
Comprehensive Service Matching with MatchBox

Paul Börding
Heinz Nixdorf Institute

University of Paderborn,
Germany

boerding@mail.upb.de

Melanie Bruns
Heinz Nixdorf Institute

University of Paderborn,
Germany

mbruns42@mail.upb.de

Marie C. Platenius
Heinz Nixdorf Institute

University of Paderborn,
Germany

m.platenius@upb.de

ABSTRACT
Nowadays, many service providers offer software compo-
nents in the form of Software as a Service. Requesters that
want to discover those services in order to use or to inte-
grate them, need to find out which service satisfies their
requirements best. For this purpose, service matching ap-
proaches determine how well the specifications of provided
services satisfy their requirements (including structural, be-
havioral, and non-functional requirements). In this paper,
we describe the tool-suite MatchBox that allows the inte-
gration of existing service matchers and their combination
as part of flexibly configurable matching processes. Taking
requirements and service specifications as an input, Match-
Box is able to execute such matching processes and deliver
rich matching results. In contrast to related tools, Match-
Box allows users to take into account many different kinds of
requirements, while it also provides the flexibility to control
the matching process in many different ways.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.13 [Software Engineering]: Reusable Soft-
ware; I.6.4 [Simulation and Modeling]: Model Validation
and Analysis

Keywords
Service Discovery, Service Matching, Matching Processes,
Fuzzy Matching, Software Requirements, Framework

1. INTRODUCTION
Nowadays, more and more service providers offer software

components in the form of deployed, ready-to-use services
(Software as a Service) [11]. In order to benefit from these
services (e.g., by using them standalone or integrating them
as part of a service composition), service requesters need to
discover those services that satisfy their requirements best.
This service discovery is often performed by brokers that

Signature
Matching

Protocol
Matching

Aggre-
gation

Requirements Specification

Privacy
Matching

Aggr.Result = 0.85

Inputs:

Output:

Provided Service Specification

... ...

showMap (Position) : MapSection
Precondition:
Postcondition: ...

getMap (Location) : Map
Precondition:
Postcondition: ...

Retention: 12 months Retention: 0 months... ...

Signatures = 1.0
 Parameters = 1.0

Protocols = 0.5
...

Figure 1: Matching Process Example

act as intermediaries between requesters and providers. In
order to discover services, brokers apply Service Matching
approaches that determine whether the specification of a
provided service satisfies the requester’s requirements.

As such requirements can be both functional (e.g., “I want
a service able to show maps.”) and non-functional (e.g., “The
service should be fast.“), service matching approaches need
to be comprehensive, i.e., be able to consider many differ-
ent kinds of properties [3, 4, 5]. For example, matching ap-
proaches may focus on specifications of structural properties
(e.g., signatures), behavior (e.g., pre- and postconditions or
protocols), or non-functional properties (e.g., performance
or privacy-related properties). Extracts of some simplified
example specifications are shown in Fig. 1. In order to allow
comprehensive matching of all these properties, in our ear-
lier work, we proposed concepts for our framework Match-
Box [13]. In particular, these concepts enable brokers to
reuse and to combine matching approaches as part of com-
prehensive matching processes.

Figure 1 shows a simplified version of an exemplary match-
ing process. In this example, the requirements for a Map
Service are to be matched with the specification of a pro-
vided Map Service (e.g., Google Maps, OpenStreetMaps,
...). For this purpose, three exemplary matching steps have
been combined into a process: Signature Matching, Protocol
Matching, and Privacy Matching. A subsequent aggrega-
tion step aggregates the results of the single matching steps
into a final result using an aggregation strategy, e.g., the
weighted average. The final matching (here: 0.85) result
is constructed hierarchically from child results and denotes
how well the provided Map Service satisfies the given re-
quirements: 0 means it does not match at all, 1 means it is a
full match. Note that, matching processes may contain more
steps, e.g., performance matching or price matching. Fur-
thermore, the depicted matching process is simplified and
several details are omitted for presentation purposes, e.g.,
the specific configurations per step and data flow.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3675-8/15/08...$15.00

http://dx.doi.org/10.1145/2786805.2803181

974

Such matching processes can become complex but they
offer many benefits. For example, we get more accurate
matching results because we can consider many different
kinds of requirements of a service. At the same time, match-
ing process models provide us with an abstraction that is not
only more flexible but also easier to handle compared to the
amount of integration code we would normally need to in-
tegrate different matching steps. However, in order to make
the concept of matching processes useful with low effort, we
need appropriate tool support in order to create, configure,
and execute matching processes.

In this paper, we describe a tool-suite that realizes these
concepts: A requester’s requirements and service specifica-
tions from multiple domains (e.g., Tourism, University Man-
agement, Image Processing,...) can be specified as an input,
different instances of a matching process can be modeled,
new matchers as well as aggregation strategies can be inte-
grated. For a given matching process, the MatchBox tool-
suite is able to validate and execute this process by inter-
pretation of the underlying matching process model. The
matching results are presented in a hierarchical form, pro-
viding rich feedback for service providers, service requesters,
and brokers. As working with comprehensive input specifi-
cations raises the need for handling fuzzy requirements or
incomplete specifications [2, 15], MatchBox also supports
Fuzzy Matching [12, 14].

Existing matching approaches and their tools only sup-
port matching one or few kinds of requirements [14, 5], e.g.,
signatures. Also, these tools do not provide the flexibility to
control the matching order and aggregation.

The benefit of our MatchBox tool-suite is its provision of
a flexible environment that can be applied to various match-
ing problems. The target applications are service discovery
and component retrieval but also other kinds of software
requirements can be matched using MatchBox.

This paper is structured as follows. In the next section,
we give a brief overview of the architecture we used to re-
alize MatchBox. In Section 3, we present how we applied
MatchBox as part of a research project. Section 4 sum-
marizes related tools and compares them to MatchBox and
Section 5 draws conclusions. A screencast accompanying
this paper can be found online [17].

2. OVERVIEW AND REALIZATION
Figure 2 shows the basic architecture of the MatchBox

Framework including the components it consists of. It is
build up using the Model View Controller paradigm. In the
following, we briefly describe the constituent components
and their purpose.

The Model contains three main components: the Match-

ingProcess model, the InputSpecifications model, and
the MatchingResult model. The MatchingProcess consists
of several settings and data that determine how the Match-

ingProcess will be executed. The InputSpecifications

represent the requested requirements and provided service
specifications that are matched to each other during the ex-
ecution of the MatchingProcess (e.g., signatures or privacy
preferences for the required map service). The MatchingRe-

sult is created during the execution of the MatchingProcess
and represents final, aggregated matching results as well as
the sub results that emerged from single steps that are part
of the process.

MatchBox Framework

View

Core SpecificationsMatchers

ResultsView

MatchingProcessEditor

InputSpecDialog

MatchingProcess

Controller

AbstractMatcher

Validation FuzzyMatching

MatcherConfiguration ExecutionEngine

InputSpecification

Aggregation

MatchingResult

Model

Figure 2: Simplified Architecture Overview

The Controller offers several features to manage, adapt,
and execute a modeled MatchingProcess. Every part of the
Model can be validated before the matching is performed us-
ing the Validation component. The FuzzyMatching compo-
nent provides available Fuzzy Matching options in order to
improve the matching process and possibly its results in the
presence of uncertainties. For example, if the information on
the provided service is incomplete or if the requirements are
vague. The Aggregation component provides the possibility
to add aggregation strategies that aggregate the results of
the matching steps to the final matching result. For exam-
ple, if it is more important that a service’s signatures match
the requirements, than that the privacy properties match,
the signatures matching can receive a higher weight. The
AbstractMatcher provides template methods which can be
used to integrate Matchers into the framework. This leads
to the advantage, that the framework can be extended with
new matchers and configurations making it possible to com-
bine advantages of multiple matchers. The MatcherConfig-

uration contains the configuration for every matcher that
is used for the process. The ExecutionEngine is responsi-
ble for the interpretation of a modeled matching process in
order to execute it.

The View provides components that allow users to display
and edit all model parts. Using the MatchingProcessEditor
(shown in the main part of Figure 3), the MatchingPro-

cess is created and modified; the InputSpecification that
a matching process matches at runtime is assembled within
the InputSpecDialog; the corresponding MatchingResults

are shown in the ResultsView (shown at the bottom Figure
3) after the execution of a process.

The MatchBox tool-suite is based on the core part of a pre-
defined specification language (Core Specifications) used
to describe the elements to be matched such as signatures
or pre- and post-conditions. The Matchers that can be inte-
grated into the framework need to be based on a specification
language. MatchBox is independent from this specification
language as soon as it provides specific core features.

MatchBox is part of SeSAME (Service Specification, Anal-
ysis, and Matching Environment) [1]. It is built as a number
of Eclipse plugins using the Eclipse Modeling Framework
(EMF) and the Graphical Modeling Framework (GMF). In
particular, MatchBox utilizes the Eclipse extension point
mechanism to enable the integration of new matchers and
their configuration, input specification types, and aggrega-
tion strategies for the results. This makes MatchBox exten-

975

sible and versatilely applicable. Download information and
more details about the technical realization can be found on
the MatchBox Website [19].

3. EXAMPLE APPLICATION
In the Collaborative Research Centre 901 “On-The-Fly

Computing” [18], service matching is used to find suitable
IT services for various kinds of customers. These services
are composed from modular software components.

Within the scope of this research center, we integrated
eight different matchers. For illustration, we introduce three
of our matchers in the following. The Ontological Signa-
ture Matcher allows us to match the structure of service
operations by means of their signatures. This matcher com-
pares all signatures of the requested specification with all
the signatures of the provided specification based on their
input and output parameters. Protocol matching allows us
to consider the interaction a service provides. Our Path-
based Protocol Matcher compares protocols by calculat-
ing how many traces in the required protocol are covered
by the provided protocol. We also added some matchers for
non-functional properties. For example, privacy is an impor-
tant issue when looking for external software in particular.
Our Privacy Matcher compares privacy-related require-
ments to privacy policies that are part of the provided spec-
ifications. Examples for the privacy-related requirements
this matcher considers are the allowed delegation depth or
the retention time. In a case study [13], we showed that the
integration effort for one matcher takes about half an hour,
depending on the developer’s experience with the Eclipse
framework and MatchBox itself.

These three matchers have been combined to a match-
ing process using the MatchBox tool-suite as shown in the
screenshot in Figure 3. We also added an aggregation step
that is used to apply a weighted averaging strategy. Using
MatchBox, we are now able to validate and execute this pro-
cess fully automatically. Alternatively, we can adapt it in
various ways, e.g., by adding more matching steps, config-
uring matching steps, or changing the aggregation strategy.

As part of the research center, we performed several dis-
coveries for services in several domains. In one example
domain, services are composed to a university management
service. These services include a room reservation service,
a course registration service, and an exam management ser-
vice. For this purpose, different kinds of requirements have
been specified and matched to a collection of service specifi-
cations representing services in the market. Example match-
ing results received after matching the specifications for the
room reservation services using the depicted matching pro-
cess can be viewed at the bottom of Figure 3. Here we can
see MatchBox’ hierarchical results, allowing the customer
to trace how the results were calculated. In case of uncer-
tainties, e.g., incomplete specifications, Fuzzy Matching has
been applied and the view shows how much fuzziness was
induced. Depending on the specifications’ complexity, the
shown matching process takes about 10 milliseconds to be
finished for one service. This runtime increases linearly with
the amount of services to be matched.

4. RELATED TOOLS
There exists a large body of work in the area of ser-

vice matching and many matchers are already implemented.

MatchBox applies at a meta level, providing ways to lever-
age and to combine existing matchers. Thus, it does not
directly compete with these matchers. However, there are
more benefits of MatchBox compared to related tools.

One striking difference between our work and the current
state of the art in matching is the amount of detail in the
matched service specifications. Among the aforementioned
matchers, none of them can handle detailed specifications
of privacy, reputation, and protocols. Furthermore, current
matchers only return a list of services (e.g., [9], [8]), often
ranked by their matching results. While some add annota-
tions [6], only MatchBox offers hierarchical matching results,
allowing users to understand, how results came into being.
Users cannot only trace all results of the individual match-
ing step, like signature matching, but they can even check
which specific signatures do or do not match. Along with
the result itself, the fuzziness grade and its source are stated.

While MatchBox’s flexible matching processes offer the
possibility to integrate multiple different aggregation strate-
gies, many matchers use just one. Some matchers use adap-
tive aggregation, e.g., [7], [8]. Instead of letting brokers
choose the aggregation, the matcher learns the optimum
aggregation strategy. This adaptive aggregation might be
a useful selectable aggregation strategy for future develop-
ment. However, offering only one aggregation strategy does
not allow brokers to specialize for separate domains or very
demanding customers.

In addition to comprehensiveness and flexibility, in con-
trast to other tools, MatchBox also adds new features for
Fuzzy Matching. For example, while quite a few matchers
are able to deal with incomplete specifications (e.g., [10]) and
some are capable of using approximations (e.g., [8]), they do
not reflect this in their matching results. Both LARKS [16]
and WSMO-MX [6] use fuzzy logic for matching of single
aspects, but do not present any fuzziness values to the user.
MatchBox enables fuzzy matching of different kinds of re-
quirements and clearly shows the source and the amount of
fuzziness in its results.

5. CONCLUSIONS
In this paper, we described the tool-suite MatchBox that

allows the integration of existing service matchers and their
combination as part of flexibly configurable matching pro-
cesses. Taking requirements and service specifications as an
input, MatchBox is able to execute modeled matching pro-
cesses and deliver rich matching results that serve as feed-
back for service providers and service requesters. We applied
MatchBox by integrating eight different matchers, creating
different matching processes, and running them on specifi-
cations of requirements and services from different domains.

In contrast to related tools, MatchBox allows the user to
take into account many different kinds of requirements and
properties, while it also provides the flexibility to control the
matching process in multiple ways. In general, the Match-
Box tool-suite provides a flexible environment that can be
applied to various matching problems. Even though the tar-
get applications are service discovery or retrieval of software
components in general, in fact, also other kinds of software
requirements can be matched using MatchBox due to the
extensibility and substitutability of integrated matchers.

In the future, we want to extend MatchBox by introducing
the idea of self-adaptive matching processes that optimize

976

Figure 3: Screenshot of the MatchBox tool-suite

themselves according to a given market situation, e.g., the
size of the market.

6. ACKNOWLEDGMENTS
This work was partially supported by the German Re-

search Foundation (DFG) within the Collaborative Research
Center “On-The-Fly Computing” (CRC 901).

7. REFERENCES
[1] S. Arifulina, M. Becker, M. C. Platenius, and

S. Walther. SeSAME: Modeling and Analyzing
High-Quality Service Compositions. In Proc. of the
29th IEEE/ACM Int. Conf. on Automated Software
Engineering (ASE). ACM, 2014.

[2] L. Baresi, L. Pasquale, and P. Spoletini. Fuzzy goals
for requirements-driven adaptation. In 18th IEEE Int.
Requirements Engineering Conf. (RE), pages 125–134.
IEEE, 2010.

[3] S. Becker, S. Overhage, and R. H. Reussner.
Classifying Software Component Interoperability
Errors to Support Component Adaption. In 7th Int.
Symp. on Component-Based Software Engineering,
LNCS, pages 68–83. Springer, 2004.

[4] A. Beugnard, J. Jézéquel, N. Plouzeau, and
D. Watkins. Making components contract aware.
Computer, 1999.

[5] C. Ghezzi and A. Mocci. Behavior model based
component search: an initial assessment. In Proc. of
ICSE Workshop on Search-driven Development:
Users, Infrastructure, Tools and Evaluation, pages
9–12. ACM, 2010.

[6] F. Kaufer and M. Klusch. Wsmo-mx: A logic
programming based hybrid service matchmaker. In 4th
European Conf. on Web Services, pages 161–170.
IEEE, 2006.

[7] M. Klusch and P. Kapahnke. OWLS-MX3: an
adaptive hybrid semantic service matchmaker for
OWL-S. In Proc. of 3rd Int. Workshop on Semantic
Matchmaking and Resource Retrieval (SMR2), 2009.

[8] M. Klusch and P. Kapahnke. The iSeM matchmaker:
A flexible approach for adaptive hybrid semantic
service selection. Web Semantics: Science, Services
and Agents on the World Wide Web, 15:1–14, 2012.

[9] J. Li. A fast semantic web services matchmaker for
owl-s services. Journal of Networks, 8(5):1104–1111,
2013.

[10] N. Masuch, B. Hirsch, M. Burkhardt, A. Heßler, and
S. Albayrak. Sema2: A hybrid semantic service
matching approach. In Semantic Web Services, pages
35–47. Springer, 2012.

[11] M. P. Papazoglou, P. Traverso, S. Dustdar, and
F. Leymann. Service-Oriented Computing: a Research
Roadmap. Int. Journal of Cooperative Information
Systems, 17(2):223–255, 2008.

[12] M. C. Platenius. Fuzzy service matching in on-the-fly
computing. In Proc. of the 9th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE),
pages 715–718, New York, NY, USA, 2013. ACM.

[13] M. C. Platenius, S. Arifulina, and W. Schäfer.
MatchBox: A Framework for Dynamic Configuration
of Service Matching Processes. In Proc. of the 18th
Int. ACM SIGSOFT Symposium on Component-Based
Software Engineering, pages 75–84. ACM, 2015.

[14] M. C. Platenius, M. von Detten, S. Becker,
W. Schäfer, and G. Engels. A Survey of Fuzzy Service
Matching Approaches in the Context of On-The-Fly
Computing. In Proc. of the 16th Int. ACM SIGSOFT
Symposium on Component-Based Software
Engineering, pages 143–152, 2013.

[15] K. T. Stolee. Finding suitable programs: Semantic
search with incomplete and lightweight specifications.
In 34th Int. Conf. on Software Engineering (ICSE),
pages 1571–1574. IEEE, 2012.

[16] K. Sycara, S. Widoff, M. Klusch, and J. Lu. Larks:
Dynamic matchmaking among heterogeneous software
agents in cyberspace. Autonomous agents and
multi-agent systems, 5(2):173–203, 2002.

[17] University of Paderborn. MatchBox Screencast.
https://goo.gl/MGJTcP.

[18] University of Paderborn. Website of CRC 901
“On-the-Fly Computing”. http://sfb901.upb.de, Last
Access: June 2015.

[19] University of Paderborn. Website of MatchBox.
http://goo.gl/MMCxQT, Last Access: June 2015.

977

