
Learning for Test Prioritization: An Industrial Case Study

Benjamin Busjaeger
Salesforce.com

San Francisco, CA 94105
bbusjaeger@salesforce.com

Tao Xie
University of Illinois at Urbana-Champaign

Urbana, IL 61801
taoxie@illinois.edu

ABSTRACT
Modern cloud-software providers, such as Salesforce.com,
increasingly adopt large-scale continuous integration envi-
ronments. In such environments, assuring high developer
productivity is strongly dependent on conducting testing ef-
ficiently and effectively. Specifically, to shorten feedback
cycles, test prioritization is popularly used as an optimiza-
tion mechanism for ranking tests to run by their likelihood
of revealing failures. To apply test prioritization in indus-
trial environments, we present a novel approach (tailored
for practical applicability) that integrates multiple existing
techniques via a systematic framework of machine learning
to rank. Our initial empirical evaluation on a large real-
world dataset from Salesforce.com shows that our approach
significantly outperforms existing individual techniques.

CCS Concepts
•Software and its engineering → Software testing
and debugging;

Keywords
Regression testing, test prioritization, learning to rank

1. INTRODUCTION
Regression testing is a crucial activity in the software de-

velopment process to ensure that changes do not adversely
affect existing functionality. However, it is costly to conduct
regression testing in terms of both time and resources. To re-
duce cost, various regression test optimization mechanisms,
such as test selection and prioritization, have been devel-
oped. Test selection aims to identify the exact set of tests
(affected by the changes) that have to be run. In practice,
test selection often either underestimates or overestimates
the set of tests needed [6]. Test prioritization [11] orders
tests to maximize the likelihood of meeting a certain objec-
tive, typically revealing failures earlier. Test prioritization

can also be used for test selection in resource-constrained
environments by running the top-k ranked tests [6].

Test optimization mechanisms are particularly important
for modern cloud-software companies, such as Salesforce.com,
given the high change frequency and massive scale of the
companies’ code bases. Engineers typically continuously in-
tegrate their work into the mainline from which releases are
deployed directly into production [5, 16]. Code health of the
main branch is vital and small improvements in efficiency
yield high gains in productivity. In particular, test prioriti-
zation can help in two main ways. First, test prioritization
can be applied before submitting code to run a subset of tests
most likely to fail. Doing so gives engineers fast feedback
before switching context and can prevent major regressions
from entering the mainline. Second, test prioritization can
be applied after submitting code to run tests in the order
of fault-revealing likelihood. Even with modern large-scale
parallel test infrastructures, it can take a relatively long time
until an engineer has received complete testing feedback for
a given change. Test prioritization paired with automated
bug assignment can shorten the feedback window to ensure
that issues having entered the code base are resolved in a
timely manner.

Transferring academic research on test prioritization [11]
into an industry setting requires significant adaptation to
account for practical realities of heterogeneity, scale, and
cost. Various existing techniques and studies on test priori-
tization [11] focus on relatively small, single-language, unit-
tested projects. On the other hand, the target industrial sys-
tem under test in this research is a large software system,
written in multiple languages, with extensive integration-
test suites. Some requirements of existing techniques, such
as availability of per-test code coverage for every change, is
difficult to attain in such environments [5]. Furthermore, the
use of non-code artifacts, such as configurations, is typically
not accounted for by coverage-based techniques [9].

To address such challenges in industrial environments, we
present a novel approach for test prioritization focused on
practical applicability. To cope with heterogeneity, we ap-
ply multiple heuristic techniques shown by existing research
to perform well individually: test coverage of modified code
[11], textual similarity between tests and changes [12], re-
cent test-failure or fault history [6], and test age [5]. Each
of these heuristic techniques excels for a certain type of
changes and tests. For example, code coverage [11] can iden-
tify complex interdependencies between seemingly unrelated
parts of the system under test, such as impacts of low-level
persistence-logic changes on user-interface tests. Text sim-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

FSE’16, November 13–18, 2016, Seattle, WA, USA
ACM. 978-1-4503-4218-6/16/11...$15.00
http://dx.doi.org/10.1145/2950290.2983954

975

ilarity [12] performs particularly well for non-code changes.
For example, configuration-file changes not captured by cov-
erage metrics often contain similar terms to those from im-
pacted tests. Fault history [6] accounts for temporal rela-
tionships, which help identify tests impacted by churning
or non-deterministic code; these tests would otherwise be
ranked lower. Finally, boosting new tests [5] alleviates the
cold-start problem of having no prior coverage, text, or fault
metrics. To handle the large scale at reasonable cost, we
collect data asynchronously and accommodate potential in-
accuracies in these heuristic techniques. For example, cover-
age scores are computed based on proximity of covered and
changed lines rather than exact statement or block coverage.

Applying multiple techniques together introduces the chal-
lenge of how to integrate them effectively. It is not im-
mediately evident how individual scores produced by these
different techniques should be combined into an aggregate
score by which tests can be ranked. Furthermore, how scores
should be aggregated may depend on the types of changes
under consideration. For example, intuitively, code-coverage-
based scores should be emphasized for changes that affect
mostly source code. Rather than devising a model for rank-
ing tests through tedious and error-prone manual experi-
mentation, we draw on foundational results of learning to
rank from the field of information retrieval (IR) and machine
learning [7]. In particular, we use past test results, along
with information about each change that induced test fail-
ures and successes, to systematically train a ranking model.
The trained model is then used to predict rankings for un-
seen tests based on properties of each change and each test.

The main practical benefits of our approach are that it
leverages abundant data of test results available in prac-
tice, facilitates exploration of new predictive features, and
performs well for various types of changes and tests. To
the best of our knowledge, our work is the first that re-
duces the problem of test prioritization to that of learning to
rank. Our initial empirical evaluation on a large real-world
dataset from Salesforce.com shows that our approach sub-
stantially outperforms existing individual techniques. This
paper makes the following main contributions:

• Discussion of main challenges encountered and insights
gained in conducting test prioritization in an industrial
setting.

• A novel approach of test prioritization that systemati-
cally integrates existing individual techniques by learn-
ing from past test results.

• An empirical evaluation of our approach using a large
real-world dataset from Salesforce.com.

2. BACKGROUND AND RELATED WORK
Early techniques of test prioritization [11] focused mostly

on evaluating various code coverage metrics as the ranking
criteria. Independent variables include whether all state-
ments (total) or only previously not-covered statements (ad-
ditional) are measured [11], whether or not code changes are
considered [3], and the granularity of coverage data (class,
function, statement, etc.). In general, additional, change-
aware, fine-grained coverage yields higher accuracy, but dif-
ferences are often insignificant [3]. We adopt a total, change-
aware coverage heuristic that scores based on proximity be-
tween changes and executed code to accommodate slightly
out-dated coverage information. We also apply the Average

Percentage of Faults Detected (APFD) metric defined by
Rothermel et al. [11] in our evaluation: (n: number of tests,
m: number of failures, TFi: rank of ith failure)

APFD = 1−
∑m

i=1 TFi

nm
+

1

2n
(1)

History-based techniques rank tests based on past execu-
tion results. Kim and Porter [6] proposed the first technique
that computes ranking scores using a smoothed, weighted
moving average of past failures. Elbaum et al. [5] applied
a similar windowing technique tailored to continuous inte-
gration environments. A more recent study [10] factored
similarity between tests (in terms of coverage) into the his-
torical weighting. We integrate a simple weighted average
of recent test failures into our model.

Recently, IR techniques have been successfully applied to
rank tests. Saha et al. [12] indexed text content of tests and
queried using words extracted from change diffs. Our ap-
proach includes a number of text-based features using simi-
lar techniques of document similarity.

There have also been industrial case studies on test pri-
oritization. Microsoft applied test prioritization for testing
Windows [13, 2] and Dynamics Ax [1]. Google evaluated
prioritization to optimize pre- and post-submit testing for a
large, frequently-changing code base [5, 16]. This setting is
similar to ours. Cisco investigated prioritization for reducing
long-running video conferencing tests [8].

Learning to rank [7] is a subfield of machine learning
concerned with the construction of ranking models for IR.
Training data consists of item lists with associated relevance
judgments (usually either binary or ordinal), which induce
a (partial) order over the items. The objective is to train
models that rank unseen lists such that some ranking met-
ric is maximized. Learning algorithms are categorized into
point-wise, pair-wise, and list-wise. Point-wise algorithms
reduce ranking to standard classification techniques, pair-
wise algorithms classify pairs of points with the objective
of minimizing inversions, and list-wise algorithms consider
complete item lists using direct continuous approximations
for discrete ranking metrics. Pair-wise and list-wise algo-
rithms are more natural fits for learning to rank as they
optimize an easier problem of predicting relative as opposed
to absolute scores. Empirically, they outperform point-wise
algorithms [7].

Important metrics include precision (the percentage of rel-
evant items among all retrieved items) and recall (the per-
centage of relevant items retrieved). For most IR tasks, pre-
cision is more important, because users tend to look at only
top-ranked items. For priority-based test selection, recall
is more important, since the objective is to reveal as many
faults as possible. Average precision (AP) is a commonly
used metric in the presence of binary judgments for evalu-
ating rankings. It averages precision across all recall points.
This metric differs from APFD in that this metric does not
take the total number of items into account, but provides
insight on how many non-relevant items are ranked in front
of relevant ones on average: (M : ranks of relevant items,
Rk: ranking up to position k)

AP (Q) =
1

|M |
∑
k∈M

Precision(Rk) (2)

3. TESTING AT SALESFORCE.COM
Salesforce.com is a multi-tenant cloud application and de-

velopment platform [15]. Similar to other modern cloud-

976

software providers, most of the core code is continuously
developed, integrated, and released out of a single large
code base. The source repository contains many hundreds
of thousands of files of various types. While Java is the most
common language, many other languages are used, such as
PL/SQL for optimized database access, JavaScript for user
interface programming, and Apex [15] for higher-level busi-
ness logic. In addition, large portions of the source artifacts
are configuration files in the form of XML, properties, or
schema definitions. The metadata-driven architecture of the
application also involves extensive code generation and dy-
namic tests (e.g., parameterized tests whose parameters are
derived from metadata).

The process of regression testing consists of three main
phases supported by three types of continuous integration
(CI) jobs (precheckin, producer, and consumer), respectively.
First, changes are submitted to precheckin jobs, which build
binaries against the latest source code, run a small suite
of smoke tests, and commit into the main branch if all tests
pass. Second, producer jobs deploy artifacts for the commit-
ted changes. Third, consumer jobs run various tests against
the deployed artifacts. These tests are categorized by type,
such as unit, functional, and user interface, and by bucket,
such as basic, extended, and full. The latter serves as a
manual prioritization mechanism. Each bucket runs period-
ically for batches of changes where batch size depends on
job duration. To scale for large change and test volume, the
test infrastructure heavily parallelizes test execution. At any
given time, thousands of virtual machines run tests on mul-
tiple cores. Despite the massive infrastructure, it can take a
relatively long time for engineers to get feedback, especially
for extended buckets of functional or user interface tests.

A critical component in the testing system is the auto-
mated bugging service, which is responsible for identifying
which change in a given batch introduced each previously
unobserved test failure. In the majority of cases, this ser-
vice simply reruns failing tests on changes in the batch us-
ing an optimized search procedure. While this technique is
generally reliable, certain situations can lead to invalid as-
signments. Some examples include missing binary artifacts
for changes due to broken builds or network/server issues,
non-deterministic test failures (flaky/flapping tests), or se-
vere faults that mask others. We obtained the training and
test data for our evaluation from the database of this service.

The heterogeneity and scale of the system present three
main challenges for conducting test prioritization. First, the
rapid change/test frequency makes it infeasible to collect up-
to-date static or dynamic program traces [5]. Specifically,
collecting per-test Java code coverage is challenging, because
existing tools require single-threaded execution. While it is
possible to modify such tools to maintain thread-local state,
doing so would impose untenable threading restrictions on
tests. We also observed performance and behavior side ef-
fects from code instrumentation for collecting coverage in-
formation. Second, the code-base size is much larger than
most projects studied in previous work, leading us to favor
higher efficiency over accuracy for heuristics. Third, code-
base diversity in terms of artifact types makes a single sur-
rogate objective function based on coverage impractical. To
account for heterogeneity, our objective function considers
multiple facets simultaneously.

The two main use cases of test prioritization for the sys-
tem under test are (1) running top k tests most likely to

fail in precheckin jobs (to keep the code line healthy), and
(2) running all tests in priority order in consumer jobs (to
provide faster test result feedback).

4. APPROACH
In this section, we formally reduce the problem of test

prioritization to that of learning to rank, and describe the
features used for learning and the model being learned.

4.1 Problem Formulation
The following problem formulation for test prioritization

is a straightforward transliteration of ranking creation as de-
fined by Li [7]. There are two sets: the set of changes ∆ =
{δ1, δ2, . . . , δM} and the set of tests T = {t1, t2, . . . , tN}. In
IR, these sets correspond to queries and documents, respec-
tively. Given a change δ ∈ ∆ and a subset T ⊆ T , the task
is to rank elements of T using information about δ and T .

Ranking is performed by sorting T according to scores sT
obtained from a scoring function f(δ, t) : ∆ × T → R. A
given ranking list is denoted as π = sortsT ,t∈T (T). Scores
indicate the likelihood that a given test t will fail for a given
change δ.

In the training data, relevance labels are associated with
change/test pairs to induce a partial order among tests for a
given change. We use binary relevance labels Y = {0, 1} to
indicate whether a test passed or failed, respectively. Con-
cretely, given a set of changes {δ1, δ2, . . . , δm} along with, for
each change δi, a set of tests Ti = {ti,1, ti,2, . . . , ti,ni} and
associated labels yi = {yi,1, yi,2 . . . , yi,ni} (where ni is the
number of tests observed for change δi), the training set is
denoted as S = {(δi, Ti),yi}mi=1. To facilitate learning, a fea-
ture vector xi,j = φ(δi, ti,j) is created for each change/test
pair, where φ denotes the feature function. Therefore, let-
ting xi = {xi,1, . . . , xi,ni}, the training set can be written as
S′ = {(xi, yi)}mi=1.

The learning task is to infer a ranking model in the form of
a scoring function f(δ, t) = f(x) that produces ranking lists
(permutations) to maximize some ordering-based objective
function for unseen data. Note that with binary labels, there
are usually multiple optimal permutations.

4.2 Features
Our ranking model currently uses five features: Java code

coverage, text path similarity, text content similarity, fail-
ure history, and test age. While these features are not an
exhaustive set, they represent some of the most relevant indi-
cators studied in previous work. We plan to study additional
features such as file types and coverage for other languages
in future work. A previous technique [14] on fault prediction
used word frequency as features instead of computing text
similarity scores. While this technique allows for more flexi-
ble and direct learning of correlation and fault proneness, it
introduces additional practical challenges of having to train
more frequently and account for concept drift. We plan to
explore this trade-off in future work, including evaluating
newer word vector models.

The first feature of our model is a per-test code coverage
score. We use the open source Java Code Coverage Library
(JaCoCo)1 to instrument Java bytecode at runtime. Prac-
tical benefits of the library include obviating the need to
rebuild source code and low induced performance overhead.
We obtain per-test coverage by dumping collected coverage

1http://jacoco.org

977

information between test executions. Since this technique
requires single-threaded execution, coverage-collection jobs
currently run periodically in parallel to the actual testing
jobs. We also have to apply an optimization to retain run-
time performance2 and modify some reflective application
code to ignore bytecode instrumented for coverage collec-
tion. Previous research [4] has shown that coverage infor-
mation quickly becomes outdated, so our heuristic does not
entail precise coverage data. To enable efficient computa-
tion of coverage score, we build an inverted index that maps
each source file to the line numbers executed by each test.

The coverage score for a given test is the number of changed
lines executed by the test. Formally, let Fc be the set of files
modified by change c, Ft be the set of files executed by test t,
and L(t, f) be the mapping function that returns the num-
ber of lines executed by test t in file f . Then the coverage
feature score φ1 is computed as follows:

φ1(c, t) =
∑

f∈Fc∪Ft

L(t, f)

The second and third features of our model are text sim-
ilarity scores for test-file path and content, respectively.
These features are similar to URL and page-body indexing
in traditional IR systems. On these two features, our tech-
nique resembles Saha et al.’s technique [12]; however, our
technique uses a slightly different similarity function and
learns coefficients from data. A text-indexing job periodi-
cally extracts unigrams and bigrams for each category and
normalizes the counts using the standard TF-IDF transfor-
mation. For content indexing, we parse source files into
ASTs and collect select identifiers (e.g., names of methods,
classes, variables). To compute similarity for a given change
and test, we extract words from the file-system path and
textual content of changed files, respectively. For the latter,
we extract information directly via a simple textual diff.

The text score for a given test is the cosine similarity be-
tween words in the change and words in the test. Formally,
given a test’s text index D, where DP (t) and DC(t) de-
note the normalized word-count documents for test path and
content, respectively, a set of modified files Fc for change c,
and a word extraction function w, the text-similarity feature
scores φ2 and φ3 are computed as follows:

φ2(c, t) = cosine(
⋃

f∈Fc

w(f.path), DP (t))

φ3(c, t) = cosine(
⋃

f∈Fc

w(f.content), DC(t))

The fourth feature is the failure history for the given test.
Note that this feature is independent of the actual change
and only depends on the test. We adopt Kim and Porter’s
exponential weighting function [6]. Given the observations
of time-ordered test results {ht

1, h
t
2, . . . , h

t
k} where ht

i is 1 if
test t passed in test execution i and 0 otherwise, the score
at time k is computed as follows:

φk
4(c, t) = αht

k + (1− α)φk−1
4 (c, t)

The final feature is the age of a test, which is also agnostic
of the change. As observed and conjectured in previous work
[3], new tests often fail since they exercise new and possibly
churning code. However, previous features typically score
new tests lower due to lack of data. We account for this cold-
start problem with a binary score that boosts previously

2https://goo.gl/AaMEm6

unseen tests. Formally, given the set T of observed tests,
the score is computed as follows:

φ5(c, t) =

{
1 if t ∈ T
0 if t 6∈ T

4.3 Model
We integrate the features through a linear model trained

using SVMmap [17]. This algorithm is well suited for our
problem formulation as it is specifically designed to max-
imize average precision given binary-labeled training data.
To scale features uniformly, we normalize scores by their
maximum values. The resulting scoring function f used to
sort tests is computed as follows, where w is the trained
weight vector and φ is the feature vector:

f(δ, t) = wTφ(δ, t)

5. EMPIRICAL STUDY
To assess the effectiveness of our approach for optimiz-

ing pre- and post-submit testing, we performed an empirical
evaluation to address two research questions:

1. RQ1: How effectively can our approach conduct priority-
based test selection, compared to using previous ap-
proaches based on an individual heuristic?

2. RQ2: How effectively can our approach conduct test
prioritization, compared to using previous approaches
based on an individual heuristic?

5.1 Data
We extracted about three months of testing results from

the live automation system at Salesforce.com. We limited
our analysis to the basic bucket of functional tests, contain-
ing about 45,000 tests. In total we obtained 2,000 batches
of changes and their corresponding test-run results (named
as batch results), including assignments of test failures to
changes identified by the automated bugging system. To
transform the batch results into the training data for per-
change ranking, we ran Algorithm 1 as shown below.

Algorithm 1 Training data extraction algorithm

1: T ← ∅, passing ← batches[1].tests
2: for batch ∈ batches do
3: for change ∈ batch.changes do
4: failedc = {t | (t, c) ∈ batch.failed ∧ c = change}
5: if failedc 6= ∅ then
6: T ← T ∪ {(change, passing, failedc)}
7: passing ← passing \ failedc
8: end if
9: end for

10: passing ← {t | t ∈ batch.test ∧ t 6∈ batch.failures}
11: end for

In particular, batches are represented as records consisting
of three fields: (1) a sequence of changes included in the
batch, (2) a set of tests executed, and (3) a set of failures in
the form of (change, test) pairs. Initially, the training data
set T is empty. Next, batches and changes are traversed in
order. For each change that introduced at least one failure,
a training record (consisting of passing and failing tests) is
added to T . Tests are assumed to be in the passing state if
they passed in the last batch and have not failed for an early
change in the current batch (for the first batch, all tests
are assumed to be in the passing state). The underlying

978

Figure 1: Average Recall

assumption is that tests do not transition result states more
than once within a batch.

The preceding procedure yields 711 changes that each are
associated with at least one test failure. We indexed (i.e.,
collected) per-test coverage and text content once, roughly
at the point of 2/3 into the sequence of these 711 changes.
We use changes before the indexing point as training data
(440 changes) and changes after the indexing point as test
data (271 changes). This procedure ensures that we apply
our approach without using coverage or text data that would
not be available yet.

5.2 Results and Analysis
To quantify accuracy of test selection and test prioriti-

zation, we measure recall (at various cut-off points) and
APFD, respectively. The approaches under comparison are
our approach (denoted as “model”) and previous approaches
based on coverage (denoted as “coverage”), text path (de-
noted as “text p”), text content (denoted as “text c”), his-
tory (with α = 1), age (denoted as “new”), and random or-
dering (as a baseline control group, denoted as “random”),
respectively.

5.2.1 RQ1
Figure 1 shows average recall across all changes in the test

dataset at varying cut-off points below 5000 (∼ 10%) for
all the approaches under comparison. Recall is measured as
the percentage of test failures detected if tests ranked before
the cut-off point are executed. Each point on the curve is
average recall across all changes in the test dataset at that
cut-off point.

Our approach has higher average recall at all cut-off points
than any other previous approach. Among the previous ap-
proaches, the one using text path has the highest average
recall. There is no absolute order across the remaining pre-
vious approaches, given that their recall curves intersect,
but the approach using history achieves higher average recall
than the others after a slower initial increase. The remaining
previous approaches seem to rank a subset of failures high,
reflected by the steep rise in average recall initially, but have
little predictive power for other test failures, reflected by the
subsequent slow progression.

Table 1 summarizes how many tests need to be selected
by each approach to achieve a given recall average. Our
approach requires 72 (0.2%) top-ranked tests to detect 50%

Table 1: Average recall by number of tests
15% 50% 75%

random 14% (6278) 44% (20003) 69% (30539)
coverage 0.7% (334) 34% (15431) 55% (24927)
text p 0% (12) 8% (3795) 69% (30895)
text c 0.1% (68) 50% (22316) 69% (30523)
history 1% (445) 16% (7419) 44% (19844)

new 0% (3) 35% (15842) 59% (26458)
model 0% (2) 0.2% (72) 3% (1368)

Figure 2: Average Percentage of Faults Detected

of the test failures, compared to at least 3,795 (8%) tests
when using the previous approaches. Our approach requires
1,368 (3%) top-ranked tests to detect 75% of the test fail-
ures, compared to at least 19,844 (44%) tests when using
the previous approaches.

5.2.2 RQ2
Figure 2 shows boxplots of APFD scores for all the ap-

proaches under comparison. Our approach again substan-
tially outperforms the previous approaches. The APFD
median for our approach is close to 100%, with average
around 85%. The previous approaches (excluding the ran-
dom approach and the text-content approach) score lower,
but generally outperform the random approach in terms of
mean, median, p25, and p75. For the text-content approach
(“text c”), the APFD scores have midpoints around 50% and
have larger variance. Among the previous approaches, the
text-path approach (“text p”) achieves the highest median
84% and average 65%. The previous coverage, history, and
age approaches yield similar results of midpoints slightly
above 60%.

Mean AP scores induce the following ordering for the ap-
proaches: model (0.23), new (0.15), text path (0.08), cover-
age (0.05), text content (0.05), and history (0.02). The mean
AP score for our approach, i.e., model (0.23), implies that
on average about every 5th test in the ranking is a failing
test until all failures are detected.

Overall, text path appears to be the strongest feature
among the various individual features. The reason is that
tests written to verify certain code or metadata typically
use similar terms in their class or package names. As sug-
gested by previous studies [6, 5], temporal relationships such
as past failures and age of a test are also good indicators.
Somewhat surprisingly, code coverage is not as strong of a

979

Figure 3: Failures by coverage, text, and history
classifier on its own. Such result is not due to the lack of
granularity or staleness of data, but rather due to the high
degree of test failures induced by non-code changes in the
test suites being studied. However, the coverage feature is
still important for our approach because this feature helps
correctly predict test failures that are not textually or tem-
porally related to changes.

6. DISCUSSION
Our study faces a number of threats to internal valid-

ity. The training data obtained from our automated bug-
ging system contains some degree of noise in the form of
invalid failure-to-change assignment. However, such noise
affects only a small portion of the results. Another threat is
potential faults in our implementation. The threat is mit-
igated by the use of standard tools, such as JaCoCo, and
given that the heuristics in our approach are individually
relatively simple. Among various threats to external valid-
ity, we evaluated our approach on only about 3 months of
testing results from a single large, industrial system, which
may not be representative of other testing environments.

Besides assisting test prioritization and selection, we found
(previously-unexpected) side benefits of using our approach
to detect flaky tests and assess the quality of our automated
bug assignment. Figure 3 shows some failures from a raw
data set plotted in terms of their normalized coverage, text,
and history scores. Points in the upper-left corner form a
small cluster of high history scores with no coverage/text-
similarity to the change. Closer inspection of these failures
revealed that these points correspond to flaky tests, i.e., they
failed due to non-deterministic timing or environment issues.
Points in the lower-left corner have very low scores for all
features. These failures are typically incorrectly assigned to
changes.

7. CONCLUSION
In this paper, we have presented a novel test-prioritization

approach that integrates techniques from previous research
via machine learning. Our initial evaluation on a large real-
world dataset indicates that our approach substantially out-
performs previous approaches. Our approach is efficient,
practical, and designed to be well-suited for industrial set-
tings. Our study also exposes new challenges to be addressed
in future work, e.g., incorporating learning deeper into the
ranker, and evaluating new features, such as better support
for external artifacts packaged as archives.

8. REFERENCES
[1] R. Carlson, H. Do, and A. Denton. A clustering

approach to improving test case prioritization: An
industrial case study. In Proc ICSM 2011, pages
382–391.

[2] J. Czerwonka, R. Das, N. Nagappan, A. Tarvo, and
A. Teterev. CRANE: Failure prediction, change
analysis and test prioritization in practice –
experiences from Windows. In Proc. ICST 2011, pages
357–366.

[3] H. Do, G. Rothermel, and A. Kinneer. Empirical
studies of test case prioritization in a JUnit testing
environment. In Proc. ISSRE 2004, pages 113–124.

[4] S. Elbaum, D. Gable, and G. Rothermel. The impact
of software evolution on code coverage information. In
Proc. ICSM 2001, pages 170–179.

[5] S. Elbaum, G. Rothermel, and J. Penix. Techniques
for improving regression testing in continuous
integration development environments. In Proc. FSE
2014, pages 235–245.

[6] J.-M. Kim and A. Porter. A history-based test
prioritization technique for regression testing in
resource constrained environments. In Proc. ICSE
2002, pages 119–129.

[7] H. Li. Learning to Rank for Information Retrieval and
Natural Language Processing, Second Edition. Morgan
& Claypool Publishers, 2014.

[8] D. Marijan, A. Gotlieb, and S. Sen. Test case
prioritization for continuous regression testing: An
industrial case study. In Proc. ICSM 2013, pages
540–543.

[9] A. Nanda, S. Mani, S. Sinha, M. J. Harrold, and
A. Orso. Regression testing in the presence of
non-code changes. In Proc. ICST 2011, pages 21–30.

[10] T. B. Noor and H. Hemmati. A similarity-based
approach for test case prioritization using historical
failure data. In Proc. ISSRE 2015, pages 58–68.

[11] G. Rothermel, R. H. Untch, C. Chu, and M. J.
Harrold. Test case prioritization: An empirical study.
In Proc. ICSM 1999, pages 179–188.

[12] R. Saha, L. Zhang, S. Khurshid, and D. Perry. An
information retrieval approach for regression test
prioritization based on program changes. In Proc.
ICSE 2015, pages 268–279.

[13] A. Srivastava and J. Thiagarajan. Effectively
prioritizing tests in development environment. In Proc.
ISSTA 2002, pages 97–106.

[14] M. Tan, L. Tan, S. Dara, and C. Mayeux. Online
defect prediction for imbalanced data. In Proc. ICSE
2015, pages 99–108.

[15] C. D. Weissman and S. Bobrowski. The design of the
force.com multitenant Internet application
development platform. In Proc. SIGMOD 2009, pages
889–896.

[16] S. Yoo, R. Nilsson, and M. Harman. Faster fault
finding at Google using multi objective regression test
optimisation. In Proc. ESEC/FSE 2011.

[17] Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A
support vector method for optimizing average
precision. In Proc SIGIR 2007, pages 271–278.

980

