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Muğla, Turkey

nidagokce@yahoo.com

ABSTRACT
Various forms of selective mutation testing have long been
accepted as valid approximations to full mutation testing.
This paper presents counterevidence to traditional selective
mutation. The recent development of dominator mutants
and minimal mutation analysis lets us analyze selective mu-
tation without the noise introduced by the redundancy in-
herent in traditional mutation. We then exhaustively eval-
uate all small sets of mutation operators for the Proteum
mutation system and determine dominator mutation scores
and required work for each of these sets on an empirical test
bed. The results show that all possible selective mutation
approaches have poor dominator mutation scores on at least
some of these programs. This suggests that to achieve high
performance with respect to full mutation analysis, selective
approaches will have to become more sophisticated, possi-
bly by choosing mutants based on the specifics of the artifact
under test, that is, specialized selective mutation.

CCS Concepts
•Software and its engineering → Software testing
and debugging;

Keywords
Mutation analysis, subsumption, dominator mutants

1. INTRODUCTION
Mutation testing [9] is a test criterion that generates a set

of alternate programs, called mutants, and then challenges
the tester to design tests to detect the mutants. Tests that

cause a mutant to behave differently from the original pro-
gram are said to detect, or kill, the mutant. Some mutants
behave exactly the same as the original on all inputs. These
are called equivalent mutants and cannot be killed. Mutants
are generated by mutation operators. A mutation operator
is a rule that generates variants of a given program based
on the occurrence of particular syntactic elements.

Early on, researchers observed that mutation operators
produced far more mutants than necessary [30]. One re-
sponse to this observation was selective mutation, which
deliberately limits the number of mutation operators to a
small, carefully chosen set. In selective mutation, a reduced
set of mutation operators is chosen to generate a reduced
number of mutants. These mutants are intended to rep-
resent the larger body of potential mutants that could be
generated by additional operators.

One problem with measuring the effectiveness of selective
mutation is the very redundancy that selective mutation is
intended to tame. Specifically, the redundant mutants intro-
duce noise into mutation scores. For example, some mutants
are killed by almost any test. Hence, eliminating such mu-
tants from consideration does not affect which tests are cho-
sen, but does result in a different mutation score. In other
words, mutation scores can be inflated by redundant mu-
tants, making the mutation score harder to interpret. This
same problem of diminished utility of score due to redun-
dancy has long been recognized in statement and branch
coverage metrics [5].

Minimal mutation, a recent development, precisely defines
redundancy among mutants by identifying dominator mu-
tants. Prior research [2, 22] shows that dominator mutation
scores are not consistent with traditional mutation scores for
some subsets of mutation operators [2]. Papadakis et al. [31]
confirmed this observation in a more rigorous study involv-
ing larger real-world programs. This inconsistency motivates
us to revisit selective mutation using dominator mutation
score as a key measure.

Selective mutation hypothesizes that there is a reduced set
of mutation operators that, when applied to all programs,
consistently elicits test suites that are nearly as effective as
test suites based on all mutation operators. Any example
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where selective mutation fails to work consistently challenges
this underlying hypothesis. Proper experimental design sug-
gests that we start with simple test subjects, and expand
to larger more complex test subjects only if the hypothesis
holds true in the simple cases. The Siemens suite [15] of
programs is a well-known set of such simple test subjects,
with the advantage of extensive test suites. In addition,
the Siemens programs are written in C, which suggests the
use of the Proteum [6] mutation tool. Proteum is especially
well-suited to this experiment because it has a broad set of
mutation operators compared to other tools.

The main result of the paper is negative: a selective ap-
proach that is highly effective for one program will almost
certainly perform poorly on another program. This variance
is extremely undesirable: test engineers need to be confident
that the analysis techniques they apply have predictable re-
sults. One way out of this difficulty might be for selective
mutation analysis techniques to be specialized to the pro-
gram under test, in essence choosing a small yet effective set
of mutants for that particular program. The goal of this pa-
per is to demonstrate the need for specialized selective sets;
actually finding those sets is out of current scope.

The contributions of this paper are:

1. A definition of normalized work to allow comparison
of different selective mutation operator sets based on
the effort required to develop a test suite.

2. A deterministic method for finding worst-case muta-
tion scores based on mutant subsumption relationships.

3. An evaluation that shows that all one-size-fits-all ap-
proaches to selective mutation performs poorly on some
programs.

4. A confirmation using dominator mutation scores that
random mutant selection and statement deletion per-
form as badly as traditional selective mutation.

The paper is organized as follows. Section 2 discusses
related work. Section 3 describes an approach to measure
redundancy and equivalency within a set of mutants and
proposes a metric for measuring work required to develop
a mutation-adequate test suite. Section 4 introduces our
research questions, which are explored in Sections 5, 6, 7,
and 8. Section 9 discusses threats to validity. Section 10
summarizes our conclusions.

2. RELATED WORK
The large number of mutants generated by mutation test-

ing has long been a recognized problem. Mathur [25] de-
termined that the complexity of mutation testing is O(n2),
where n is the size of the program under test, and introduced
the idea of constrained mutation to reduce that complexity
to O(n) by reducing the number of mutation operators to
create fewer mutants. Offutt et al. [29, 30] took an em-
pirical approach to defining an appropriate set of selective
mutation operators, and proposed the E-selective set of five
operators1 based on achieving a mutation score of 0.99 or

1The E-selective operators, derived from Mothra [10], are
absolute value insertion (ABS), arithmetic operator replace-
ment (AOR), logical connector replacement (LCR), rela-
tional operator replacement (ROR), and unary operator in-
sertion (UOI).

higher over ten small programs. Wong et al. [35, 36] evalu-
ated combinations of mutation operators for efficiency and
effectiveness. This paper reassesses the performance of E-
Selective mutation using dominator mutation score.

Barbosa et al. [3] applied a well defined set of guidelines to
obtain a sufficient set of mutation operators that would sub-
stantially reduce the computational cost of mutation testing
without losing effectiveness. They applied such guidelines
in two experiments with two different sets of C programs.
They obtained reduced sets of mutant operators that would
produce effective test cases, but these sets of sufficient op-
erators were substantially diverse between the experiments,
showing that it was not possible to select a single set of op-
erators that was optimal for both programs. Namin et al.
[26, 27, 28] analyzed the Siemens suite programs using vari-
able reduction techniques to identify three high-performing
operator sets using between seven and 13 operators. Dela-
maro et al. [8] defined a growth model for mutation operator
selection, adding operators using a greedy algorithm until a
mutation score of 1.00 was achieved, and concluded that
there is no single way to select the best set of operators for
any particular program.

Taking mutation operator reduction to an extreme, Untch
[34] evaluated the performance of the statement deletion
(SDL) operator on its own and found it to be competitive
with the operator sets found by Namin. Deng et al. [11]
applied the SDL operator to 40 classes written in Java using
the muJava tool [24] and found that SDL achieved a mu-
tation score close to that of Offutt’s E-selective operators
while generating approximately 80% fewer mutants. Dela-
maro et al. [7] evaluated the SDL operator against programs
written in C using Proteum and confirmed Deng’s findings.

Kaminski et al. [18, 19] were the first to consider muta-
tion operators at the next level of detail, recognizing that
the relational operator replacement (ROR) mutation oper-
ator has many sub-operators (replacing ‘>’ with ‘<’, ‘!=’,
etc.). They showed that, for any given relational operator,
three mutants will always weakly subsume the other four
mutants, making them redundant. Lindström and Márki
[23] later showed that this subsumption does not always hold
under strong mutation. Just, Kapfhammer, and Schweig-
gert [16] performed a similar analysis for the conditional
operator replacement operators, and Yao et al. [38] found
similar results for the arithmetic operator replacement mu-
tation operators. Just and Schweiggert [17] identified seven
sub-operators that are needed to form a sufficient set of non-
redundant mutants, analyzed a set of real-world programs,
and determined that redundant mutants cause an inflated
mutation score that fails to accurately reflect the effective-
ness of a test suite. The performance of selective mutation
approaches at the sub-operator level, while certainly of in-
terest, is beyond the scope of this paper.

Other researchers have examined whether selective muta-
tion is more effective than random sampling of similar num-
bers of mutants. Acree [1] and Budd [4] separately concluded
that executing tests that kill a randomly-selected 10% of
mutants could provide results close to executing tests that
kill the full set of mutants. Wong and Mathur [37] demon-
strated similar results and found that adding randomly-
selected mutants beyond 10% yielded comparatively small
improvements. More recently, Zhang et al. [39] explored
selective mutation and random selection using the Proteum
mutation tool and the Siemens suite programs and also found
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no appreciable difference in performance between selective
mutation and random selection.

Gopinath et al. [13] expanded this investigation using a
much larger body of open-source code and compared several
different mutation selection strategies with random selec-
tion, again finding that random selection performs as well
as any other strategy. In a later paper, Gopinath et al. [12]
took a different approach to dealing with the large number
of mutants, and showed that determining the mutation score
based on as few as 1,000 randomly-selected mutants provides
an estimate of quality of a test suite in terms of mutation
score. It seems counterintuitive that a targeted approach to
mutant selection should perform no better than a random
approach.

While part of the explanation might be the effect of mu-
tant redundancy on mutation score [22], this paper sug-
gests that an additional reason might be that existing mu-
tation selection strategies, including random selection, per-
form poorly when evaluated in terms of dominator score.

In our previous paper [22] we showed that dominator mu-
tation score was a superior metric to traditional mutation
score for determining how much testing work has been done
and how much remains. We also classified sets of mutants
based on redundancy and equivalency and examined the ef-
fect on the ability to determine test completeness. In this
paper, we use the same characterization for sets of mutants
generated by selective operators.

3. DOMINATOR MUTANTS, REDUNDANCY,
AND EQUIVALENCY

3.1 Subsumption and Dominator Mutants
In previous papers we defined a method for determining

the relationship between mutants based on their behavior
with respect to a set of tests [2, 20]. Given a finite set of
mutants M and a finite set of tests T , mutant mi is said
to dynamically subsume mutant mj if some test in T kills
mi and every test in T that kills mi also kills mj . Where
two mutants mi and mj in M are killed by exactly the same
tests in T , we say that mi and mj are indistinguished.

We capture the subsumption relationship among mutants
with a directed graph, the Dynamic Mutant Subsumption
Graph or DMSG [20]. Each node in the DMSG represents
a maximal set of indistinguished mutants, and each edge
represents the dynamic subsumption relationship between
two sets of mutants. More specifically, if mi dynamically
subsumes mj , then there is an edge from the node containing
mi to the node containing mj .

Consider a set of ten mutants, each named for the muta-
tion operator that created it followed by a sequence number.
These mutants are tested using a set T of four tests, where
the mutants are killed by tests as shown in the score function
in Table 1.

We can see that mutants OABN 1 and OEAA 1 are in-
distinguished, since they are killed by exactly the same test
set ({t1}). Similarly, mutants OEAA 2 and OLBN 1 are
indistinguished, as are OEAA 3 and VLSR 1. We can also
see that every test that kills CCDL 1 also kills OEAA 2,
OEAA 3, OLBN 1, and VLSR 1. Consequently, CCDL 1
subsumes these mutants. We can determine all of the sub-
sumption relationships between these mutants and construct
the resulting DMSG as shown in Figure 1. Mutants that are

Table 1: Example score function
t1 t2 t3 t4

CCDL 1 t
CCDL 2
OABN 1 t
OALN 1 t t
OBBN 1 t
OEAA 1 t
OEAA 2 t t
OEAA 3 t t t t
OLBN 1 t t
VLSR 1 t t t t

not subsumed by any other mutants are called dominator
mutants; these are listed in the graph in dominator nodes,
which we denote with a double-line.

Figure 1 has three dominator nodes; a mutant from each
forms a dominator mutant set. In this example, the three
mutants {CCDL 1, OABN 1, OBBN 1} form a dominator
mutant set, as do the three mutants {CCDL 1, OEAA 1,
OBBN 1}. Because each dominator set contains one mutant
from each dominator node, all dominator sets are equally
useful and a dominator set can be selected arbitrarily from
all possible sets. Consequently, only three of the ten mu-
tants matter–if tests kill the mutants in a dominator mutant
set, they are guaranteed to kill all non-equivalent mutants.
All other mutants are redundant. This leads us to adopt
the dominator mutation score or dominator score as a more
precise metric. We define the dominator score as the num-
ber of killed mutants in a dominator set divided by the total
number of mutants in the dominator set.

Mutant CCDL 2 is not killed by any of the tests in T , so it
is shown in its own unconnected node with a dashed border.
CCDL 2 might be equivalent or it might be killable, but not
by any of the four tests in T . From the DMSG perspective,
which is based on a finite test set, we can not distinguish
between these two possiblities. In this study, we compute
dominator scores with respect to mutants that are killed by
our full test sets. For example, consider the test set {t1},
which kills the shaded mutants in Figure 1. The mutation
score for test set {t1} is 7÷9 = 0.78, but its dominator score
with respect to T is only 1÷ 3 = 0.33.

Figure 1: Example DMSG

The DMSG represents the subsumption relationship be-
tween all mutants with respect to the test set. If we kill any
mutant in the DMSG, we are guaranteed to kill all the mu-
tants that it subsumes [2], i.e. all connected mutants below
it in the graph. A test that kills a mutant may by chance
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also kill mutants above it or elsewhere in the graph, but this
is not guaranteed by the subsumption relationship.

Dominator mutants tend to be hard to kill, in the sense
that they are usually killed by relatively few tests. However
the relationship between dominator mutants and hard-to-
kill mutants as identified in other research is not strict; it is
possible to have a dominator mutant that is killed by many
tests, yet is not subsumed by any other mutants.

3.2 Measuring Redundancy and Equivalency
In our previous paper [22] we defined redundancy as the

number of killable mutants that are not in the dominator
mutant set divided by the number of mutants in the dom-
inator set, as shown in Equation 1. In prior research, the
number of equivalent mutants has typically been measured
as a percentage of all mutants generated. However, this nat-
urally couples the measurement of equivalent mutants with
the measurement of redundant mutants. We seek a metric
for equivalent mutants that is independent of redundancy,
so we define equivalency as the number of equivalent mu-
tants divided by the size of the dominator set, as shown in
Equation 2.

redundancy =
|killableMutants| − |dominatorSet|

|dominatorSet| (1)

equivalency =
|equivalentMutants|
|dominatorSet| (2)

4. RESEARCH QUESTIONS
Researchers frequently use mutation score to evaluate the

effectiveness of test suites designed by other means. Mu-
tation score is defined as the number of mutants killed by
a test suite, divided by the total number of non-equivalent
(killable) mutants. Our previous paper [22] showed that
mutation score has a non-linear relationship with test com-
pleteness due to redundancy among mutants, rendering it
of limited usefulness for determining how much testing work
has been completed. We now seek the impact of redundant
and equivalent mutants in other ways, and we consider these
research questions:

RQ1: How does redundancy and equivalency affect the
amount of work required to develop mutation-adequate tests?

RQ2: Do the E-selective mutation operators identified by
Offutt et al. [29, 30] reliably generate high dominator mu-
tation scores across a range of programs?

RQ3: Is there a small set of mutation operators that im-
proves upon E-selective and consistently generates higher
dominator mutation scores with low work across a range of
programs?

RQ4: With respect to dominator score and work, how
do any improved selective operator sets compare with E-
selective operators, random mutant selection, and statement
deletion?

5. RQ1: HOW REDUNDANT AND EQUIV-
ALENT MUTANTS AFFECT WORK

Consider an engineer testing the print_tokens program
from Table 2 using Proteum. Proteum first generates a set
of mutants. In a simplified model of software testing, the
engineer selects a mutant for analysis and tries to write a
test to kill the mutant; if successful, the tool removes that

mutant from the set of unkilled mutants. Then the tool
runs the tests on all other unkilled mutants and removes any
that are also killed. If the engineer determines the mutant
is equivalant, then it is removed. This process is repeated
until the set of unkilled mutants is empty. Of course, this is
not an efficient process, nor is it the process that an engi-
neer would use; an engineer would likely generate some tests
by other means and then use mutation testing to evaluate
and enhance that test suite. Nevertheless it is a convenient
idealization for our purpose, and it helps us to understand
what happens across the whole range of testing.

We simulate this process using a process described in de-
tail in our previous paper on redundancy and equivalency
[22]. We generate the mutants using Proteum, then create
a score function that indicates which mutants are killed by
which tests. We select a mutant at random, then randomly
select a test that kills it. If we can find such a test, we
remove the selected mutant and all other mutants that are
killed by the selected test. Note that some tests may kill the
selected mutant and many additional mutants, while others
may kill few or no additional mutants. If no tests kill the
mutant, we assume it is equivalent and discard it. We re-
peat this process until all mutants are killed or identified as
equivalent. Because the process involves random selection
of mutants and tests, we repeat the analysis 1,000 times and
derive an average score.

To estimate the work required to develop a test set, we
must first define work. An obvious metric for work is time
expended to develop tests and identify equivalent mutants.
However, some mutants are easily killed, while some are
much more difficult. Grün et al. [14] and Schuler and Zeller
[32] found that it took nearly 15 minutes on average to deter-
mine that a single mutant was equivalent; on the other hand
some equivalent mutants (e.g. those of the form “return
a++”) are trivially easy to identify. Because time is not eas-
ily quantified, we define work as the number of mutants that
are examined by the engineer, or, in other words, the sum
of the number of tests written to kill all non-equivalent mu-
tants and the number of equivalent mutants identified, as
shown in Equation 3.2 While this definition of work is eas-
ily understood, it makes it difficult to directly compare the
multiple programs in the Siemens suite, because the test
sets and number of equivalent mutants vary between pro-
grams. To compare effectively between programs, we intro-
duce normalized work, which we define as work divided by
the number of dominator mutants, as shown in Equation
4. In other words, normalized work of 1.0 is the amount of
work required to kill a dominator set of mutants by pick-
ing the least-advantageous set of tests, such that each test
kills only one of the dominators. With zero redundancy and
zero equivalency, we expect normalized work to be some-
what below 1.0, since it is likely that some of the selected
tests will kill not only the intended dominator mutant but
other dominators as well and somewhat fewer than one test
per dominator will be required.

work = |testSet|+ |equivalentMutants| (3)

normalizedWork =
|testSet|+ |equivalentMutants|

|dominatorSet| (4)

2It is possible that identifying equivalent mutants is easier
or harder than developing a test case. A more sophisticated
model might weight these tasks differently.
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Note that we measure work on a per-trial basis. If during
a particular trial we have written five tests and identified
two equivalent mutants, our work at that point is 5 + 2 = 7.
If the mutant set contains ten dominator mutants, then our
normalized work at that point is (5 + 2)÷ 10 = 0.70.

Imagine a version of Proteum that generates only a dom-
inator mutant set with no redundant or equivalent mutants.
Such a tool might work by intelligent selection of mutation
operators, by static analysis and filtering of mutants, or by
some other mechanism. The mechanism is irrelevant so long
as the results are achieved. Mutation score and domina-
tor score are identical, because all mutants are dominator
mutants.

Next imagine a version of Proteum that generates redun-
dant mutants in addition to a dominator set, but that does
not generate equivalent mutants. If it generates a number
of redundant mutants equal to the size of the dominator set
(that is, twice as many mutants as before), then the redun-
dancy is 1.0 as per Equation 1. We simulate this by selecting
a dominator set and then selecting other killable mutants at
random until we have the proper number.

To determine the effect of redundancy on work required,
we repeat the engineer-focused approach described above,
selecting increasing redundancy from 0.0 to 50.0 at incre-
ments of 0.5. Equivalent mutants are eliminated from con-
sideration. The results are shown in Figure 2, where the
columns show the mean normalized work and the error bars
show the 2σ variation in normalized work. With no redun-
dancy, the normalized work is 0.59; this means that just
over half as many tests as dominator mutants were needed
to kill all of the dominators. There is significant variation
in normalized work caused by random selection of tests. In
some cases we find a remarkably small test that set kills the
dominators with very little work, while in other cases we
need nearly one test per dominator.

As redundancy is increased, the mean work increases only
slightly. Even with redundancy of 50.0, normalized work
is 0.71. With 50 times as many mutants, the total effort to
produce a mutation-adequate test set increases by only 20%!

Figure 2: Work to develop a mutation-adequate test
set for the Siemens suite with equivalency=0.0

To determine the effect of equivalency on work required,
we repeat the approach described above, this time holding
redundancy constant and varying equivalency. Because re-
dundancy does not significantly impact work, and because

we measure equivalency in terms of dominator mutants, there
is no need to consider the effect of equivalency at different
redundancy levels. Redundancy is simply held at 0.0.

As equivalency is increased, the mean work increases lin-
early,3 as shown in Figure 3.

From the engineer’s perspective, all of that extra work is
wasted because it does not directly contribute to a mutation-
adequate test set.

Figure 3: Work to develop a mutation-adequate test
set for the Siemens suite with redundancy=0.0

6. RQ2: ANALYZING E-SELECTIVE
MUTATION

To answer our second research question, we analyzed the
Siemens suite of programs using the Proteum mutation tool
to create mutants for the seven programs in Table 2, and ex-
ecuted each program against a subset of 512 tests. We cre-
ated a score function for each analyzed program that shows
which tests kill which mutants. In a previous paper, we
analyzed all un-killed mutants and determined that only a
small number of these mutants are killed by the full Siemens
test set but not killed by the 512 selected tests [2]. In terms
of mutation score, the 512 tests kill more than 99% of the
non-equivalent mutants; those mutants that were not killed
by any of the 512 tests were considered equivalent for our
purposes.

We identified all of the mutants created by the E-selective
operators. These operators map approximately to Proteum
operators4 OAAN, OLLN, OLNG, and ORRN [2]. We then
determined a minimal set of tests that kill the non-equivalent
mutants using a Monte Carlo approach to determine mini-
mal test sets [2] as shown in Algorithm 1. This algorithm
begins by randomly removing one test from the entire test
set. If the remaining tests kill all of the mutants of inter-
est, then the selected test is discarded; otherwise the test
is restored and another test is randomly selected (without

3The growth rate of work is sublinear and the variation in-
creases above equivalency of 7 because Siemens programs
schedule and tcas have a maximum equivalency of just un-
der 7 (see Table 2), and thus cannot contribute the required
number of equivalent mutants.
4Delamaro et al. [8] describes the Proteum mutation opera-
tors. Missing from that list are CCDL (Constant Deletion),
OODL (Operator Deletion), and VVDL (Variable Deletion).
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Table 2: Siemens Suite Programs
Program LOC # Mutants # Dominators # Equivalents Redundancy Equivalency

print tokens 472 4,322 29 611 153.4 21.8
print tokens2 399 4,734 31 692 151.7 22.3
replace 512 11,080 59 2,297 186.8 38.9
schedule 292 2,108 43 270 48.0 6.3
schedule2 301 2,626 47 495 54.9 10.5
tcas 141 2,384 62 427 37.5 6.9
totinfo 440 6,693 20 872 333.7 43.6
average 365.3 4,849.6 41.4 809.1 116.1 19.5

replacement). The process is repeated until no tests can
be removed from the test set while still killing the desired
mutants. The result is a minimal test set.

Algorithm 1: Test set minimization

// Input: Mutant set M and test set T
// Output: A minimal test set

minSet = T
for each t in minSet {

// Note: t selected arbitrarily
if (minSet-{t} maintains mutation score wrt M and T) {
minSet = minSet - {t}

}
}
return minSet

Each minimal test set is guaranteed to kill the mutants of
interest, that is, the mutants generated by the selected mu-
tation operators. However, there may be many possible min-
imal test sets and each one may have a different effect on the
remaining mutants not generated by the selected mutation
operators, including the dominator mutants. Consequently,
we executed 10 runs for each mutation operator combina-
tion to determine the average performance of the operator
combination.

For each run, we measured the mutation score (based on
the number of mutants killed compared with the number of
non-equivalent mutants) and the dominator mutation score
(based on the total number of all dominator mutants killed
as compared with the total number of dominator mutants).

Our results for the programs in the Siemens suite using the
E-selective mutation operators are shown in Figure 4. This
graph shows that while the E-selective operators consistently
yield high mutation scores (above 0.90), the dominator mu-
tation scores for is considerably lower, ranging from 0.63 to
0.79, with considerably more variation than the mutation
score. With respect to question RQ2, we conclude that the
E-selective mutation operators do not produce consistently
high dominator mutation scores across a range of programs.

7. RQ3: IMPROVING UPON E-SELECTIVE
MUTATION

Since the E-selective operator set does not reliably pro-
duce high dominator mutation scores, we look for other op-
erator combinations that have better performance than E-
selective.

7.1 Analyzing sets of four mutation operators
We repeated the test-based process for all combinations

of up to four mutation operators for each program in the
Siemens suite. Proteum has 78 operators, and taken one,

Figure 4: E-selective mutation scores for the
Siemens suite

two, three, and four at a time totals over 1.5 million combi-
nations. The programs actually used only 59 of the Proteum
operators, which is still almost 500,000 combinations. The
combinations of four operators required about 24 hours of
processing on a quad-core Intel I7 platform. Because com-
putation increases by approximately a factor of 10 for each
additional operator, this brute-force approach was imprac-
tical for larger sets of operators.5

Figure 5: Selective mutation scores for print_tokens

using 1-4 operators

The results for Siemens program print_tokens are shown
in Figure 5. This program used 49 different Proteum oper-

5See Section 7.2 for an analysis of more than four operators.
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ators, and the graph plots 231,525 different combinations of
these operators, with two points plotted for each operator
combination. Mutation scores are shown in dark gray and
dominator mutation scores are shown in light gray. Score
values are shown on the vertical axis, and the normalized
work required to kill the mutants generated by the opera-
tors is shown on the horizontal axis. Bold points show the
mutation and dominator mutation scores for the E-selective
mutation operators.

We see that mutation scores for various mutation opera-
tors are fairly closely grouped; they quickly approach 1.0 as
mutants are added (and more work is needed to kill them).
The E-selective set of operators generate a mutation score
of 0.97, which is high but not among the best of all operator
combinations. Normalized work to kill these mutants is a
relatively small 1.02.

The dominator mutation scores show much more varia-
tion. While in general sets of operators that require more
work score higher, there is considerable variation in the dom-
inator score for similar amounts of work. For example, sets
of operators that require work of about 1.0 generate domi-
nator scores between about 0.08 and 0.80. It is possible to
achieve dominator scores of 0.90 with normalized work less
than 2.0, which seems a very attractive proposition. The E-
selective operators generate a dominator mutation score of
0.67. It is clear that many selective operator combinations
significantly outperform E-selective for the print_tokens

program. The other six Siemens programs show generally
similar patterns, with the E-selective operators performing
roughly in the middle of all sets of selective operators with
one to four operators. Many other operator sets have higher
dominator scores.

This suggests identifying new selective mutation opera-
tors that improve upon E-selective. However, when oper-
ator combinations are averaged across all seven programs
of the Siemens suite, as shown in Figure 6 (489,405 data
points), it becomes clear that there is no combination of one
to four mutation operators that reliably produces dramati-
cally higher dominator mutation scores across all programs.
The E-selective operators on average produce among the
best mutation scores, and while there are better candidates
for dominator mutation score, E-selective remains a reason-
able choice.

Figure 6: Selective mutatation scores for the
Siemens suite

With respect to RQ3, we conclude that while each indi-
vidual program may have many operator combinations that
outperform E-selective, on average across multiple programs,
it is among the better of a collection of poor performers.

7.2 Analyzing more than four mutation
operators

If we cannot find a set of up to four operators that reliably
generates a very high score, what is the best that we can find,
and how does it compare to E-selective?

It may be possible to find sets of more than four muta-
tion operators that produce high dominator mutation scores
across our sample programs. Unfortunately it is not practi-
cal to evaluate arbitrarily large sets of operators using the
brute-force techniques from Section 7.1, since with 59 opera-
tors represented in the Siemens programs there are (259)−1,
or almost 6 x 1017, operator combinations. Even checking
combinations of five operators results in more than five mil-
lion combinations, and combinations of six operators results
in more than 50 million. If we wish to explore larger sets of
operators, we must take a different approach.

To expand the number of operators, we replaced the average-
case Monte Carlo approach to determining mutation scores
with a deterministic approach that would be computation-
ally faster and would eliminate the need to perform repeated
runs to determine an average. We created such a determinis-
tic approach based on the dynamic subsumption relationship
between mutants.

Computationally, using the DMSG allows us to reduce the
amount of data processed for each operator set and, because
it is deterministic, it allows us to eliminate the averaging
of multiple executions as was done with the average-case
analysis. This substantially reduces the analysis effort.

To compute the DMSG-based scores, we first identify all
mutants in the DMSG that are generated by the selected
mutation operators. We know that there is some set of tests
that kill these mutants, though we no longer need to be
concerned with exactly which tests they may be. Because
any other mutants in the same nodes as the generated mu-
tants have the exact same behavior as the generated mu-
tants, these are also killed by the same tests. Finally, all
mutants in all nodes subsumed by the generated mutants
are also killed by the same tests.

As an example, consider Figure 1. We choose mutation
operators OBBN and OLBN as our selective operator set.
Mutants OBBN 1 and OLBN 1 (shown in black nodes and
marked with asterisks) are generated by these operators
and are killed by some set of tests. Mutant OEAA 2 is
in the same DMSG node as OLBN 1, so this mutant is also
killed. Mutant OALN 1 is subsumed by OBBN 1 and mu-
tants OEAA 3 and VLSR 1 are subsumed by both OBBN 1
and OLBN 1, so these mutants (shown in gray nodes) are
killed as well. This results in a mutation score of 0.67 (six
of the nine non-equivalent mutants killed), but a dominator
mutation score of 0.33 (kills one of three mutants from a
dominator mutant set).

We would like to use this easily-computed DMSG-based
score as a proxy for the more computationally-intensive av-
erage-case score. However, the DMSG-based approach does
not compute the same scores as the test-based approach.
The DMSG-based approach determines a worst-case score;
scores evaluated using minimal test sets may actually be
higher. Consider the same example using a test-based ap-
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proach to determining mutation and dominator mutation
scores. To kill selected mutant OBBN 1, we must choose
test t4. To kill selected mutant OLBN 1 we may choose
either test t1 or t3; assume for this example we choose t1.
This test also kills OEAA 2. Test t4 kills subsumed mutant
OALN 1 and both tests kill subsumed mutants OEAA 3 and
VLSR 1. However, t1 also kills dominator mutants OABN 1
and OEAA 1, which were not killed in the worst-case ap-
proach based on subsumption–we are simply lucky to have
killed these additional mutants. The resulting mutation
score is 0.89 (eight of nine non-equivalent mutants killed),
and the dominator mutation score is 0.67 (kills two of three
mutants from a dominator mutant set), both of which are
significantly higher than the worst-case approach.

To reliably use the worst-case score as a proxy for the
average-case score, we must have confidence that there is
a correlation between the two scoring approaches, not only
with respect to dominator mutation score, but also with re-
spect to work as defined in Section 5. Specifically, we need
to know that sets of selective operators that generate higher
worst-case dominator scores tend to generate higher average-
case dominator scores. This allows us to find the best oper-
ator combinations using worst-case analysis, with the assur-
ance that they are also among the best using average-case
scoring.

We generated worst-case scores for all 489,405 combina-
tions of one to four mutation operators for the seven Siemens
programs, with the results shown in Figure 7. Compared to
the average-case scores in Figure 6, these worst-case muta-
tion scores are slightly lower, but the worst-case dominator
mutation scores are significantly lower.

Figure 7: Selective mutation scores for the Siemens
suite (worst-case)

We then compared the worst-case dominator scores to the
earlier average-case dominator scores. Figure 8 shows all
combinations of one to four operators graphed with worst-
case dominator scores on the X-axis and average-case dom-
inator scores on the Y-axis. Using Spearman’s rank cor-
relation, we found a strong positive monotonic correlation
between worst-case and average case scores (ρ = 0.966,
p = 0.000, n = 489405, α = 0.01). Normalized work corre-
lates even more strongly (ρ = 0.999, p = 0.000, n = 489405,
α = 0.01). This confirms the validity of using worst-case
dominator score as a proxy for average-case dominator score.

While this approach is more computationally efficient than

Figure 8: Dominator score correlation

averaging the results of multiple tests, we can further reduce
analysis effort by eliminating computation of mutation oper-
ator sets that are unlikely to produce good results. Starting
with N = 1, we performed a breadth-first search for all
combinations of operators of length N for each of the seven
Siemens suite programs individually, selecting up to a total
working set of 100,000 best combinations. Each combination
of length N that was within the 100,000 top scores served
as the basis for combinations of length N + 1; combinations
that were not among the top scores were not explored at
additional lengths.

We measure best in this context by searching for operator
combinations that have higher dominator scores and lower
work than other combinations. Consider points E, H, I, and
J, shown in the shaded area in Figure 9. These points are
all dominated by point B, which has a higher dominator
score and lower work. The points within the shaded area
are sub-optimal solutions as compared with B. If we remove
all sub-optimal solutions dominated by any other point, we
are left with points A, B, C, and D. These points form the
Pareto front of optimal points.

Figure 9: Example Pareto front

We compute the goodness of points that are dominated
by the Pareto front by using their Hausdorff distance (dH),
the distance between the dominated point and the nearest
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member of the Pareto front.6 Smaller values of dH indicate
more optimal solutions. In Figure 9, the dH of point E is
1.005, while point F has dH of 1.020. Thus, point E is closer
to the Pareto front and is a superior solution to F.

Because worst-case scores correlate to average-case scores,
we assume that optimal worst-case points will be near-optimal
when evaluated by the average-case technique, and con-
versely near -optimal worst-case points may prove to be opti-
mal in the average-case analysis. Thus we select more than
just the optimal worst-case points for further evaluation.
After calculating all combinations of length N , we identify
successive Pareto fronts until we have accumulated at least
100,000 best solutions for the next round of evaluation.

This processing resulted in a total of 100,026 operator
combinations. To find the very best-performing selective
operators in terms of average-case scores, we reprocessed
these 100,026 best operator combinations using the test-
based average-case approach described in Section 6, and
then reduced the operator combinations to the 251 best
combinations that represent the Pareto front of optimal so-
lutions. The results are shown in Figure 10, with optimal
dominator scores shown in medium gray. For comparison,
dominator scores for all combinations of one to four opera-
tors are shown in light gray.

Figure 10: Best 251 operator combinations for all
Siemens programs (average-case)

While it is tempting to identify a best set of operators
based on this data, the best choice actually depends on the
risk tolerance of the program. Engineers developing non-
critical programs might select a set of operators that provide
a modest dominator mutation score with a small amount
of work, while those developing mission-critical programs
might be willing to perform far more work to achieve a higher
dominator score. Thus, every point in the optimal solutions
plot is a potential best choice for some situations.

Nevertheless, a few points stand out for additional dis-
cussion. If we are satisfied with the dominator score that
E-selective achieves, we can accomplish the same score with
less than half the work (from 1.12 to 0.47) by using operator
set {OABN, OBSN, OLSN, SMTC, SSWM, STRI, VGPR,
VLPR, VSCR}, which produces the point labeled A. Al-

6Hausdorff distance has a well-known limitation that points
in the gaps of a sparse Pareto front score poorly [33] With
the relatively dense Pareto fronts generated by our analysis,
this is not a significant problem.

ternatively, if we are willing to perform the same amount
of work as for E-selective, we can significantly increase our
dominator score (from 0.52 to 0.67) by using the operator
set {OABN, OALN, OLSN, SMTC, SMTT, SSWM, VGPR,
VTWD}, which produces the point labeled B. Finally, we
can see a knee in the curve at work ≈ 2.0 using operator
set {OABN, OLSN, Oido, SMTC, SMTT, SSWM, STRI,
SWDD, VGAR, VGSR, VLPR, VSCR, VTWD, VVDL}
which produces point C; beyond this point substantially
more work is required to achieve even modestly higher dom-
inator scores.

There are several potential selective operator sets that
are an improvement over E-selective, but such improvements
are clearly incremental. No matter how many operators we
use in our combinations, our optimum solutions are only
moderately better than the best combinations of one to four
operators. There is no combination of operators that reliably
produces high dominator scores for small amounts of work
across our selection of programs. Our desire for a high-
performing set of operators that are program-independent
remains unfulfilled, and a customized program-dependent
approach to mutant selection is still needed.

With respect to question RQ3, we conclude that no sets of
selective mutation operators of any size consistently produce
among the very best dominator mutation scores with a small
amount of required work across a range of programs.

8. RQ4: COMPARISON TO OTHER
SELECTIVE TECHNIQUES

Several empirical studies have indicated that there is no
significant difference in performance between selective mu-
tation approaches and random selection of mutants. In this
section we compare random with the best operator sets that
we have discovered with respect to dominator score and nor-
malized work. To develop the random scores, we select mu-
tants at random until we reach the desired percentage of
total mutants. As before, this is repeated ten times for each
of the seven Siemens suite programs, and the results are
averaged.

We evaluated random selection at five different percent-
ages of mutants generated: 5% (similar to the number of
mutants generated by E-selective), 10% (suggested by nu-
merous authors [1, 4, 37] as a threshold for very high mu-
tation scores), 15%, 20%, and 25%. We also evaluated the
performance of the statement deletion operator (SSDL) on
its own. All of these were compared to the Pareto front of
most optimal selective operator sets, as shown in Figure 10.

Random selection of 5% of mutants performs very simi-
larly to E-selective, but all random selection approaches are
sub-optimal compared to the best selective operators found
in our evaluation. Similarly, the SSDL operator is also sub-
optimal, requiring less work but delivering a lower domina-
tor score than E-selective or any of the random selection
approaches. Table 3 shows the Hausdorff distances from the
Pareto front for each of these alternate approaches.

With respect to question RQ4, we conclude that random
selection and statement deletion are about as effective as
current selective mutation operators. This is because tra-
ditional mutation score is inflated due to the redundancy
between mutants and the E-selective operators are not op-
timized for dominator score. When redundancy is removed
with dominator score, alternate sets of selective mutation
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Table 3: Hausdorff distance dH of alternate points
Alternate approach dH
SSDL 0.104
E-Selective 0.134
5% Random 0.150
10% Random 0.274
15% Random 0.147
20% Random 0.229
25% Random 0.112

operators can be found that outperform these approaches.
All of these current techniques are sub-optimal compared to
selective operators specifically selected for high dominator
scores and low work.

9. THREATS TO VALIDITY
As in any experimental paper, we must acknowledge threats

to validity. The use of the Siemens suite has both advan-
tages and disadvantages. The Siemens suite is a well-known
set of programs that has been used many times. However,
the individual programs themselves are fairly small and may
not be representative of more typical real-world programs.
For our particular research, however, we do not consider
the disadvantages of the Siemens suite to be disqualifying–
if selective mutation has shortcomings with respect to any
particular set of programs, then it must be considered sus-
pect with respect to software in general. Future work should
expand this analysis to larger real-world programs to verify
that the results still hold for those programs.

Our experimental data is from Proteum-specific mutation
operators and unkilled mutants were not verified to be equiv-
alent. The Proteum limitation of 512 tests leaves a small
percentage of unkilled mutants that we treat as equivalent.
As a result, the specific operator sets identified in Section 7.2
may not be the very best operator sets possible. Neverthe-
less, the broader point remains that common selective mu-
tation approaches based on any fixed set of operators or on
random selection of mutants cannot provide high dominator
scores with low amounts of work over a range of programs.

Of course, our modeling decisions also limit our results.
Our model of how the test engineer proceeds, namely one
test or one equivalent mutant at a time, is a simplification of
how testing occurs in practice. Our model further assumes
that the effort to find a test to kill a mutant is comparable
to the effort to declare a mutant equivalent. More precise
models would more closely match the actual test process as
well as weight tests and equivalent mutants differently. For
example, a model that placed more weight on the work of
equivalent mutant detection would tend to rate approaches
such as SDL, which are explicitly designed to limit equiva-
lent mutant generation, more favorably than E-Selective or
random, which do not.

10. CONCLUSIONS
Scientists and practitioners alike have long known that

mutation systems create large numbers of redundant mu-
tants. What is new is a way to measure that redundancy
[22], and moreover, to find a non-redundant set of domina-
tor mutants [2, 20, 21]. The concept of dominator mutants
allows us to redefine the mutation score to be significantly
more precise.

The first and most important result is that previous re-
sults on selective mutation [25, 29, 30, 35, 36, 3, 26, 27,

28] were at best imprecise. The original study, using the
Mothra mutation system, concluded that five of the 22 mu-
tation operators could serve as a selective proxy for the rest,
because on average, tests that killed all or most of the selec-
tive mutants also killed all or most of the complete set. As
the results in Section 6 show, these results were biased by
two factors. First, they are largely an artifact of the large
redundancy inherent in the mutants. When this redundancy
is eliminated by finding a dominator set of mutants, the full
mutation scores of the selective tests dropped off dramati-
cally.

Second, in the original study the five selective operators
performed best on average, but each specific program in
our study was best serviced by a different set of operators.
Just as medical researchers sometimes argue for personal-
ized medicine where treatment is optimized for individual
patients, we suggest that mutation operators should be spe-
cialized for individual programs.

Prior results found that selective approaches were compa-
rable with statement deletion [34, 11, 7] and even random
selection [37, 39, 13]. This paper finds that these results
hold even when modeled in terms of work and the more sen-
sitive metric of dominator score. In particular, E-selective
and 5% random selection score remarkably similarly in terms
of dominator score and work when applied to the Siemens
suite. None of these approaches, however, score particularly
well compared to selective operator sets that are optimized
to maximize dominator score and minimize work, which in
turn are worse than operator sets optimized for a particu-
lar program. One interpretation is that all one-size-fits-all
selective operator approaches are equally far from optimal,
and that better approaches are required.

One such approach might involve determining a correla-
tion between program features and mutation operators that
tend to produce dominator or near-dominator mutants. This
may allow a more sophisticated mutation engine to produce
mutants that are specifically tailored to the program under
test. We hope to explore this approach in future work.

All of these results are based on finding dominator sets of
mutants, which of course is not easy. In our prior research,
we leveraged manual analysis [20] and symbolic execution
[21] to find approximate dominator set of mutants. The gen-
eral problem is, unfortunately, undecidable [2]. If we could
find dominator sets of mutants, mutation analysis would be-
come dramatically cheaper and more practical. But even
without a practical way to efficiently find dominator mutant
sets before testing concludes, this paper demonstrates that
minimal mutation can be used as an effective research tool
to refine and expand our knowledge of mutation.
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