
Towards Predictive Models of Technology Impact
on Software Design Productivity

Michael R. Lowry
NASA Ames Research Center

Moffett Field, CA 94035
+011 (650) 604-3369

Michael.R.Lowry@nasa.gov

ABSTRACT
In order to advance software engineering research, agencies
should fund pilot studies for calibrating software design
productivity impacts of potential technology advances. We need a
predictive model of technology impacts in order to advocate
technology programs and to select individual projects that provide
most benefit to society. Current software cost estimation models
can provide a starting point, but in the long run are inadequate
because they are based on current methods and technologies for
software development. Ultimately, the predictive models need to
be rooted in fundamental factors affecting productivity, ranging
from cognitive facility of different programming language
paradigms, mathematical underpinnings for reuse and
compositional approaches, and organizational psychology for
large development projects. Such a productivity model would
enable development of metrics for individual facets of software
design productivity, and an understanding of how even narrow
technology advances contribute to overall software design
productivity.

Categories and Subject Descriptors

D.2.9 Software Engineering Cost Estimation, D.2.2 Software
Design Tools and techniques, D.2.4 Software Verification

General Terms Economics, Measurement, Reliability

1. Overview
The benefit to society of software engineering research is
principally to enable the cost-effective development and
maintenance of reliable software-based systems that will enrich
our lives. However, in contrast to physics-based engineering
disciplines, software engineering is a young field with an
immature research agenda and many difficulties in connecting
basic research to improvements in practice. As an example of
predictable technology impacts in physics-based engineering
disciplines, consider NASA’s current reformulation of the human
space program. The explicit goal is developing a suite of
technologies to eventually enable human Mars surface missions,
with a twenty to thirty year time horizon before the first mission.
This Mars mission goal is extremely costly with current
technology.

The space transportation costs by themselves are daunting - even a
modest mission profile placing 50 metric tons on the Martian
surface (sufficient for human exploration until the planets realign
and subsequent Earth return) requires approximately 500 metric
tons being placed into Low Earth Orbit (LEO). Almost all this
mass is rocket fuel for successive mission phases starting with the
departure from LEO. This is more mass than the International
Space Station that has required more than a decade of space
shuttle launches. The laws of physics, especially the rocket
equation, provide a means of calculating the potential impact of
new hardware technologies on the mass needed in LEO, and
hence mission cost. There is high confidence in calculating
potential mass reduction by spending research dollars on
technology goals such as ion propulsion, alternative means for
supplying power, inflatable habitats for space and extra-terrestrial
exploration, and in-situ production of rocket fuel on Mars. Note
that all these are disruptive in terms of their effect on mission
profiles compared to current technologies. New space
transportation technologies that have yet to be imagined can also
be assessed using the same basic physics for their impact on
reducing mass needed in LEO for a Martian mission, and other
attributes that directly translate to cost and reliability.
A fundamental question is whether such a predictive model for
software engineering productivity based on first principles is
possible. The impact of software engineering technology advances
is usually considered too difficult to predict, especially for
disruptive technologies that could fundamentally change the way
software is engineered. In part this is because software is
principally a design problem; costs are almost exclusively for
human engineering labor incurred during development and
maintenance. Operational benefits such as system capability,
reliability, and safety are considered too difficult to predict and
quantify; hence cost-benefit decisions face large uncertainties.
High levels of uncertainty have a profound effect on the time
value of money, and hence investment decisions. Research
investments in physics-based hardware technologies have the
advantage of reliable predictions of potential benefits; investment
decisions can thus focus on risk factors such as whether a
technology goal can be achieved – and management issues such as
investing in one or multiple approaches, and trade-offs in
investing in technologies with higher potential benefits but greater
risks in achieving a technology goal. Investing in software
technology advances is thus problematic within a wide portfolio
of research dollars for competing technology disciplines, since
calculating even the benefits is highly uncertain.
This paper argues that even predictive models based on rough
empirical correlations can clarify research investment decisions.
Furthermore, as these rough predictive models undergo
increasingly precise empirical validation, they could lay the

Copyright 2010 Association for Computing Machinery. ACM
acknowledges that this contribution was authored or co-authored by an
employee, contractor or affiliate of the U.S. Government. As such, the
Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government
purposes only.
FoSER 2010, November 7–8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11...$10.00.

223

groundwork for models based on first principles – much as the
Ptolemaic theory led to Newton’s theory under the increasingly
precise empirical observations of telescopes. Predictive models of
software engineering technology impacts would provide a firm
foundation for increased software engineering research investment
within a portfolio of competing technology disciplines. They will
also be informative for selecting and managing a portfolio of
software engineering research projects, much the same way
NASA is using (multiple) Mars Design Reference Mission
concepts to evaluate synergistic hardware technology benefits as
well as tall-pole requirements. Finally, these models will be
informative to the software engineering research community, and
might stimulate new directions for research.
There are two principle ingredients for a predictive model of
technology impact. The first are uncalibrated mathematical laws
that predict outputs – especially productivity (cost per unit of
software) and reliability (latent defects that manifest during
operational use), as a function of factors that could be effectively
impacted by technology advances. These mathematical laws could
at first be based on qualitative factors without a first principles
underpinning, such as shown in section 3, and then evolve. The
second are experimental studies that provide empirical evidence
for the validity of these laws, and calibrations of parameters.
Existing software project cost models can provide a starting point,
especially with scaling laws that can be qualitatively related to
selected technology advances, illustrated in section 3. However,
the purpose of software cost models is inherently different: to
predict the cost of specific software projects based on a wide
variety of factors most of which are only peripherally related to
technology variations. In addition, while current cost models are
well calibrated, their calibration is necessarily against a
backwards-looking corpus of projects that typically span decades.
A principle impact for society of software technology advances
will be to reset the trade-off curve between productivity and
reliability. Within a given level of software technology, in order to
obtain increased reliability of a software system, more human
labor for assurance activities is required thus decreasing
productivity. Technology advancement becomes a set of contours
relating productivity to reliability, for example by automating
portions of assurance activities. Future technology advances might
also change the shape of these contours. One characteristic is that
even for casual software projects, post-deployment defect
management is costly. Technology advances for effective early-
lifecycle defect reduction can lower overall costs. In other words,
maximal productivity for casual yet functional software is
achieved with a large but bounded defect density – densities
beyond this bound increasing post-deployment cost and hence
lowering productivity, while defect densities less than this bound
are correlated with assurance activities that cost more than
optimal for the casual nature of the software. Technology
advances for effective and low-cost early-lifecycle defect
reduction can lower this optimal bound and change the shape of
the reliability versus cost contour.
Predictive models of software technology impacts will need to be
based on fundamental factors in order to extrapolate outcomes
such as changing contours of productivity versus reliability based
on inputs that are different mixtures of technology advances. For
example, currently there is no reliable way to predict how
different advances in code-based static analysis would interact
with different technology advances in model-based software
engineering – and how these in combination or separately relate to

targeting massive multi-core hardware architectures. In addition,
technology advances that fundamentally change the practice of
software engineering – such as widespread end-user
programming, have impacts that can only be modeled using
fundamental factors. Section 4 describes a starting set of
fundamental factors. The conclusion of this position paper
advocates steps that government agencies can take to calibrate
predictive models.

2. CRISIS IN SOFTWARE DESIGN
PRODUCTIVITY
Transistor-based computers reliable enough for routine use
became available for commerce fifty years ago (1960s). By the
1970s general-purpose computers had begun to revolutionize the
work life of the small portion of the population that had routine
access to the Arpanet and time-shared computers. Within a
generation, software-based systems transformed work and home
life throughout the developed world. Work is centered on creating
and communicating digitized documents or controlling
computerized equipment; communication is through 24/7 mobile
phones and high-bandwidth Internet, entertainment through
increasingly interactive on-demand digitized television.
Whither the software crisis? It was in the context of the early
decades of the software revolution that the critical problem with
software design productivity became evident – in essence, the
difficulty of writing correct, understandable, and verifiable
software. The term, coined at the 1968 NATO Software
Engineering conference [5], was elaborated by Dijkstra in his
ACM Turing Award lecture [3]: “now that we have gigantic
computers, programming has become an equally gigantic
problem”. The crisis is manifested by software projects that are
over-schedule and over-budget – if delivered at all - with low-
quality and unmaintainable software. There has been incremental
progress but no silver bullets for the ‘software crisis’. The crisis is
not in our ability to produce software, but in our ability to produce
reliable and verifiable software to standards that can be used in
critical applications without excessive cost.
In the commercial realm, the crisis is usually sidestepped. The
mass distribution of software-controlled devices amortizes large
software development budgets, which are further ameliorated
through outsourcing to developing countries. The software quality
is seldom required to be safety-critical or even mission-critical.
Personal computer software is driven by time-to-market, with
quality and correctness a secondary factor. In other cases, such as
the automobile industry, government oversight has not kept pace
with the profound transformation from mechanical/electrical
analog control to digital control. Hence even safety-critical
software is often developed with standards that are not
demonstrably commensurate with the risks involved.
The challenge to the research community is technology for the
cost-effective development of reliable software for new systems
that will continue to enrich our lives: cars that safely drive
themselves, space systems for human exploration of Mars,
renovations of our National Air Space that provide expanding
capacity without compromising safety, and sophisticated medical
devices that extend our lives and health. The methods and
technologies for the development of these future systems is the
concern of the inter-agency software design and productivity co-
coordinating group [3] that co-sponsors this workshop.

224

3. QUALITATIVE ESTIMATES OF
TECHNOLOGY IMPACTS FROM
EXISTING COST MODELS
For safety-critical software, defect management is the major
determinant of software cost. Existing software cost estimation
models can provide rough order of magnitude scaling laws of
software cost versus software size, which when combined with
defect prediction can yield qualitative extrapolations for
technology impacts. As discussed later, this method is limited
because cost models and defect models are highly correlated
through calibration on backward-looking projects. Here we
illustrate the methodology by considering extrapolations made for
NASA’s unmanned space exploration program a decade ago [4].
Historical data shows aerospace software size increasing
substantially over the past decades, for both manned and
unmanned missions. Software cost models such as COCOMO [1]
have calibrated scaling models where software cost increases
proportionally to (size)1<N<2 . This scaling law assumes that the
number of software modules increases linearly with overall
software size. Software assurance activities for large-scale
software systems focus on unintended interactions between
modules, such as verification at software system integration.
Because they are not local, defects due to these unintended
interactions are costly to resolve. The number of interactions is
bounded from above by the square of the number of modules.
Thus logically N varies between 1 and 2. Calibration on cost and
schedule data from past software projects gives a value of N=1.2.
In these models cost, schedule, and errors are all correlated.
Given the calibration of N; the correlation between cost, schedule,
and defects, and the historical growth of software on aerospace
systems we can extrapolate to future missions. A calibration of
defects from past unmanned Mars missions was used to
extrapolate the defects for future missions, using N = 1.2 . Mars
missions are notoriously difficult; internationally two out of three
missions have failed. At the end of the last decade, failures of
Mars Climate Orbiter and Mars Polar Lander – both most likely
due to software-related errors – led to the calibration in the log-
log graph below; which indicated that the long-term prospects for
reliable Mars mission software were poor.

The relative error rate vertical axis on this log-log graph indicates
errors that are both mission-critical and that have high
probabilities of being executed, such as occurred on Mars Polar
Lander. With the calibration to the Mars Polar Lander software
size, the extrapolation of the red line is that the number of

mission-catastrophic errors for the expected software size for a
sample return mission to Mars would be over ten – hence little
chance of success. (In a Mars sample return mission, a robotic
vehicle collects samples then returns to Earth.) This qualitative
model demonstrated a need for improvement in software design
methodology, possibly incorporating technology advances.
Best practices such as CMMI tend to control unintended
interactions, reducing the size of the exponent N. The blue line
indicates that even reducing N to 1.1 gives a reasonable chance of
mission success for software in the 200K range, but is insufficient
by itself when scaling to a million source lines of code.
Ten years ago model-based software engineering methods were
being first used in practice. The approach is to develop an abstract
model of both the software and its domain of operation. These
models make interactions explicit and precise, thus enabling
interactions to be understood at systems integration level. The
level of abstraction reduces details of the interactions and focuses
attention on critical attributes. Over the last decade this approach
has been increasingly adopted in the aerospace community.
Although the full set of capabilities envisioned in research
laboratories have not yet been realized in industrial practice, cost
calibrations on actual projects have already shown a 1.5x
improvement, which is a significant portion of the 3x
improvement on the green line.
Additional scaling laws from software cost models can sometimes
be directly applied to advances in software processes or software
development technology. Most cost models have a direct scaling
of software size and hence cost based on language level. With
other factors held constant, a human programmer takes the same
time to develop a line of assembly code as a line of a domain-
specific language. Due to the economy of expression in the
domain-specific language, the size of manually developed
software decreases proportionally, as well as the number and
hence interaction between modules – even as the size of generated
source code remains constant. This is part of the 5x improvement
extrapolated in the black line, for which there is a reasonable
chance of mission success for the software size anticipated in a
Mars sample return. It should be noted that extrapolating the
effect of higher-level languages and autocoding has many
uncertainties. For example, the initial outside cost projection for
NASA’s Orion capsule had to be redone partly due to this factor.

4. TOWARDS CAUSAL MODELS
As demonstrated above, the scaling laws inherent in current
software cost estimation models can provide qualitative guidance
on the impact of software technology advances.
However, as predictors of the productivity impact of technology
advances the models are inherently limited. First, of necessity,
software cost models are calibrated on backwards-looking
projects. Portions of the parameters are antiquated. One example
from a commercial cost estimation tool is a parameter that rates
(high – medium – low) the time it takes for a software
development environment to respond to a keyboard input. This
parameter was highly relevant when software development
environments were run on remote time-shared computers. Today
it is considered irrelevant by most cost analysts, but it is kept in
the model for backwards compatibility and because it was
measured in the software projects on which the model was
calibrated. These antiquated parameters are interesting to consider
from the viewpoint of more general models, such as the

225

productivity of an individual programmer working in an IDE, and
are one indication of the need for more fundamental factors.
Second, in these models software cost and schedule are highly
correlated with software defects. If you try to compress the
schedule, then defects and costs go up. To reduce predicted
defects, a cost analyst raises the level of assurance-related
parameters, which then entails that costs go up – accounting for
the current high premium for costs of safety-critical aerospace
software versus commercial software.
However, successful technology advances in software engineering
will cause a divergence in this trade-off curve between software
costs and software defects – costs will go down while defects will
be held constant. Other than the scaling laws illustrated above, the
cost models don’t indicate underlying mechanisms for the impact
of technology advances. While software costs models typically do
have a parameter that represents use of more advanced
technologies, such as formal methods, the calibration of the
impact of this parameter is subjective or anecdotal.
A software cost and defect model that is able to extrapolate the
impact of technology advances on software design productivity
will need to be based on fundamental factors. Some of these are
inherent in organizational psychology, others in the causal factors
for individual design productivity, and others yet in the
mathematical nature of software defects and models of their
propagation, detection, elimination, and mitigation. Below some
of these fundamental factors are described in the context of
software development where defect control is critical:
Defect introduction and propagation: the cost of fixing defects
as they propagate from one phase of the software lifecycle to the
next phase is empirically known to grow exponentially. The
mechanism is qualitatively understood, but needs to be calibrated.
Boehm’s CoQualmo model [2] provides a simple defect
introduction/propagation/elimination framework that can serve as
a starting point if combined with software rework models. As
defects propagate through the lifecycle they interact with
subsequent design work, thus leading to an expanding area of
infection. When the defect is detected, this infected area needs to
be reworked. Existing cost models typically have rework
submodels for reuse and maintenance, which can serve as a
starting point together with CoQualmo for calibrating defect
removal cost models.
Feedback loops: outside of a single end-user programmer
developing code for her own use, miscommunication is a major
source of defect introduction. Requirements analysts often
misunderstand end-user needs. Technology advances such as
rapid prototyping environments or executable specifications
potentially provide means of closing the feedback loop between
analysis and end-users that is likely superior to natural language
dialogue. Similarly, miscommunication across a large software
development organization or between successive stages of
software development is a primary source of defect introduction.
A control-theoretic feedback-loop framework overlaid on
CoQualmo could potentially provide a first principles model –
spanning from new approaches for requirements development to
new approaches for code review. A control-theoretic model could
be used to simulate the value of a new technology before it is
actually developed, and calibrated by tracking defects as error
signals on existing software projects.
Reuse: technology and methodology advances – ranging from
software product lines, to design patterns, to aspects, can

profoundly impact the degree of reuse. Reuse can be done at many
different levels – from requirements through code to test.
Fundamental factors include cognitive models for selecting
reusable artifacts, cost models for generalizing an artifact so that it
is reusable, and defect models related to inappropriate reuse.
Defect detection: software verification technology can have a
profound impact on cost through both enhanced, and earlier defect
detection, as well as replacing human labor in software assurance
activities. However, due to the expertise required to use advanced
verification technology, it is currently difficult to calibrate the
effectiveness of different software verification technologies.
Controlled studies at universities or research labs with a suitable
pool of expert users could provide data points enabling
extrapolation. Advanced verification technology is an example
where the impact of a technology will change over time because
of the transient effects of the learning curve; and how this learning
curve can be factored out with well-chosen control studies.
Individual designer/programmer productivity: the factors that
lead to individual productivity such as development environment
technology, programming language features, and design model
formalisms, are only partially understood.

Many of the factors described here have been considered
elsewhere, but have not yet been integrated into a model that can
predict the software design productivity of technology advances.
Further work is needed in developing the fundamental
mathematical laws and integrating them, but most importantly
experimental studies are needed to empirically validate the laws
and calibrate an integrated model.

5. CONCLUSION
Empirical validation and calibration of this proposed model is
critically required for even rough order of magnitude
extrapolations predicting the impact of software technology
advances. There are several possible venues for empirical studies
that can be fostered by both government and industry. University
software engineering practicums with multiple student design
teams are now widespread, and under the careful supervision of
diligent professors can yield useful qualitative or even controlled
data. The government can also use its own small software
development projects as experimental vehicles for new
technology through supplemental funding or shadow projects.
Large government-sponsored software development projects
typically use geographically dispersed teams tied together
electronically with all facets of the software lifecycle recorded in
databases. There is a wealth of data to be mined; especially when
a contractor proposes advanced technology as part of the project.

This type of predictive model for technology impacts based on
fundamentals and empirically validated, will benefit both society
and the software engineering research community. First, it will
clarify the return on investment of software technology research,
thus providing a firm foundation for increased software
engineering research investment within a portfolio of competing
technology disciplines. Second, it can inform the selection and
management of portfolios of software technology research. Third,
this type of predictive model can stimulate new ideas in software
engineering research, perhaps leading to revolutionary advances.

226

6. REFERENCES
[1] Boehm, B., et al. 2000. Software Cost Estimation with

COCOMO II. Englewood Cliffs, NJ: Prentice-Hall.
[2] Chulani, S., Boehm, B. 1999. Modeling Software Defect

Introduction Removal: COQUALMO (Constructive QUALity
Model). Technical Report USC-CSE-99-510. University of
Southern California.

[3] Dijkstra, E. W. 1972. The Humble Programmer.
Communications of the ACM 15 (10): 859-866. 1972 ACM
Turing Award lecture.

[4] Green, C., Lowry, M., Norvig, P. 1999. Towards Reliable
Mars Mission Software. Internal NASA Report.

[5] Nauer, P., Randell, B. (eds) 1969. Software Engineering:
Report of a conference sponsored by the NATO Science
Committee; Garmish, Germany October 1968. Brussels,
Scientific Affairs Division, NATO 231 pp.

[6] Porter, A,. Sztipanovits, J. (eds) 2001. New Visions for
Software Design and Productivity: Research and
Applications. Vanderbilt University Technical Report on the
Workshop of the Interagency Working Group for
Information technology research and Development (ITRD)
Software Design and Productivity (SDP) Coordinating
Group.

227

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

