
Natural LanguageQuerying in SAP-ERP Platform
Diptikalyan Saha
IBM Research, India
diptsaha@in.ibm.com

Neelamadhav Gantayat
IBM Research, India

neelamadhav@in.ibm.com

Senthil Mani
IBM Research, India

sentmani@in.ibm.com

Barry Mitchell
IBM Global Business Services, USA

bcm@us.ibm.com

ABSTRACT
With the omnipresence of mobile devices coupled with recent ad-
vances in automatic speech recognition capabilities, there has been
a growing demand for natural language query (NLQ) interface to
retrieve information from the knowledge bases. Business users
particularly find this useful as NLQ interface enables them to ask
questions without the knowledge of the query language or the
data schema. In this paper, we apply an existing research tech-
nology called “ATHENA: An Ontology-Driven System for Natural
Language Querying over Relational Data Stores” in the industry
domain of SAP-ERP systems. The goal is to enable users to query
SAP-ERP data using natural language. We present the challenges
and their solutions of such a technology transfer. We present the
effectiveness of the natural language query interface on a set of
questions given by a set of SAP practitioners.

CCS CONCEPTS
•Human-centered computing→Natural language interfaces;
• Information systems→ Ontologies;

KEYWORDS
Natural Language Query, Natural Language Interface, SAP

ACM Reference format:
Diptikalyan Saha, Neelamadhav Gantayat, Senthil Mani, and Barry Mitchell.
2017. Natural Language Querying in SAP-ERP Platform. In Proceedings of
2017 11th Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software Engineering,
Paderborn, Germany, September 4–8, 2017 (ESEC/FSE’17), 6 pages.
https://doi.org/10.1145/3106237.3117765

1 INTRODUCTION
The omnipresence of mobile devices coupled with recent advances
in automatic speech recognition capabilities resulted in a growing
demand for natural language interfaces to perform information
retrieval or perform data processing. For example, we have seen
natural language interface for program synthesis [8], programming
by example [14], etc.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00
https://doi.org/10.1145/3106237.3117765

In this work, our aim is to build a Natural Language Query
Interface to the SAP-ERP system.Most business users (or customers)
use custom applications, or SAP-GUI to run transactions (programs)
to interact with the SAP’s underlying data-store. Typical business
users must undergo various training programs to gain sufficient
expertise to interact with the SAP system or rely on experts to
answer their queries. Due to vast business process coverage of SAP-
ERP, we often see that even the experts have knowledge of only one
of the many SAP functional areas. Therefore, the ease of access to
entire SAP-ERP data by the common business users is far from ideal.
Our goal is to make the information querying and extraction easy
for business users by providing a natural language query interface.
Business users can now essentially ask questions for any domain
through our system without the technical knowledge of how to
reach to a data through the maze of multiple programs and options.

ATHENA [17] is an Ontology-driven natural language query
engine for relational database. ATHENA enables database access
to naive users who do not know database query languages such
as SQL. Even for those who do possess the technical proficiency,
natural language interface obviates the need to know the exact
schema of the database; it is simply sufficient to know the semantic
information and its scope captured in the database.

As SAP-ERP system internally uses relational databases to store
information, ATHENA can therefore serve as a framework for nat-
ural language interface for SAP-ERP data. Moreover, the core of
ATHENA is independent of any domain and can be instantiated
for different domains using domain ontologies making it a suitable
framework for SAP-ERP instantiation. To the best of our knowl-
edge, this is the first attempt to develop natural language interface
to access SAP-ERP data.

Instantiating ATHENA framework for SAP-ERP domain posed
many challenges. Creating an Ontology/domain schema consisting
of concepts, properties, and relationships for the SAP domain is a
daunting task. Therefore, we developed an automatic method for
inferring domain schema from the database schema. Apart from
the Ontology, ATHENA also requires domain vocabulary which
consists of 1) a translation index which maps data value (and its
variations) in the tables to the Ontology and 2) synonyms associated
with the various Ontology elements. Once the Ontology and asso-
ciated domain vocabulary is setup, ATHENA can interpret natural
language questions. However, this results into a performance prob-
lem due to the size of the inferred Ontology. We used an Ontology
partitioning technique to overcome the performance problem.

The contributions of the paper are listed below:
• We automatically create an Ontology capturing domain schema

for SAP-ERP system.

878

https://doi.org/10.1145/3106237.3117765
https://doi.org/10.1145/3106237.3117765

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany D. Saha, N. Gantayat, S. Mani, B. Mitchell

Figure 1: High Level Architecture of ATHENA

Figure 2: A Semantic graph of a part of the FinanceOntology.

Figure 3: A part of SAP Ontology for Security Administra-
tion

• We successfully create a usable domain vocabulary (synonyms
associated with Ontology elements and variation of data in the
Ontology) for instantiating the ATHENA.

• We use an Ontology partitioning procedure to overcome the
performance problem in ATHENA.

• We show the effectiveness of our technique for user given ques-
tions in SAP domain.
The rest of the paper is organized as follows. In Section 2, we

present the background on ATHENA work. In Section 3, we show
how we instantiate ATHENA system for NLQ domain. We demon-
strate the effectiveness of our system in Section 4. We present
the related work in Section 5 and conclude with our learnings in
Section 6.

2 BACKGROUND
In this section, we present some background knowledge onATHENA.

The high-level architecture of ATHENA is presented in the Fig-
ure 1. As evident from the figure, ATHENA follows a two-phase

approach. In the first phase, the natural language question is trans-
lated to an intermediate language called Ontology Query Language
(OQL). In the second phase, the OQL query is translated into an SQL
query. Having this two-phase approach offers physical to logical in-
dependence as OQL query is not dependent on the physical schema.
Moreover, it is possible to instantiate ATHENA for different types of
data stores (e.g. RDF stores, Titan Graph store, Solr/Document store)
by plugging in different OQL to data stores specific translators.

ATHENA takes an Ontology as input which captures the domain
schema. It contains classes or concepts, their properties and the set
of relationships between concepts. Together they are called Ontol-
ogy elements. In the context of ATHENA, the Ontology does not
contain any data i.e. instances of Ontology elements, even though
the generic notion of Ontology can contain instance data. The in-
put natural language query is interpreted over the Ontology. The
advantage of using Ontology is two-fold. First, ATHENA can be
instantiated for different domains by constructing different domain
ontologies. Secondly, it presents richer information than just data-
base table schema and dependency between tables and therefore
helps in creating precise interpretation.

ATHENA requires three inputs: Ontology, domain vocabulary
and Ontology to database mapping for domain specific instantia-
tion.
1. Ontology. We use the notion of Ontology to represent the
schema of the domain in terms of classes/concepts (C), and their
properties (P) and the set of relationships (or relations) asR (⊆ C×C),
collectively called as Ontology elements. The relations can be of
two types: inheritance and functional. A semantic graph G = (V ,E)
is an directed graph constructed from an Ontology where V = C
and E = R i.e. edges exist between concepts taking part in a relation.
One such graph is shown in Figure 2 taken from [17]. Note that
many different subclasses of the concept Company are present in the
Ontology (e.g. Lender, Borrower, etc.), each performing a different
role in the domain. The semantics of edge direction is determined
by the subclass/superclass role and the arity of functional relations.
2. Domain Vocabulary. Each Ontology element has a set of syn-
onyms associated with it. The synonyms are required to map
the tokens in the NLQ to the Ontology elements. For exam-
ple, a Company concept can have synonyms like Institution,
Business, Corporation, Organization.

Another index (called Translation Index) is maintained which
maps the data values and their variations to the corresponding
Ontology properties. For example, two sample entries in the in-
dex can be ‘DeltaAirlines ′ 7→ company.name,Delta Airlines and
Delta 7→ company.name,Delta Airlines where ‘Delta’ is a varia-
tion for ‘Delta Airlines’. Note that multiple companies like ‘Delta
Security’ and ‘Delta Airlines’ can have the same variation. The
translation index is generated offline and updated with the data-
base changes.
3. Ontology to Database Mapping. This mapping essentially
bridges the gap between logical and physical schema. When rela-
tional back-end is used, an obvious mapping can be used between
concept to tables, properties to fields, and relationship to foreign-
key constraint.

We explain in detail how these inputs are generated in the con-
text of SAP-ERP domain in the following section. Below we present

879

Natural LanguageQuerying in SAP-ERP Platform ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

a short account of how ATHENA transforms an NLQ to SQL.

NLQ Engine. We explain the procedure with the help of an ex-
ample from the SAP Security domain - “Show me list of users
with SAP_ALL access” against the Ontology shown in Figure 3.
In the first step, the tokens of the NLQ are mapped into Ontol-
ogy elements. This mapping is called evidence. In this case, the
token user gets mapped to multiple Ontology elements (called
candidates) like USR02.BNAME, AGR_USERS.BNAME, UST04.BNAME
using synonyms (called meta-data evidence). The token SAP_ALL
gets mapped to (called data-value evidence) UST04.PROFILE using
the Translation Index.

In the second step, a set of selected sets are computed where each
selected set is formed by taking one candidate for each matched
token. In this case, 3 selected sets are formed. For each selected set,
ATHENA tries to build an interpretation where an interpretation
is represented as a subgraph in the semantic graph connecting
the elements in the selected set. Doing so, semantically grounds
the words in natural language to specific meanings by referring to
elements in the semantic graph. Note that, many interpretations
can arise since there can be many possible subgraphs connecting
elements of a selected set in addition to there being many possible
selected sets. ATHENA uses Steiner Tree based algorithms [10]
to generate a single interpretation of minimal size for a selected
set. Further it employs a goodness criterion to choose one or more
interpretations across all selected sets. In this example, in one of
the selected sets, both the tokens got mapped to the same concept
(UST04) which results in the smallest interpretation tree containing
only one node across all the selected sets.

In the third step, an OQL is generated from an interpretation tree
and an annotation procedure. OQL is like SQL in terms of syntax
but refers to the Ontology elements instead of database schema. For
example, using the annotation procedure, users is identified as the
return entity and associated to the select clause. The only concept
(UST04) goes to the FROM clause. The index value match results
into an equality predicate in the WHERE clause. The resultant
intermediate OQL query is generated is SELECT oUST04.BNAME
FROM UST04 oUST04 where oUST04.PROFILE = ‘SAP_ALL’.
The OQL to SQL translation is performed using the Ontology and
database mapping.

3 SAP-ERP INSTANTIATION OF ATHENA
In this section we discuss in detail the various challenges and our
approach in instantiating the ATHENA solution for SAP-ERP do-
main.

3.1 SAP Schema Ontology
The first step infers the SAP Ontology from SAP-ERP database
schema. The mapping between Ontology and database tables is as
follows. Each concept in the Ontology corresponds to a database
table. The properties correspond to the table fields which are not the
foreign keys. The relationships between two concepts are obtained
from the primary key-foreign key relationship.

Apart from this straightforward mapping, we need to infer the
type of relationship (functional/inheritance) and cardinality of the
functional relationship. According to SAP experts, SAP does not

Table 1: Ontology information source from Data Dictionar-
ies

Ontology SAP Database Information Example
Concept DD02L/TABNAME MBEW
Concept/Property Map DD03L/TABNAME MBEW
Property (Name) DD03L/FIELDNAME MATNR
Property (Type) DD03L/DATATYPE, DD03L/LENG CHAR, 00040
Relationship (CONCEPT1) DD08L/TABNAME MBEW
Relationship (CONCEPT2) DD08L/CHECKTABLE MARA
Relationship (Name) DD08L/FIELDNAME MATNR
Relationship (CARDINALITY) DD08L/CARDLEFT, DD08L/CARD CN, 1

Table 2: Example of synonym source.

DD02T DD04T
TABNAME TTEXT
MARA General Material Data
MBEW Material Valuation

ROLLNAME DDTEXT
MATNR Material Number
LBKUM Total Valuated Stock

keep Foreign Key - Primary Key relationship for inheritance. In
case there are multiple subclasses of a superclass, SAP has a single
table where a field in the table signifies the type of the subtype in
the table. Consider the example of VBAK table which stores SAP
Sales Document: Header Data. It has a field called VBTYP which
signifies different types of documents like Inquiry, Quotation, Order,
Item proposal, etc. Typically this could have been expressed by a
table called Sales Order document and individual subtype tables for
different types of documents. Following SAP’s table structure, we
do not infer any inheritance relationship.

SAP additionally maintains a set of data dictionary tables which
contain information regarding the tables in SAP. The Table 1 lists
the required data dictionary tables along with example values from
which we can get necessary information to create an Ontology. The
example shows a relationship between two tables (MBEW and MARA)
from the domain Material Management(MM).

3.2 Synonyms
Synonyms need to be associated with Ontology elements such that
tokens in the NLQ can be mapped to the Ontology elements.

In prior efforts, ATHENA used hand created ontologies. There-
fore, Ontology elements had meaningful names. Synonyms of such
names could be found using online dictionary lookup. For example,
Company was a concept in the finance Ontology and the synonyms
for Company can be easily extracted by lookup in thesaurus [6].

The challenge with SAP is that all tables and field names are non-
intuitive (e.g. MARA, VBAK). Fortunately, SAP’s data dictionary
tables again come to the rescue. The description of the table and
field names are available at DD02T and DD04T tables respectively.
An example is provided in Table 2.

Now the challenge is to create synonyms from these descriptions.
Earlier, ATHENA has been tried for single word names of the On-
tology elements. Synonyms of a single word can be easily obtained
using a thesaurus. However, in SAP most field descriptions have
multiple words/phrase. This creates an additional challenge for cre-
ating appropriate synonyms of the description. For example, Role
Name is the description corresponding to a field name AGR_NAME of
the table AGR_DEFINE. Now role and name should be synonyms of
Role Name. Therefore, we also perform POS tagging for noun de-
tection to get constituent words as synonyms. For multiple words,

880

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany D. Saha, N. Gantayat, S. Mani, B. Mitchell

we get the nouns and the verbs and replace those words in the
description with their synonyms to generate variations.

3.3 Translation Index
The Translation Index (TI) captures the mapping between the data
values and their variations to the Ontology elements. More precisely,
each entry in the translation index contains the mapping between
a variation (which could be same as original value) of the data
value in a table field to the pair consisting of the original data value
and the Ontology property corresponding to the table field. The
variation helps in mapping data values mentioned in NLQ to the
Ontology elements and the actual value is required to create the
appropriate predicates.

There are three challenges in the creation of TI - 1) which prop-
erties to select for creating the Translation Index, 2) how to index
ENUM fields, and 3) how to create value variations.

Earlier ATHENAwas used for ontologies having a maximum size
of 100 concepts. Therefore, manual identification of the properties
for creating Translation Index was possible. For SAP, we initiated
with all key properties in Master table and all ENUM properties
(which has fixed number of values). Such heuristic worked for our
corpus of frequently asked user questions.

There are some table fields (called ENUM fields) which have
a fixed number of values. Each value is a character or two. For
example, VBAK.VBTYP has 69 possible entries, e.g. L, M, N etc. The
corresponding meanings of the values are Debit memo request,
Invoice, and Invoice cancellation, respectively. An NLQ will refer
to the meanings of these ENUM values. Therefore, in Translation
Index, the variation of value “L” should contain its description
“Debit Memo”. SAP’s data dictionary table DD07T keeps themapping
between field’s domain (DD07T.DOMNAME) and corresponding values
(in DD07T.DDTEXT). The information of a field’s domain is obtained
from DD03L.DOMNAME.

3.4 Ontology to Physical Schema Mapping
The physical-logical bridge is described using this mapping. As in
this case, the Ontology was created from the database schema, such
mapping is straightforward, as described in Section 2.

3.5 Query Translator and Execution
ATHENA employs a translator to convert OQL query to an SQL
query. In the SAP domain, we encountered few issues regarding
query translation and execution.

SAP system uses relational databases such as Oracle, HANA, DB2
andMS SQL Server as their back-end database. EachDBMS supports
some variety of SQL syntax (called Native SQL). To overcome the
issue of interoperability, SAP created its own language called Open
SQL. SAP internally translates the Open SQL syntax to Native
SQL syntax based on its underlying database at runtime. SAP also
gives the provision of using Native SQL syntax in ABAP programs.
Therefore we actually have two choices for translation - Native and
Open SQL. The Open SQL interface is usually preferred over native
access because it is independent of the underlying database which
makes it more tolerant of data model evolution and customization.

Dynamic query execution is an even more complicated issue in
SAP. It is possible to completely bypass SAP system and execute

the query into the underlying database. It is therefore not a recom-
mended way. Another tedious way is to generate an ABAP program
on-the-fly (program synthesis) and register the program by means
of SAP transport and then execute it. This approach has its draw-
backs in performance, maintenance, and monitoring. We found an
article [1] which describes how to perform dynamic Open SQL and
implemented this methodology to realize the query translation and
execution module.

In ATHENA, the translator component produces SQL (SQL-92
compatible) from OQL. We have made changes to the translator to
produce separate clauses of Open SQL [2]. The Query execution
takes these clauses and connects to the SAP-ABAP system using
the JCo Connector [4] and executes the ABAP Function module
responsible for executing the dynamic Open SQL.

3.6 Performance Optimization based on
Ontology Partitioning

One of the inherent problems of ATHENA’s algorithm is that it
generates a set of selected sets, each of which is formed by choosing
one candidate from the evidence set of each token. The number
of selected sets can be potentially very large if one or more tokens
have many candidates. This resulted in performance degradation
(response time more than one second). For smaller ontologies, the
performance degradation may not be serious. However, for large
ontologies, this is a serious issue. Such case is commonly seen
for NLQ with date/time expressions. ATHENA uses an in-house
developed TIMEX grammar to parse date/time/duration related
expression. Then it maps the recognized token to all properties
having DATE or TIMESTAMP type. Typically, there are multiple
such date related properties in an Ontology - which can result in a
large number of candidates.

In this paper, we present a solution to address this problem. We
partition the Ontology based on SAP modules/sub-modules. Each
component of the partition contains a set of concepts (and their
properties). However, the components may not be disjoint as some
SAP master tables are used in multiple domains. The set of selected
sets are pruned if theminimum number of components of the tokens
exceeds one. Note that, as each token can be mapped to multiple
components due to overlapping nature of the partition, a selected
set is associated to different combination of components. Therefore,
it is required to compute the minimum number of components. The
only exception to this rule is for a unique candidate of a token. If a
token is mapped to a unique Ontology element, then the candidate
needs to be there in all selected sets.

The intuition of this optimization comes from the fact that each
individual question asked by a practitioner pertains to a single
domain in SAP. Some of the example domains and their codes are -
Sales and Distribution (SD), Material Management (MM), Financial
Accounting - Controlling (FI/CO), Accounting (AC). One can view
such classification using shortcuts from SE11 Transaction [3]. Each
domain is divided into several sub-domains. We map each table
into a sub-domain using the following query.

SELECT TADIR.OBJECT, DF14L.PS_POSID, DF14L.name
FROM TADIR INNER JOIN TDEVC ON TADIR.DEVCLASS = TDEVC.DEVCLASS
INNER JOIN DF14L ON TDEVC.COMPONENT = DF14L.FCTR_ID
WHERE TADIR.PGMID = 'R3TR' AND TADIR.OBJECT = 'TABL';

881

Natural LanguageQuerying in SAP-ERP Platform ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

Table 3: (A) Ontology, (B) Partition Characteristic

Characteristics Size
Concepts 513,985
Properties 9,692,032
Relations 897,031

Sub-domain Concepts
Contract Act. Receivable & Payable 7898
Basic Functions 6499
Claims Management 5323
European Monetary Union: Euro 5240
Master Data 4395
Production & Revenue Accounting 3770
Obsolete Functionality 3557
Incentive & Commission Mgmt. 3520
Administration 3425
Advertising Management 3277

(A) (B)

Based on the above query both MARA and MBEW belong to the
same domain (LO-MD-MM with description Material Master). The
mapping between the sub-domains to domains is obtained using
SE11 Transaction’s menu called SAP Application [3].

Partitioning can be helpful for 1) pruning out some parts of
the Ontology, 2) visualizing large ontologies, and 3) creating NLQ
prototype for a particular SAP domain, especially for testing.

4 EXPERIMENTAL RESULTS
In this section, we present an empirical account of the instantia-
tion of the ATHENA system for SAP-ERP domain. We present the
experimental results in three categories - 1) Ontology generation,
2) experiments performed with user questions, and 3) Ontology
partitioning. For all experiments, we have used an SAP HANA sys-
tem. All our code is written in Java and experiments are conducted
in Thinkpad running Windows 7 with 2.54 Ghz processor, 8GB
RAM running Java 8. We used 128GB RAM machine to load the
translation index.
Ontology Generation and Partitioning. Using the method de-
scribed in Section 3, we created the Ontology. The characteristics
of the Ontology/domain schema is shown in Table 3(A). Note that,
as we do not infer inheritance relation, all relations are deemed
functional.

Next, we partition the Ontology based on the SAP domains. In
Table 3 we present the number of concepts for first few large sub-
domain, as derived by the SQL query given in the last section. We
could generate 2261 sub-domains which are further divided into
63 domains shown by SAP [3]. Although the average number of
concepts for each sub-domain is 227, the distribution of the concepts
across sub-domains is skewed (as shown in Table 3).
Handling NLQs. We obtained a list of questions from SAP func-
tional experts in three modules. They were asked to give the most
relevant questionwhich are subsequently run against SAP-ATHENA.

Out of 42 questions, ATHENA was not able to answer 1 ques-
tion (did not return any answer), for others, it returned the correct
answer (precision 100%, recall 97%), manually verified by the prac-
titioners. We discuss the failure case here.

Consider the Question #41. In this case, the phrase create
purchase order and clear invoices get mapped to TSTC.TCODE.
In this case ATHENA fails to identify the semantics of why two
tokens are mapped to the same phrase. Specifically, it cannot iden-
tify whether the query can be ‘union’ case or an ‘intersection’ case.
Handling this case is taken as a future work in ATHENA.
Performance. All queries in ATHENA took less than 1 second.
We now present the potential performance problem with question

Table 4: Questions gathered from SAP practitioners in the
field of Sales Distribution, FI/CO, Security Administration
modules

User Question
1 List of customer for whom sales is blocked
2 List of customers marked for deletion
3 List of third party vendors that are pending for delivery
4 How many down payments are pending from the customers
5 How many orders partially delivered
6 Show me the orders where partially billing happened
7 How many orders fully delivered
8 How many products are rejected
9 List of customers associated with Germany
10 List of materials associated with Germany
11 Find all materials which can be delivered to Germany
12 What all customers to whom we can deliver in Germany
13 Which are all the valid contracts still pending
14 Quantity per contract
15 How many GL accounts extend to company codes
16 How many GL accounts are blocked for posting
17 How many GL accounts are marked for deletion
18 How many customers are blocked for posting
19 How many customers are blocked for payment
20 How many customers are marked for deletion
21 How many vendors are blocked for posting
22 How many vendors are blocked for payment
23 How many vendors are marked for deletion
24 Materials which should not be used for costing
25 For how many customers logistic payments are blocked manually
26 For how many customers logistic payments are blocked due to existence of blocking

reason
27 For how many customers logistic payments are stochastically blocked
28 List vendors with Resident G/L account
29 List Assets with Resident G/L account
30 List Materials with Resident G/L account
31 List G/L accounts with Resident G/L account
32 List Customers with Resident G/L account
33 Show me a list of users with SAP_ALL access
34 Show list of users having DEBUG access in production system
35 Show list of users having assess to import transport requests
36 Show list of users having access to OB52 tcode for opening and closing the periods
37 Show list of users whose password is not changed after ID creation
38 Show list of ROLES having object status as MANUAL in the role
39 Show me all Job Roles that have access to transaction SA01
40 How many users have access to transaction SA01
41 Do any users have access to create purchase orders and also clear invoices
42 Show me a list of users in the UK who have not logged on in the last 30 days

#42. If partitioning is not used, the time expression last 30 days is
mapped to all date-time properties in the Ontology. The count of
date-time properties in SAP Ontology is 509K which makes this
a real problem (ATHENA did not terminate within 1 minute). In
SAP administration domain, the count is only 30 which makes it
tractable. Even though the average number of date-time properties
per sub-domain is 225, the maximum reaches to 10292 for ‘Contract
Accounts Receivable and Payable’.
Threats to Validity. We have gathered a small set of questions
from the users to demonstrate the feasibility of our solution in ERP
domain. In future, we intend to have a large-scale experimentation.
Also, the information in data-dictionary tables varies from SAP sys-
tem to system. Therefore, we need to study the difference between
systems and its impact on automatic extraction of the Ontology.

We have noticed that there are some relationships missing (as
per entries in DD08L) from the Ontology. For example, there are
two tables USR01 and USR02 in the domain of SAP administration
which has same key property BNAME (user name) and set of values,
which are not explicitly mentioned in DD08L. We believe that such
missing relationships can be inferred from other references to these
tables in the data dictionary, and will enable ATHENA to construct
queries involving both the tables.

882

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany D. Saha, N. Gantayat, S. Mani, B. Mitchell

5 RELATEDWORK
We discuss related work in two categories - NLQ applications and
NLQ technology.
NLQApplications.NLQ over relational database has been applied
in various benchmarks (data and domains) such as Finance [17],
GEO [12, 17], Microsoft Academic Search [12], Restaurant [18].
NLQ has been translated to PL/SQL for general purpose Oracle
database in [9]. However, to the best of our knowledge, natural
language querying is not addressed for any ERP domain, and our
work is the first in applying this to SAP-ERP.
NLQ Technology. There have been works to interpret the seman-
tics of a full-blown English language query. These works, in general,
try to disambiguate among the potentially multiple meanings of the
words and their relationships. Some of these are machine learning
based [7, 15, 18] that require good training sets, which are hard to
obtain. Others require user feedback [11–13]. However, an exces-
sive user interaction to resolve ambiguities can be detrimental to
user acceptance.

Most of the non-learning based disambiguation techniques
(e.g., [16]) build on database integrity constraints and thus do
not capture the rich semantics available in the Ontology. In SAP-
ATHENA, we also could not exploit the rich information (inheri-
tance and additional relationship types). We still differentiate with
them in two key aspects - none of these techniques used partition-
ing to cope with the large databases. Existing database techniques
translate NLQ to SQL. But, our two-stage framework was amenable
for translation to other target languages such as Open SQL.

6 CONCLUSION
Impact. SAP has approximately 12 million users worldwide [5]. A
natural language interface to SAP’s underlying data can potentially
benefit all customers who want to extract information from SAP’s
knowledge base.
Summary. In this paper, we described how we have used an existing
natural language query framework called ATHENA for an indus-
try use case for SAP-ERP systems. ATHENA is Ontology/domain
schema driven and therefore we have presented a way to automati-
cally extract domain schema from SAP table schema. Because of the
huge domain schema and vocabulary, most of our solution had to be
automated which was not the case in ATHENA’s previous applica-
tions. We relied heavily on SAP’s data dictionary tables to provide
all information which we could use directly (Ontology creation)
or further processed (synonym or variant creation) to provide all
information required to instantiate ATHENA framework for SAP.
Apart from engineering challenges like creating a translator from
ATHENA intermediate query language (OQL) to Open SQL, the
scale of domain schema motivated us to extend ATHENA’s core so-
lution. We used Ontology partitioning, automatically derived from
SAP’s domain to table mapping, to address performance bottleneck
of some particular classes of the queries.
Limitations and Future Work.
• During the testing phase, we encountered that ATHENA’s limi-

tations in handling nested query.
• ATHENA can translate an NLQ into a SQL query. However, some

user intent may not be expressible using a single query (may
require generating ABAP programs).

• We plan to analyze SAP tables to infer inheritance and union
relationships and missing functional relationships.

• We want to try our systems with more user questions. IBM has
around 50K SAP practitioners. Currently, the system is used by
only a few of them. We plan to first release this system to IBM
practitioners and collect feedback.

• We believe that we can use a sub-domain based ranking mecha-
nism to further prune out interpretations.

• The system could be extended for making insert/update to the
tables, to support live transactions.
It was surprising to learn from SAP experts that most users actu-

ally ask simple questions which do not require join for more than 4
tables. We therefore hope that our system will be useful to millions
of user worldwide.

ACKNOWLEDGMENTS
We thank all the IBM Global Business service experts includ-

ing Anjan Nandy, Manas K. Das, Ashish Goutam, Sandeep Singh,
Ragini Thothathiri, Charudatta S Pande who provided us the set of
questions and their expert SAP knowledge.

REFERENCES
[1] Dynamic Open SQL. (Dynamic Open SQL). Retrieved July 20, 2017 from https:

//www.ibm.com/developerworks/data/library/techarticle/dm-1007sapopensql/
[2] Open SQL. (Open SQL). Retrieved July 20, 2017 from https://help.sap.com/

saphelp_nw70ehp1/helpdata/en/fc/eb3983358411d1829f0000e829fbfe/content.
htm

[3] SAP - module wise tables. (SAP - module wise tables). Retrieved July 20, 2017
from SAPGUI,SE11,PRESSF4,SAPAPPLICATIONSMENU

[4] SAP JCo Connector. (SAP JCo Connector). Retrieved July 20,
2017 from https://help.sap.com/saphelp_nwpi711/helpdata/en/48/
70792c872c1b5ae10000000a42189c/content.htm

[5] SAP User Statistics. (SAP User Statistics). Retrieved July 20, 2017 from https:
//goo.gl/MeFwVa

[6] THESAURUS. (THESAURUS). Retrieved July 20, 2017 from https://www.
merriam-webster.com/thesaurus/company

[7] Jonathan Berant et al. 2013. Semantic Parsing on Freebase fromQuestion-Answer
Pairs. In EMNLP. 1533–1544.

[8] Aditya Desai, Sumit Gulwani, Vineet Hingorani, Nidhi Jain, Amey Karkare, Mark
Marron, Sailesh R, and Subhajit Roy. 2016. Program Synthesis Using Natural
Language. In Proceedings of the ICSE (ICSE ’16). ACM, New York, NY, USA, 345–
356. https://doi.org/10.1145/2884781.2884786

[9] Swapnil Kanhe, Pramod Bodke, Akshay Chikhale, and Vaibhav Udawant. 2015.
SQL Generation and PL/SQL Execution from Natural Language Processing. In
International Journal of Engineering Research and Technology, Vol. 4. IJERT.

[10] L. Kou, G. Markowsky, and L. Berman. 1981. A Fast Algorithm for Steiner Trees.
Acta Informatica 15, 2 (1981), 141–145.

[11] D. Küpper, M. Storbel, and D. Rösner. 1993. NAUDA: A Cooperative Natural
Language Interface to Relational Databases. In ACM SIGMOD.

[12] Fei Li and H. V. Jagadish. 2014. Constructing an Interactive Natural Language
Interface for Relational Databases. Proc. VLDB Endow. 8, 1 (2014), 73–84.

[13] Yunyao Li, Huahai Yang, and H. V. Jagadish. 2005. NaLIX: An Interactive Natural
Language Interface for Querying XML. In ACM SIGMOD.

[14] Mehdi Manshadi, Daniel Gildea, and James Allen. 2013. Integrating Programming
by Example and Natural Language Programming. In AAAI (AAAI’13). AAAI
Press, 661–667. http://dl.acm.org/citation.cfm?id=2891460.2891552

[15] Ana-Maria Popescu et al. 2004. Modern Natural Language Interfaces to Databases:
Composing Statistical Parsing with Semantic Tractability. In COLING.

[16] Etzioni Oren Popescu, Ana-Maria and Henry Kautz. 2003. Towards a Theory of
Natural Language Interfaces to Databases. In IUI.

[17] Diptikalyan Saha, Avrilia Floratou, Karthik Sankaranarayanan, Umar Farooq
Minhas, Ashish R. Mittal, and Fatma Özcan. 2016. ATHENA: An Ontology-driven
System for Natural Language Querying over Relational Data Stores. Proc. VLDB
Endow. 9, 12 (Aug. 2016), 1209–1220.

[18] Lappoon R Tang and Raymond J Mooney. 2001. Using Multiple Clause Construc-
tors in Inductive Logic Programming for Semantic Parsing. In ECML.

883

https://www.ibm.com/developerworks/data/library/techarticle/dm-1007sapopensql/
https://www.ibm.com/developerworks/data/library/techarticle/dm-1007sapopensql/
https://help.sap.com/saphelp_nw70ehp1/helpdata/en/fc/eb3983358411d1829f0000e829fbfe/content.htm
https://help.sap.com/saphelp_nw70ehp1/helpdata/en/fc/eb3983358411d1829f0000e829fbfe/content.htm
https://help.sap.com/saphelp_nw70ehp1/helpdata/en/fc/eb3983358411d1829f0000e829fbfe/content.htm
SAPGUI,SE11,PRESSF4,SAPAPPLICATIONSMENU
https://help.sap.com/saphelp_nwpi711/helpdata/en/48/70792c872c1b5ae10000000a42189c/content.htm
https://help.sap.com/saphelp_nwpi711/helpdata/en/48/70792c872c1b5ae10000000a42189c/content.htm
https://goo.gl/MeFwVa
https://goo.gl/MeFwVa
https://www.merriam-webster.com/thesaurus/company
https://www.merriam-webster.com/thesaurus/company
https://doi.org/10.1145/2884781.2884786
http://dl.acm.org/citation.cfm?id=2891460.2891552

	Abstract
	1 Introduction
	2 Background
	3 SAP-ERP instantiation of ATHENA
	3.1 SAP Schema Ontology
	3.2 Synonyms
	3.3 Translation Index
	3.4 Ontology to Physical Schema Mapping
	3.5 Query Translator and Execution
	3.6 Performance Optimization based on Ontology Partitioning

	4 Experimental Results
	5 Related Work
	6 Conclusion
	References

