
Visualising Exemplary Program Values

Marcin Stefaniak
Institute of Informatics

Warsaw University
stefaniak@mimuw.edu.pl

ABSTRACT
We describe an idea of a tool to aid software developers,
similar to tracing and software visualization. The tool mon-
itors a running program and log some values of its variables.
The exemplary values, chosen by the tool, are later displayed
onto the source code. Each variable occurrence in the source
code is visualized with a few examples of its runtime values.
We are unaware of such a tool implemented already, and the
question which values should be selected seems interesting.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
debugging aids, tracing ; D.2.7 [Software Engineering]:
Distribution, Maintenance, and Enhancement—documenta-
tion

General Terms
Languages

Keywords
Tracing, Variables, Visualization, Branches

1. INTRODUCTION
During software development, working with existing code

is as important as creating new code. To understand existing
source code, good documentation is very helpful. Human-
created documentation and comments are prone to inconsis-
tence with ever-changing program codebase. Some pieces of
documenting information can be automatically generated by
program analyzers. For example, in programming languages
with type inference, like ML language family, the type in-
formation of variables is usually omitted. However, a clever
IDE could infer all types by static analysis and display vari-
able type information. It could be displayed, for example,
on hovering mouse over a variable.

The Java language has no type-inference. However, Eclipse,
industry-wide IDE for Java actually performs that kind of

Copyright is held by the author/owner(s).
ESEC/FSE’07, September 3–7, 2007, Cavat near Dubrovnik, Croatia.
ACM 978-1-59593-812-1/07/0009.

Figure 1: A hover feature in Eclipse.

visualization. The type of a variable is shown in its
”
hover”

box, so the programmer does not have to look it up at the
origin. Note that in the figure of hover box, the sample
variable values

”
hello world” and

”
hoverglass” were added

manually.
Similarly, runtime analysis can be used to gather informa-

tion about program in order to display it to the programmer
in a similar fashion, for the purpose of making the program
more readable and better documented. We argue that exem-
plary runtime values of program variables should be shown
in the

”
hover” mode.

Knowing the type of a variable is useful for the program-
mer trying to guess the meaning of program source code.
In dynamic-typed languages there is no type information
in the source code. A sample runtime variable value could
reveal to the reader relevant information. And even with
static typing, it happens frequently that the

”
official” type

is hardly meaningful, for example when complex structured
data records are represented as a string.

Moreover, seeing consecutive values of variables could help
understanding functions called from the browsed code. Some-
times system or third-party libraries are scarcely documented,
and sometimes it’s just easier to learn little details of a
function semantics (like indexing base of substring function)
from comparing its arguments and result.

It is impractical to collect all values of variables, because it
would generate megabytes of events per second. And in fact
nobody would like to watch all of them. Instead, we would
like the tool to pick just a few of them. Which of them
should be chosen? - this question remains open. Which of
the values would be most interesting for the programmer
reading the source code?

575

We are presently unaware of a tool fitting the above de-
scription. Neither have we implemented it yet, so for the
time being we are advocating a vaporware. Nevertheless,
we need to pick up a codename for such a hypothetical tool,
so let us call it neatly

”
hoverglass”.

2. RELATED WORK
Program monitor is a program that gathers information

about a running program. For example, automated pro-
gram tracers, software profilers, code coverage analyzers are
all program monitors. Program tracing is a specialized use
of logging to record information about program execution,
particularly for debugging purposes. Profilers measure the
performance of a program by counting the frequency or du-
ration of executing code fragments. Code coverage analysis
answers the question which statements, conditions or paths
of code were executed.

Observe that size of the result of profiling and code cov-
erage is usually proportional to the size of the source code,
while for program tracers it grows linearly with execution
time. Hoverglass is a kind of a program tracer that is ex-
pected to produce result of the size roughly proportional to
the size of the source code.

Program monitoring is a cross-cutting concern. It is usu-
ally implemented by code instrumentation. Code instru-
mentation is a transformation of (source or compiled) code
which inserts at certain points snippets of code necessary
for monitoring. Other approaches include virtual machine
monitoring and runtime code modification.

2.1 Daikon
Daikon [4] is an implementation of dynamic detection of

likely invariants, developed at MIT. It runs a program, ob-
serves the values that the program computes, and finds prop-
erties that held true during execution. The properties are
mostly algebraic equalities and inequalities, and may involve
one or more variables. The values are observed and stored
by a front-end, and later analyzed by the Daikon back-end.
There are several Daikon front-ends for observing program
values in different languages, including mainstream ones (C,
C++, Java). We could reuse Daikon front-end components,
although not directly, for example the Java front-end lacks
observing local variables.

Our approach differs from Daikon, because we don’t want
to store all the program values; we are looking for an on-line
algorithm. Also, hoverglass results are complementary to
Daikon, i.e. Daikon outputs general hypothesis about pro-
gram behavior, while a hoverglass tool reports special facts.
So if a variable urlString is assigned several different URL
strings, displaying one of them to a programmer would let
him recognize the variable kind to be URL, while Daikon
would not detect it unless extended with a URL-specific in-
variant module.

2.2 Bidirectional debuggers
A classic debugger allows to step along the flow of program

execution, only forward, while a bidirectional debugger al-
lows also backwards steps. This can be achieved by logging
system calls, re-execution and occasional checkpointing [2].
It can be achieved also by history logging, that is, tracing
all necessary events happening during program execution.
The event history can be later replayed. An example of
bidirectional debugger is the Omniscient Debugger [6]. It

was developed a few years ago for the Java language and its
instrumentation approach could be reused.

2.3 Monitoring languages
Tracing all program events is ineffective, if its purpose is

a further analysis that relies on a subset of events. In such a
situation, only some of the program events should be traced
and passed to the analyzer. It is possible to implement ded-
icated tracing code instrumentation for each program mon-
itor. To simplify it, recently [5] proposed ”tracer driver”
architecture. In their approach, a general tracer filters pro-
gram events based on event patterns specified by analyzers.
Earlier example of language for program monitoring is UFO
(a.k.a. FORMAN) [1], developed for Alamo monitor archi-
tecture.

Since we claim that a hoverglass tool could adapt itself to
maintain low overhead, a similar architecture could emerge
in the design of such an advanced hoverglass implementa-
tion.

2.4 Software Visualization
Software visualization is the part of computer science aimed

at displaying characteristics and behavior of various aspects
of computer programs. Most of the research so far has been
concerned with fancy algorithm animations and data struc-
tures diagrams. Hoverglass is a kind of software visualiza-
tion that is tightly bound with the source code, and can be
displayed onto the source code itself.

3. USAGE EXAMPLES
There are two quite different activities that motivate for

hoverglass tool: test-driven development and source reposi-
tory browsing.

3.1 Test-driven development
In test-driven development, a programmer writes tests be-

fore writing the actual code. In this case, (s)he is able to test
the code as it is being developed. Testing the code could be
performed under surveillance of hoverglass, and when a test
fails, the exemplary variable values could be viewed without
re-running it, likely unveiling vital clues for the reasons of
test failures. This is primarily debugging activity. It would
most likely happen within an IDE, and so enhancing user-
interface features would lead towards a bidirectional debug-
ger solution.

3.2 Source repository browsing
Second case is less obvious and comes from the practice

of teamwork, where the source code is shared, often in a
version control system. Especially in agile methodologies
of software engineering code sharing is encouraged. In this
environment one may need to look up and understand the
code that other people wrote, which is mentally difficult.
The codebase is most likely not faulty, so it is not a debug-
ging activity. However, it is an itch to read a code that has
been already executed and tested without being able to see
example variable values. And we would like to scratch this
itch.

If a software development team uses unit tests and ver-
sion control system, they probably run the tests automati-
cally after code changes are checked in. This tests could be
performed under surveillance of a hoverglass tool, and sam-
ple variable values stored for later code browsing. Since the

576

Monitored
program

Hoverglass

instrumentation
calls

Selection
Strategy

Program
source
code

Example
variable
values

HTML
source
code
browser

IDE
plugin

Figure 2: Hoverglass system diagram.

test suite is executed off-line, the efficiency overhead could
be larger, but it should be fully automated.

Note that it is possible to browse the source repository
in a web browser instead of an IDE, hence less rich user
interface should be used in this context.

4. DESCRIPTION OF HOVERGLASS TOOL

4.1 Tool framework design
We strive towards proof-of-concept implementation of Hov-

erglass tool for Java language. Programs in Java are exe-
cuted under virtual machine, so it should be fairly simple.
There are already examples of successful instrumenting Java
code in many projects, including Daikon and Omniscient
Debugger. Code instrumentation may be performed using
BCEL (byte-code engineering library) [3], which operates on
Java bytecode level. The bytecode have to be compiled with
debugging information enabled, so that variable names and
number of lines are available.

Hoverglass tool core consists of three separated parts: in-
strumenting the code, runtime values selecting, and visual-
ization of exemplary values.

The selection module is called by the instrumented code
and decide which of them should be remembered for later
presentation. An interface for selection algorithm is de-
signed, so as to separate selection strategies from the low-
level internal details. The exemplary values are stored for
visualization using an easy data format. Variable occur-
rences could be more or less identified by their names and
source line numbers. There can be different visualization
modules, e.g. HTML generator or IDE plug-in. The hover-
glass framework is defined by selection algorithm API, and
visualization data format.

4.2 Execution time overhead
When observing all variable values, the program execu-

tion may be slowed considerably. The Omniscient Debugger
[6] reports execution overheads from 2x to as much as 300x.
The factor depends greatly on the type of code being instru-
mented – how often it calls other (non-instrumented) code,
and whether the computations fits inside the memory cache.
We shall call the code with large overhead

”
dense” and the

kind of code that has little overhead
”
sparse”. Usually the

”
kernel”,

”
low-level” code is dense, while application, script-

ing, high-level is sparse.
Of course, too large overhead is rarely acceptable. Usu-

ally it is addressed by the fact that only part of the code
is interesting enough to be instrumented. For example, sys-

tem libraries and certain trusted, dense parts of code are
exempted from the analysis. In an industrial-quality tool,
specifying the parts of the program to be instrumented is a

”
must have” feature. This is an issue with all dynamic anal-

ysis tools, not only this one. However, we can go further
than that.

Unlike other runtime analyzes, the program does not have
to be monitored constantly. The expected result of hover-
glassing is gathering at least one example value for each
variable occurrence, so at the very least it could log only
the first value and then disable itself. A smart hoverglass
tool could profile its execution and disable tracing for too
dense code fragments. This way a low overhead could be
kept without sacrificing quality hoverglassing for non-dense
code.

This technique could be realized by having each fragment
of code compiled in two versions: instrumented and unin-
strumented. When too much time is spent within the instru-
mented version, execution flow would switch to the latter.
Self-modification of code could make it almost as performant
as the original code. For classic virtual method call, it is as
simple as changing an entry in the virtual method table.
Under virtual machine, it could be achieved by advanced
tweaking of just-in-time (JIT) compiler.

The profiling argument is useful also for the other end
of the code spectrum. If the tool could detect sparse and
seldom visited program fragments, it could apply more so-
phisticated and computationally expensive analysis. Hence,
it is justified to research a wide range of variable value selec-
tion strategies - simple and fast as well as complicated and
ones.

5. EXEMPLARY VALUES SELECTION
It is not obvious which values should be picked by a hover-

glass tool, and various strategies for this could be proposed.
Some of them could be randomized, and some of them deter-
ministic. Notice that for deterministic strategies users could
gain some information from the fact that certain values are
not displayed.

Another issue is whether the variable values are chosen
independently of each other, or not. Simple strategies treat
each variable separately, while more advanced ones could
relate them, for example gathering all from the same execu-
tion time. A trivial strategy would store k randomly chosen
values for each variable occurrence.

5.1 Picking representative values
Let us enhance the trivial strategy, staying with indepen-

dent selections. Since we want to pick values that are ex-
emplary for a variable occurrence, they should be different.
Moreover, for certain distinctiveness features of variable val-
ues, we would like to log at least one representant for each
distinct feature value. The collection of such features in-
cludes, but is not limited to:

• the runtime type of variable value

• is variable value null?

• for string variable, is it empty or not?

• for numeric variable, is it negative, zero, or positive?

• for small enumerated types, the value itself is a feature

577

For simple type variables, the number of interesting fea-
tures is small enough to have all of them considered. On the
other hand, when number of possible feature values exceeds
the limit of space for exemplary values, as it is possible with
complex types, some of them have to be dropped.

5.2 Conditional branch-based selection
Conditional branch instructions evaluate an expression in

order to divert the flow of program, so their conditional ex-
pressions are very important to program behavior. So, if a
variable is contained in branch instruction expression , the
result of expression should be treated as a feature for this
variable.

For example, if for the following piece code

function foo(x)

if (x > 5) {

print x

}

}

the function foo() is called with values {2, 3, 7, 8}, one value
should be selected from the set {2, 3} and one from {7, 8}, so
that values greater then 5, and those that are not, are repre-
sented. This example is an easy one, because the branching
expression depends only on one variable. When the expres-
sion involves other variables or function calls, it is not clear
that a particular value contributed much to the result.

Of course, this approach is not restricted to the if-then

instruction. It applies to other branching instructions, like
conditional loops, as well. The branching expression of switch
statement, is not boolean, but rather multi-valued; natu-
rally, each its case branch should be treated as a differ-
ent value of distinctiveness feature. Also, exceptions thrown
during evaluation of expression with variable values could
be treated similarly, because they create an (implicit) op-
portunity of branching.

5.3 Entangled variable occurrences
Strategies that select values independently for each vari-

able occurrence is not enough. When an exemplary value of
a variable is chosen, it is useful also to preserve the values of
neighbor variable occurrences at that moment. This could
provide useful feedback information about the flow of data.
For this, we could call such variable occurrences

”
entangled”.

It should be noted that such entangling of variable occur-
rences depends solely on the monitored program structure.
Therefore, its influence can be pre-computed at compilation
(instrumentation) time. However, this would complicate
hoverglass framework implementation considerably, and is
likely to be omitted from the first implementation release.

6. FURTHER WORK
Certainly, a major goal is a proof-of-concept implemen-

tation of the hoverglass tool framework. Enhancing it with
self-profiling in order to maintain low overhead seems a chal-
lenge in both design and development.

As far as the strategies of variable selection are concerned,
it seems a tip of iceberg. Apart from conditional branches, it
is possible that other program structures, like loops, could
influence the way exemplary values are visualized. Also,
there could be a need to gather exemplary values of subex-
pressions, not only variable occurrences. It is not strictly
necessary because a subexpression can be always extracted
into a local variable by the developer, but it could be useful
for certain kind of expressions, for example accessing a field
of a structure. And apart from variables of simple type, han-
dling and visualizing complex structures, objects and arrays
should not be underestimated.

The visualization problem contains a flavor of
”
human-

computer interaction” field. So this approach should be
evaluated and driven by feedback from human users, namely
software developers. That explains why the implementation
should be developed within a widespread environment (like
Java).

7. REFERENCES
[1] M. Auguston, C. Jeffery, and S. Underwood. A

monitoring language for run time and post-mortem
behavior analysis and visualization. CoRR,
cs.SE/0310025, 2003.

[2] B. Boothe. Efficient algorithms for bidirectional
debugging. In PLDI ’00: Proceedings of the ACM
SIGPLAN 2000 conference on Programming language
design and implementation, pages 299–310, New York,
NY, USA, 2000. ACM Press.

[3] M. Dahm. Byte code engineering with the bcel api,
2001.

[4] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,
C. Pacheco, M. S. Tschantz, and C. Xiao. The Daikon
system for dynamic detection of likely invariants.
Science of Computer Programming, 2007.

[5] L. Langevine and M. Ducassé. A tracer driver for
hybrid execution analyses. In AADEBUG’05:
Proceedings of the sixth international symposium on
Automated analysis-driven debugging, pages 143–148,
New York, NY, USA, 2005. ACM Press.

[6] B. Lewis. Debugging backwards in time. Proc. of the
Fifth Int. Workshop on Automated Debugging, 2003.

578

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

