Generating Integration Test Cases Automatically

Konstantin Rubinov
Faculty of Informatics
University of Lugano, Switzerland
konstantin.rubinov@usi.ch

ABSTRACT

In this thesis, I investigate the problem of automatically gen-
erating test cases. In particular, I focus on the problem of
automatic generation of integration test cases from unit test
cases. I start from the observation that software is usually
provided with many unit test cases, and that unit test cases
carry a lot of information about the unit execution that can
be used to generate integration test cases. This paper illus-
trates the approach that I am investigating and that con-
sists in capturing information in unit test cases with static
analysis techniques to automatically merge unit test cases
to produce useful integration test cases. The preliminary
results reported in this paper provide evidence of the effec-
tiveness of the approach. My current research is developing
the approach further and producing additional experimen-
tal evidence. I expect to complete the research by defining
a set of design for testability rules to produce software that
facilitates the automatic generation of integration test cases.

Categories and Subject Descriptors
D.2.5 [Software]: Software Engineering— Test design

General Terms
Reliability, Verification

Keywords

Software testing, unit and integration testing, automatic test
generation, design for testability

1. MOTIVATION

Software testing is an important yet expensive part of the
software development process. Automation of testing ac-
tivities can decrease the cost and increase the quality of
software [7]. Extensive research has addressed the problem
of automating testing activities, with a focus on the differ-
ent levels of testing, from unit to integration, system and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

FSE-18, November 7-11, 2010, Santa Fe, New Mexico, USA.

Copyright 2010 ACM 978-1-60558-791-2/10/11 ...$10.00.

357

acceptance testing [2]. The effort towards test automation
has produced many tools that provide different degrees of
automation of core activities [9, 4, 10]*, but there are many
expensive testing activities that are still only partially au-
tomated. My PhD research focuses on the problem of au-
tomating one of these human-intensive activities: the gen-
eration of integration test cases.

Existing approaches for automating generation of integra-
tion test cases are few and often rely on system executions to
generate test cases [12, 6]. However, relying on system exe-
cutions has several disadvantages as pointed out by Xie [11].

2. RESEARCH GOAL AND CHALLENGES

The core idea behind my PhD research is to automati-
cally generate integration test cases based on existing unit
test cases. Unit test cases exercise the code of units indepen-
dently from the other units. Integration test cases exercise
the same code focusing on inter-unit actions and commu-
nication. I intend to exploit this overlap to automatically
generate integration test cases by combining setup proce-
dures, execution scenarios and oracles of different unit test
cases. Such combination increases the granularity of gen-
erated test cases, and greater granularity positively affects
their cost-effectiveness [8].

Many existing software projects produce unit test cases.
Modern software development processes guided by test-first
practices combined with extensive tool support have increas-
ed the automation level and facilitate the generation of a
large number of unit test cases. Integration testing is also
an important activity following unit testing, but there is no
substantial tool support for generating integration test cases.
Generating integration test cases from unit test cases can
benefit from current test-first practice where a large number
of unit test cases are generated before the units are imple-
mented and integrated.

My goal is to develop a technique for the automatic gen-
eration of a considerable amount of integration test cases;
a technique that operates with the information available in
unit test cases and source code of the system under test. In
a preliminary study I investigated unit and integration test
cases from several open-source software projects. I studied
their structure, complexity, and internal dependencies to de-
termine the overlap between integration and unit test cases,
and how it is reflected in the structure of test cases. The
results are promising and indicate that due to substantial

lsee http://www.opensourcetesting.org/ for a list of open-
source testing tools.

overlap I can generate integration test cases on the basis of
unit test cases.

The preliminary study also highlighted several research
questions that I will address in my doctoral work:
Q1: What information is required to generate integration
test cases automatically?

Q2:
Q3:

How can this information be extracted automatically?

How can the extracted information be combined to gen-
erate integration test cases automatically?

Q4: How effective are the automatically generated integra-
tion test cases? In particular, to what extent can newly
generated integration test cases substitute or augment
integration test cases that can be derived with tradi-
tional techniques, and how many integration test cases
can be automatically generated?

3. APPROACH

I apply an iterative experimental approach in my research.
In each iteration I study the sources of information such as
unit test cases to find patterns in the available data. Based
on these data I develop test integration strategies that guide
the test generation process. I evaluate the quality of gener-
ated test cases as described in Section 4 and, if necessary,
refine my answers to research questions Q1-Q3. In each it-
eration I might face new challenges that I will address upon
their appearance.

Q1: Required information. To address the first research
question, I studied the characteristics of test cases using
static analysis and inspection. In principle, test cases on
all abstraction levels, from unit to integration and system
testing, have a common structure. In the initial study I
divided test cases into four parts: (1) test scaffolding, (2)
mutual setup of interacting objects with a correct data, (3)
execution of the functionality under test, and (4) oracles to
verify the mutual state of interacting objects.

However, my investigation indicates that unit test cases
use little or no scaffolding and usually have only three parts:
test initialization, which corresponds to the mutual setup of
objects, unit execution and verification of the results through
assertions that serve as oracles. The structure of unit tests
tends to be simple: most unit test cases include a small
number of setup objects that form the test context (Fig-
ure 1, lines 7-14), and include many test methods applied
to the few setup objects (Figure 1, lines 15-29). Moreover,
unit test cases contain information about the order of ob-
ject creation, mock objects, values passed in the method
calls and assertions, order of execution, and how the objects
are connected.

Integration test cases often require instantiating real ob-
jects rather than mock objects and more complex interac-
tions between them. Generating such test cases requires spe-
cific information. Integration test scaffolding requires exter-
nal dependencies to be resolved and the environment to be
set up for interacting objects. The mutual setup of interact-
ing objects requires information about object dependencies
and the data for their initialization and wiring. The ezecu-
tion order for interacting objects must represent meaningful
combinations of actions on integrated objects. The oracle

I I I N N I e

HoR R R e
N)

15

16

17
18
19
20
21
22

23
24
25
26
27
28
29
30

358

public class LanderTest {
Speedometer speed_mock;
Altimeter alt_mock;
Barometer baro_mock;
Lander lander;

@Before

public void setUp() throws Exception {
speed_mock = new SpeedometerMock(5) ;
alt_mock = new AltimeterMock (1) ;
baro_mock = new BarometerMock (300) ;
lander = new Lander (speed_mock,

alt_mock , baro_mock);
}

QTest
public void testStopLanding() throws
Exception {
lander . startLanding () ;
lander.stopLanding () ;
assertTrue (lander.isLanded ());

@Test (expected=Exception.class)
public void testStopLandingEx () throws
Exception {
alt_mock = new AltimeterMock (100);
lander = new Lander (speed_mock,
alt_mock , baro_mock);
lander.startLanding () ;
lander .stopLanding () ;
assertTrue (lander.isLanded ());

Figure 1: JUnit test case

for the mutual state of interacting objects requires consid-
ering the state transitions of these objects.

I examined more than 2000 test cases of many open-source
projects. In particular, test cases developed with the JUnit
framework?. Comparing unit and integration test cases from
the same projects revealed a large overlap between the code
of unit and integration test cases. Up to 80% of the code
is identical in the sense that test cases instantiate the same
objects and exercise the same code of the system under test.
This overlap indicates that most of the information required
for the generation of integration test cases is available in
unit test cases.

Q2: Extracting information automatically. To address
the second research question, I am investigating dynamic
and static analysis techniques to automatically extract rele-
vant information.

The external dependencies and the environment for inter-
acting objects required for integration test scaffolding are
available in the setup procedures of individual unit test cases
(e.g., method setUp() in Figure 1). There is no need for
specific analysis to obtain this information, because these
procedures can be reused directly as they appear in the code
of unit test cases. Minor modifications can be required to
resolve naming conflicts and to substitute mock objects with
real ones.

The mutual setup of interacting objects with correct data
requires knowledge about object dependencies. My inves-
tigation suggests that the structure of unit test cases not

Zhttp://www.junit.org

only allows to reveal dependencies among units, but also
shows how dependent units interact with each other, for in-
stance, when one unit produces primitive values, objects, or
resources used to initialize another unit.

Object dependencies in unit test cases can be extracted
by static analysis, and I capture them in a modified ob-
ject relation diagram (ORD) [3]. Note that I construct the
ORD from unit test cases, where relevant dependencies are
present, and not from code or UML diagrams as in classic
approaches. In such an ORD nodes represent test cases,
and there is an edge connecting two nodes whenever the
test cases use or aggregate objects of the same type. Con-
sider the test case LanderTest and assume there are test
cases for associated objects, like Barometer. LanderTest
and BarometerTest have a dependency (Barometer), and
thus are candidates to provide information to create an in-
tegration test case.

The other information required for the mutual setup is
data to be passed to objects during their initialization. This
information can be captured by either statically extracting
constant parameters in unit test cases or by executing test
cases and recording the actual parameter values.

The execution order for interacting objects requires cap-
turing existing call sequences and combining them in a mean-
ingful way. Control flow analysis can be used to capture
existing call sequences in unit test cases as well as in the
code of the units under test. As for the combination of call
sequences, this is mostly related to the development of the
test integration strategy discussed later in this paper.

The oracle for the mutual state of interacting objects re-
quires modification of the individual oracles of unit test cases
according to the new execution order and possibly accord-
ing to the different states of objects. Currently I am inves-
tigating approaches for the generation of oracles and oracle
transformation, such as recent work by Marinov et al. [5],
and inference of invariants for integrated code.

Throughout experiments I observed that unit test cases
are linear in their structure and their average cyclomatic
complexity is close to 1, which means there is only one execu-
tion path in almost all test cases. Thus the intra-procedural
analysis of such unit test cases can be computationally inex-
pensive. Therefore the overall technique could be very effi-
cient in automating the generation of integration test cases.

Q3: Generating test cases automatically. 1 identified
four main issues in generating integration test cases auto-
matically. They are (1) determining candidate unit test
cases for integration, (2) determining the order of execution
within integrated test cases, (3) resolving the incompatibili-
ties in test oracles for integrated test cases, and (4) determin-
ing the order of integration of multiple candidate unit test
cases when generating complex integration test cases. These
issues are inter-dependent and solutions to them should be
considered in conjunction. In my work I define test integra-
tion strategies that represent combinations of such solutions.

(1) Useful integration test cases exercise relevant interac-
tions between dependent units. I propose to combine pairs
of unit test cases to obtain integration test cases. How-
ever, the number of possible test case combinations grows
exponentially with the number of test cases, and many com-
binations do not yield useful integration test cases. This
is because merging test cases that do not have anything in
common does not produce test cases that focus on the inte-

359

gration of units, while merging test cases that share objects
and actions generates useful integration test cases.

Currently I am using dependency analysis to determine
which unit test cases can be integrated. I am using aggrega-
tion or use dependencies in ORDs to form pairs of candidate
test cases to be integrated.

(2) To verify the correctness of interactions of several re-
lated units and to detect possible side-effects, integration
test cases have to exercise non-trivial sequences of method
calls. Determining meaningful sequences of method calls
to form new integration test cases requires careful selection
among large number of possible sequences.

I am extracting such sequences from unit test cases and
forming various scenarios of unit integration. Currently I am
experimenting with the order of integration of call sequences
of different unit test cases. These sequences can interfere in
many ways when merged. I plan to investigate in which
cases the internal order in these sequences can be preserved
or has to be modified, and when the data values passed to the
method calls can also be preserved or have to be modified.

(3) Oracles in unit test cases are mostly implemented as
assertions with value comparison. Such oracles are not gen-
eral enough to be reused directly in the integrated test cases,
because longer integrated execution sequences may involve
state changes not considered in the unit test cases the oracles
originate from. Oracles in integration test cases should also
operate on bigger combinations of states than the oracles
of individual unit test cases. This poses the more general
problem of generating test oracles that has been addressed
by extensive research [1].

Currently, I use original oracles in generated test cases
and I suggest to the test developers to analyze and adapt the
oracles when necessary. To address incompatibilities in test
oracles in the future, I am investigating existing approaches
for oracle transformation.

(4) Complex integration test cases can be generated by
combining several unit test cases. I am experimenting with
generating integration test cases by incrementally aggregat-
ing test cases generated in previous iterations to maximize
the involved units and their interactions. To determine the
order of integration I start integrating pairs of least depen-
dent candidate test cases and proceed by integrating more
dependent ones. Each step of integrating pairs of depen-
dent candidate unit test cases is reflected in the ORD that
is updated with the new nodes and relations accordingly.

The test integration strategies I will develop as answer to
research question)3 are the main contribution of my thesis.
These strategies rest on the answers to research questions Q1
and @2 and are the subject of the evaluation described in
the next section.

4. EVALUATION

To answer research question @4 I will evaluate my com-
plete solution for automatically generating integration test
cases both quantitatively and qualitatively. First, I will eval-
uate how many of the automatically generated integration
test cases are equivalent to those generated with established
techniques [7], and how many are not. The number of equiv-
alent test cases shows to what extent my technique can sub-
stitute the techniques I compare against, and the number of
non-equivalent test cases shows its added value. Second, I
will evaluate the quality of the automatically generated test
cases assessing their fault detection capabilities and explor-

ing their sensitivity to particular types of faults. To that
end I will execute generated test cases on various versions
of software with known integration faults and seeded faults.

In the evaluation I will rely on software obtained from
open-source repositories with available unit and integration
test cases. In case of missing test cases I will generate
them manually applying well-known combinatorial testing
approaches.

I will evaluate the completeness of the generated test suites
according to different established combinatorial and model-
based criteria. I will also investigate combinations of func-
tional and structural criteria. In addition, I plan to develop
a number of approach-specific measures to assess the com-
pleteness of the generated test suites.

S. RESEARCH RESULTS AND PLAN

At the present time I am in the second year of my PhD
research. So far I worked on the first research question and I
determined the structure of unit and integration test cases,
the information available in unit test cases, and information
required to generate integration test cases. I plan to com-
plete answering the first research question experimentally to
find out if additional information is required for automatic
generation of integration test cases.

For the second research question 1 have selected various
static and dynamic analysis techniques to automatically ex-
tract and capture information available in unit test cases.
My plan is to complete answering the second research ques-
tion by developing a framework for automating the analysis
of unit test cases, ORD construction, and the information
extraction processes.

With regard to the third research question I have identified
the four main issues in automatic generation of integration
test cases that I will resolve in my thesis work. So far I have
successfully dealt with the first issue — determining candi-
date unit test cases for integration on the basis of ORDs.
My experiments indicate that ORDs need to be extended to
deal with test cases that have dependencies through multi-
ple instances of the same type. I will investigate these cases
in the next iterations of experiments.

Currently the focus of my research is on the second issue—
determining the execution part of integration test cases. To
automatically create integration execution scenarios I use se-
quences of method calls extracted from unit test cases, and
if available, the integrated source code where actual integra-
tion scenarios are implemented, and information supplied
with the development process.

Addressing the third issue of resolving the incompatibili-
ties in test oracles for integrated test cases, I plan to apply
the technique proposed by Marinov et al.[5] and to conduct
controlled experiments with test developers to establish its
sufficiency in the scope of my technique. I will use results of
these experiments as a foundation for my future research.

With regard to the forth issue, I am investigating the pro-
cess of generating complex integration test cases based on
multiple candidate unit test cases. Following this process I
plan to obtain system test cases from integration test cases
in the future. This may require exploring some additional
sources of information, which is a subject for the further
investigation.

As my research progresses I will develop various test in-
tegration strategies corresponding to different solutions to
the four indicated issues. Currently I am developing test

360

integration strategies iteratively starting from simple test
integration strategies and proceeding towards more sophis-
ticated strategies as I am collecting more data.

In the scope of the forth research question I plan to evalu-
ate my solution as described in the Section 4. I will evaluate
the approach on several case studies of increasing complex-
ity by comparing the set of test cases automatically gener-
ated with integration test cases produced with systematic
approaches, and I will evaluate the completeness and scala-
bility of my approach.

I plan to investigate the possibility to extend the approach
to generate system test cases from integration ones, and
identify the limits of the approach. I expect to be able to
identify design patterns that simplify the automatic genera-
tion of complete sets of integration test cases, and other pat-
terns that complicate the generation. Based on these data,
I plan to define a set of design for testability guidelines that
will complete the thesis work.

6.
1]

REFERENCES

L. Baresi and M. Young. Test oracles. Technical
Report CIS-TR-01-02, University of Oregon, Dept. of
Computer and Information Science, August 2001.

A. Bertolino. Software testing research: Achievements,
challenges, dreams. In FOSE ’07: 2007 Future of
Software Engineering, pages 85-103, 2007.

L. C. Briand, Y. Labiche, and Y. Wang. An
investigation of graph-based class integration test
order strategies. IEEE Trans. SW Eng.,
29(7):594-607, 2003.

M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and
A. Pretschner. Model-Based Testing of Reactive
Systems: Advanced Lectures. Springer, 2005.

B. Daniel, T. Gvero, and D. Marinov. On test repair
using symbolic execution. In ISSTA ’10: Int. Symp.
on SW Testing and Analysis, pages 207-218, 2010.

S. Elbaum, H. N. Chin, M. Dwyer, and M. Jorde.
Carving and replaying differential unit test cases from
system test cases. IEEE Trans. SW Eng., 35(1):29-45,
2009.

M. Pezze and M. Young. Software Testing and
Analysis: Process, Principles, and Techniques. John
Wiley & Sons, Inc, 2007.

G. Rothermel, S. Elbaum, A. G. Malishevsky,

P. Kallakuri, and X. Qiu. On test suite composition
and cost-effective regression testing. ACM Trans. SW
Eng. Methodol., 13(3):277-331, 2004.

K. Taneja and T. Xie. DiffGen: Automated regression
unit-test generation. In Proc. 23rd Int. Conf. on
Automated Software Engineering ASE, 2008.

S. Thummalapenta, T. Xie, N. Tillmann,

J. de Halleux, and W. Schulte. MSeqGen:
object-oriented unit-test generation via mining source
code. In ESEC/FSE, pages 193-202, 2009.

T. Xie. Improving automation in developer testing:
State of the practice. Technical Report TR-2009-6,
North Carolina State University Department of
Computer Science, February 2009.

H. Yuan and T. Xje. Substra: A framework for
automatic generation of integration tests. In WS on
Automation of SW Test, pages 64-70, 2006.

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

