Variables. Besides Vaziri et

al. [36], other researchers also observe and utilize the atomic-
ity on multiple correlated variables. In the area of distributed
system, consistency among multiple variables is a commonly-
desired property. Weihl et al. [39] and Herlihy et al. [11]
use the atomic objects to achieve the consistent execution
and recovery. In the software transactional memory research,
DSTM2 [10] and XSTM [25] support the usage of atomic
objects.

10. CONCLUSION
Programmers often need to compose the atomic APIs

to synthesize new atomic functionality. The compositions,
expected to be atomic, may be implemented incorrectly as
non-atomic. We design the static analysis which recognizes
the atomic compositions with the symptoms capturing the
key program logic for them, and customize the predictive
analysis to find the incorrect compositions. Our evaluation on
a set of large scale applications shows, the static analysis finds
up to 391 atomic compositions for an application, while half
would be missed by the previous statistic-based approach.
The dynamic analysis runs efficiently for up to 1 second.
Overall, our approach finds around 50 incorrect compositions,
which are previously unknown. Our study on Tomcat shows
that five out of twelve incorrect compositions are confirmed
as bugs by the developers.
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