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ABSTRACT

As developers make changes to software programs, they
want to ensure that the originally intended functionality
of the software has not been affected. As a result, devel-
opers write tests and execute them after making changes.
However, high quality tests are needed that can reveal unin-
tended bugs, and not all developers have access to such tests.
Moreover, since tests are written without the knowledge of
future changes, sometimes new tests are needed to exercise
such changes. While this problem has been well studied in
the literature, the current approaches for automatically gen-
erating such tests either only attempt to reach the change
and do not aim to propagate the infected state to the output,
or may suffer from scalability issues, especially when a large
sequence of calls is required for propagation. We propose
a search-based approach that aims to automatically gener-
ate tests which can reveal functionality changes, given two
versions of a program (e.g., pre-change and post-change).
Developers can then use these tests to identify unintended
functionality changes (i.e., bugs). Initial evaluation results
show that our approach can be effective on detecting such
changes, but there remain challenges in scaling up test gen-
eration and making the tests useful to developers, both of
which we aim to overcome.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
Testing Tools; 1.2.8 [Artificial Intelligence]: Problem
Solving, Control Methods, and Search
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Automated Unit Test Generation, Genetic Algorithms,
Search-Based Testing, Regression Testing

1. INTRODUCTION

Developers evolve software programs by introducing many
changes throughout the life-cycle of the software. These
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changes often range from small refactorings to the addition
of large new features. However, some of these changes may
affect the originally intended functionality of the software,
by introducing unintended bugs — also known as regression
faults. To avoid regressions in the functionality, engineers
write tests as they develop the software, and after making
changes developers execute these tests to increase their con-
fidence that the intended functionality of the software is in-
tact. This practice is also referred to as regression testing
and is commonly used in the industry.

While regression testing can help with early detection of
regression faults, developers face several challenges when ap-
plying the technique. As the number of tests grows, execu-
tion of all tests after every single change can become expen-
sive and impractical. This problem has been well studied in
the literature [18] and many techniques such as test selec-
tion, prioritization and minimization have been proposed.

The challenges however are not limited to the growing
cost of regression testing. Even if all tests are executed,
three main problems remain: 1) an existing set of tests is
required, 2) the tests are often written without foreseeing fu-
ture changes, and 3) the effectiveness of the tests in finding
regression faults depends on the quality of the written tests.
According to the PIE model [15], to reveal a fault, a test has
to first execute the fault, infect the state and finally prop-
agate it to the output. While several techniques exist for
augmenting existing test suites (e.g., [10,/17]) and generat-
ing regression tests (e.g., [2,9}/13}/14]), the techniques mainly
focus on reaching the fault, yet the number of paths to prop-
agate the infected state to the output can explode, which
may impose a limit on the scalability of the approach [3].

To address the previous shortcomings, we propose a tech-
nique for generating a regression test suite (i.e. a set of unit-
tests which contain a sequence of calls executing the class un-
der test) without depending on existing tests. Our approach
takes two versions of a class under test, and uses a search-
based algorithm [8] with the objective of reaching and propa-
gating the changes between the two versions of the program.
We have implemented our approach named EVOSUITER on
top of the EVOSUITE [5] test generation tool, and our early
evaluation of the technique [11] showed encouraging results
on examples with propagation issues (i.e. where covering
the change alone does not propagate the changed state to
the output). Further attempts to evaluate the effectiveness
of our approach on detecting real regression faults revealed
several challenges. As a part the remaining course of this
research we aim to solve these challenges, in addition to
evaluating our approach against the state-of-the-art.
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Figure 1: Overview of the approach. Given two versions of
a Java class, EVOSUITER aims to generate a test suite which
passes on one version of the class and fails on another one.

2. BACKGROUND

Although the topic of regression testing is well studied in
the literature, the majority of the studies focus on reusing
existing tests. However, since tests are written prior to the
changes, even with an existing test suite they can be in-
adequate for exercising changed behavior. As a result, re-
searchers have looked at augmenting existing test suites with
new tests that can exercise these changes (e.g., [1}[17]). Xu
et al. [16] also identified that the manner in which existing
tests are used for test suite augmentation can affect the out-
come of the approach. While these techniques were found
to be effective, an existing test suite is still required, and
the quality of the provided test suite has an impact on the
outcome and performance of the techniques.

Less attention however has been given to automatically
generating regression tests. Several techniques such as eX-
press [14] use dynamic symbolic execution (DSE) to generate
regression tests. Over the past years researchers have made
many advancements towards scalability of approaches using
DSE to avoid the path explosion problem. However, con-
sidering the PIE model, even if the reachability aspect is
solved, state infection and propagation remain as separate
challenges, since propagation alone can lead to another path
explosion problem. A different approach by Boheme et al. |2]
looks at generating regression tests using input values that
are symbolically partitioned such that they evaluate into the
same differential behaviour.

Work has also taken place on using random test generation
tools for detecting regression faults. Jin et al. [6] in their ap-
proach named BERT, first use a test generation tool such as
RANDOOP to generate a set of tests on the pre-change version
of the software, and then execute the generated tests on the
post-change version, and observe the behavioral differences.
Another approach named DiffGen by Taneja and Xie [13|
generates regression tests using instrumented test drivers.
By comparing the source code, DiffGen takes methods that
are semantically different across two versions of a program,
and synthesizes test drivers that compare the execution re-
sult of methods. To test their synthesized methods, they use
an automated test generation tool to generate tests for their
test drivers. Nevertheless, two main challenges remain: 1)
neither of the techniques focus on state infection and prop-
agation, 2) no large empirical evaluation of the techniques
exists to enable a more in-depth research in this area.

3. APPROACH

To aid the developer with early detection of regression
faults before releasing the software, our goal is creating a
solution that can take two versions of a program (e.g., be-
fore and after a change), and generate regression tests with
embedded assertions that fail on one version and pass on the
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other one. Since the tests reveal the detected changes in the
functionality, developers can then assess whether or not the
changes were intentional.

3.1 A Search-Based Approach

To achieve this, we investigated the use of a search-
based approach for automatically generating regression
tests. Specifically, we focused on using a Genetic Algorithm
(GA) to search for solutions that can satisfy our objective.
A GA is an evolutionary algorithm which over time evolves
a population of individual solutions towards an objective,
using a fitness function which enables us to optimize for mul-
tiple goals simultaneously. In our case, each individual so-
lution (a.k.a. chromosome) is a test suite (set of test cases),
and the fitness function calculates how far an individual is
from the ultimate solution. Individuals in the population
are initially generated randomly, and then evolve over time
by the two functions of mutation (i.e., test suite is modified
by adding/removing test cases or the statements within the
test cases are mutated) and crossover (i.e., two individuals
are recombined to form two new offspring).

Since the fitness function drives the direction of the search,
we considered three main measurements: 1) coverage: the
level of goal-coverage achieved by each test suite on both
versions of the code, where a goal is defined as covering all
branches in the class under test in addition to all meth-
ods that do not contain any branches, 2) state distance:
after executing each test suite, how different is the state of
all objects in the test suite across the two versions, and 3)
control-flow distance: for each branch of the software, how
far are the two versions from diverging. An overview of our
approach is shown in

To implement our approach, we extended EVOSUITE
and added functionality to support execution and state-
capturing of two versions of the same class. To capture
and compare the state of the program, we used Java reflec-
tion to extract the public and private state of the objects
in the test suite, and then compared the values based on
their numerical object distance [4]. Finally, if the same test
inputs exercises the change and different output values are
observed, we add assertions based on the output observed
from the original (i.e. pre-change) version. Since in practice
we can find methods that produce different output values
after each execution (e.g., a random number generator), a
threat exists to our approach that such false positives may be
detected. To avoid this and to lower the chance of false pos-
itive solutions, we re-execute each test case at least 3 times,
and the test is only kept if at each execution, it passes on
the original version and fails on the changed version.

3.2 Results Achieved So Far
3.2.1 Proof of Concept

To evaluate our technique, we first used several small-
sized non-trivial examples (e.g., CreditCard [11], BankAc-
count [6]) where simply reaching the change and infecting
the state would not result the internal different states to
propagate to the output. We found our approach to be
more effective than the state of the art test generation tools
(i.e. BERT using RANDOOP and EVOSUITE) in detecting the
changes, and moreover, our fitness function was more suc-
cessful compared to using coverage alone [11]. As a result,
we investigated the effectiveness our approach on two large
sets of artificial (mutants) and real bugs.



For the set of mutants, we wanted to understand whether
our technique can detect more mutants than the state of
the art test generation tools. As a result, we used over
500 mutants of two open-source projecti-EI that could not
be detected by tests generated by the tools EVOSUITE and
RaNDOOP. Additionally, for the set of real bugs, we used
the Defects4j repository |7] which contains 357 bugs across
5 different open source projects. Finally, to better under-
stand the effectiveness of each metric in our fitness function
(e.g., coverage, state-distance and control-flow distance), we
compared the effectiveness of all combinations of the met-
rics, in addition to each of them individually. Overall, the
combination of all three metrics was the most effective.

However, after comparing our GA with random search, we
found random search to be quite capable in identifying the
changes. Although several cases were only found by the GA,
on average random search was as successful as GA, and even
more successful on few other cases. This finding presented
us with the question of why an unguided search technique
can be equally or more successful.

3.2.2 Limitations of search-based approaches

After further investigating the surprisingly successful out-
come of random search, we proceeded to study whether in-
practice this outcome is limited to regression test genera-
tion, or whether it may generalize to test generation. The
result of the study showed no significant difference between
GA and random search for over 78% of subjects [12]. We
found the two underlying reasons for this observation: 1) A
large number of object-oriented classes were simple enough
for both techniques to cover, and 2) The type of conditional
branches common in object-oriented programs, are condi-
tions that cannot be used currently by the GA for guid-
ance(e.g., a condition on the return value of a method).

In addition to the search algorithm, we found our im-
plementation to have a higher overhead compared to ran-
dom search — evaluating up to 3x fewer tests during the
search. This enables random search to explore more solu-
tions, whereas the GA spends a considerable portion of the
budget on capturing and comparing the state. Furthermore,
this raises a new question of whether a metric for increasing
the diversity needs to be introduced.

3.2.3  Evaluating real regression faults

Another challenge we were presented with was evaluating
our technique against the state of the art. As a necessary
step towards enabling the evaluation of regression test gen-
eration tools we conducted a large empirical study into the
effectiveness of the state-of-the-art test generation tools on
detecting real faults ﬂ In the study, we generated tests
using 3 tools — EVOSUITE, AGITAR (commercial tool), and
RANDOOP — on the post-fix version of 357 bugs from the De-
fects4J repository, and then executed the tests on the pre-
fix version to see whether the regression in the functionality
can be detected. Our results showed that although the tools
overall managed to find over 55% of faults, no tool managed
to individually find more than 40.6% of the faults. This is
while the tools managed to reach high levels in coverage,
even up to an overall average of 86.7% by one of the tools.

We also identified several key weaknesses/strengths of the
tools. For instance, some of the bugs were only found by one
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of the tools which accessed/validated the private state of the
class under test. Moreover, we found that for test suites that
were unable to detect the fault, over 50% of them did fully
cover the changed code. While this may indicate a lack of
adequate oracles (i.e. assertions), it also shows that either
the fault infected the state of the program and yet did not
propagate to the output, or a specific dataflow was required
to infect the state, which we aim to investigate further.

4. REMAINING CHALLENGES

As mentioned in after evaluating our approach
and the state-of-the-art test generation tools, we identified

several key challenges. In this section, we discuss these chal-
lenges and how we aim to solve and evaluate them in the
remaining course of the study.

4.1 Isolation of Changes

Our approach currently does not take into account how
many times the same change is revealed. As a result, many
different test cases can be generated which identify the same
change, or one test may reveal the same change more than
once. Moreover, reviewing all such tests manually by the
developer can be time-consuming and costly. We aim to
minimize tests by determining and grouping tests that reveal
the same change, such that the developer is presented with
a set of unique changes. To evaluate this, we will specifically
measure the reduction in the length and number of tests, to
see whether any significant reductions can be made.

4.2 Continuous Test Suite Augmentation

Once a test reveals a change which the developer classi-
fies as a regression fault, it is possible that the same fault
can happen in the future. We propose a continuous regres-
sion test generation technique, where on every run of our
approach, we improve the previously generated regression
test suite by augmenting it with tests that had previously
revealed changes. To evaluate this, we are interested in the
rate of growth of the test suite size over time, and whether
the tests can be more resilient to regressions in the future,
especially when compared to tests generated by coverage-
based techniques.

4.3 Addressing State Infection

As mentioned in [Section 1} to reveal a fault, a test has to
reach the fault, infect the state and then propagate it. While
our approach aims to reach/execute changes by maximizing
the coverage, and also aims to propagate the infected state
to the output using the state-distance/control-flow-distance
metrics, the infection of state is left to chance. For instance,
in a test that even fully covers the class under test, to infect
the state, the order in which the statements are executed is
important. Consider the class Foo as below:

1 public class Foof{

2 private int value = 1;
3

4 public void setValue (int new){
5 value = new;

6+ value = 2 * new;

7 }

8

9 public int getValue (){
0 return value;

1 }

2}



Observe that the setValue method has been changed to
set the private field value to twice the provided input. A
simple test can detect the change:

1 public TestO(){

2 Foo foo = new Foo();

3 f.setValue (1) ;

4 int value = f.getValue();
5 assertEquals (value, 1);
6 }

In the test case above, the assertion fails on the changed
version — and thus detects the change, since value is now
equal to 2. However, if the lines 3 and 4 in the test case
above are swapped, the coverage remains at 100%, yet the
test is unable to identify any changes. One way to overcome
this would be to derive symbolic conditions that can result
in state infections. To avoid the issue of path explosion, we
can increase of the chance of state infection by increasing
the diversity of our solutions.

Currently, none of the measurements used in the fitness
function of our GA reward the use of different data flows
in the test suites. As a result, for instance, if a branch is
already covered with one data-flow, the search can get stuck
in a local optima, since any new solution that covers the
same branch in a different way is discarded. We propose
using a diversity metric that maximizes the use of different
data-flows, and as a result can grow the test suite’s diversity
over time. Since increasing the diversity may also result in
spending more time on discovering new solutions, we aim to
measure the success rate of the approach to evaluate whether
the tradeoff can be beneficial to the outcome of the search.

4.4 Addressing Scalability

One of the shortcomings of our approach is the high over-
head of capturing and comparing state differences, which can
account to even half of the search budget. Since this pro-
cess is performed as part of the fitness evaluation of every
individual and execution data is captured after each state-
ment execution in the test suite, for instance, an increase
in the size and complexity of the class under test can result
in an increase in the level of memory consumption. We aim
to investigate and evaluate different optimization techniques
to lower this overhead, to limit the amount of data that is
captured and compared.

S.  CONCLUSIONS AND FUTURE WORK

In this paper we presented our approach for generating
regression tests based on two version of a software, using
a search-based technique. Our approach guides the search
towards maximizing the state distance across the versions,
to increase the chance of propagating the different states to
the output. Although the results of our early experiments
on small non-trivial examples were promising, on detect-
ing real regressions we found random search to be equally
performant for the majority of subjects in our experiment.
Specifically, we learned about challenges presented by the
search space, where the GA cannot use the majority of con-
ditional branches for guidance, and the necessity of improv-
ing the GA to overcome these. As a result, we identified and
discussed some of the shortcomings of our approach such as
usability of the tests, effectiveness of our generated solu-
tions and the overhead imposed by our technique. One key
remaining challenge for us is that while EVOSUITER aims
to reach and propagate the state changes, state infection is

still by chance. Therefore, we aim to maximize this chance
by increasing the diversity in our population, or by deriving
symbolic conditions to achieve state infection.

After overcoming the challenges presented in this paper,
we plan to conduct a large empirical study to evaluate the ef-
fectiveness of our technique compared to the state-of-the-art
test generation tools. Especially, we are interested to under-
stand the difference in the effectiveness of our regression test-
ing approach, when compared to coverage-based test gener-
ation tools. Furthermore, the usability of such automated
regression tests to the developer is unknown. After enhanc-
ing the usability of our technique, we plan to empirically
evaluate it with developers. By the end of this study we will
make all the data and source code available open source, to
assist future research on the topic.
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