Derivational Software Engineering

Douglas R. Smith
Kestrel Institute
Palo Alto, California
smith@Kkestrel.edu

Categories and Subject Descriptors

D.1.2 [Software]: Automatic Programming; D.2.1 [Software

Engineering]: Requirements/Specifications; D.2.4 [Software

Engineering]: Software/Program Verification
; D.2.11 [Software Engineering]: Software Architectures

General Terms
Design

1. Current Software Practice

Software exists to fulfill needs that individuals and orga-
nizations have. Software is a complex artifact that fulfills
those needs by providing services, while consuming reason-
able levels of resource and conforming to constraints from its
context. To develop software, developers bring their design
knowledge to bear, translating their understanding of the
requirements by adapting existing code and creating new
specialized code. Unfortunately, the design knowledge and
its rationale are usually not captured in a useful form.

In our view, software should be treated as a formal com-
position of requirement specifications, models, library com-
ponents, design abstractions (e.g. system architecture pat-
terns, design patterns, algorithm patterns, etc.), datatype
refinements, optimizations, and other specialized code gen-
eration techniques. We call this composition the derivation
structure of the software. Our intent is that a machine could
execute a derivation structure to generate code, effectively
mechanically replaying a summary of the developer’s design
process.

Current practice leaves the derivation structure informal
and largely unrecorded, giving rise to critical deficiencies:

e (Cost of evolution — Most of the cost of software over
its lifecycle results from adapting the code to meet
changing requirements. Without an explicit derivation
structure, there can be little in the way of machine
support for software evolution.

e Lack of confidence — The design and evolution process

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

FoSER 2010, November 7-8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11 ...$10.00.

355

Louis Hoebel
GE Global Research
Niskayuna, New York
hoebel@ge.com

leaves behind little or no evidence that the artifact
achieves its goals. How do I as a buyer know that a
product has the functionality that it claims? How do
I know that it operates safely and securely in my envi-
ronment? What evidence can I examine to determine
the validity of the advertised features of the product?

e (Cost of certification — Because of the informal devel-
opment process, the cost of certifying software systems
is often several times the cost of developing the soft-
ware. It would be far better if the development process
itself generated verifiable (i.e. independently and ef-
ficiently checkable) evidence that the code meets its
requirements. For example, if a design pattern were
formalized, and pre-analyzed for its properties, then it
would be possible to generate certification evidence at
the same time that the code pattern is instantiated.

To address these deficiencies, a science of design provid-
ing solid foundations for software engineering will focus on
derivation structure as the essence of software. A deriva-
tion structure provides better localization and modulariza-
tion of concerns than code does. Software is more than
source/binary code, software is its derivation structure.

2. Derivational Software Engineering

Software exists to fulfill needs that individuals and orga-
nizations have. As these needs evolve, they are reflected in
changing requirements on software systems. Some changes
are purely technological, as in the need to migrate to newer
platforms, but most reflect the need for new or modified
features and services. Needs also arise to deal with chang-
ing features of the operating environment of software, such
as the increasing presence of malware and non-benign users.
Overall, changing requirements are the driver of the software
development and evolution process.

In this view, the software lifecycle is primarily defined by
a sequence of requirements. Secondarily, each requirement
has an associated derivation structure. The design deci-
sions taken in the development of code for an initial require-
ment for a system would be recorded as its derivation struc-
ture. Subsequently, an incremental change to the require-
ments would trigger the need for an incremental change to
the derivation structure, which includes changed code. The
challenge and promise of a derivational approach is to treat
incremental change to a derivation structure as a problem-
solving process admitting automated solutions, leading to
increased automation and lower cost due to reuse of the
previous derivation structure. The issue is knowing when

to follow the previous derivation structure and when to de-
part from it, generating new structure. In summary, the
initial system design derives from the initial requirements,
and subsequent evolution steps are driven by requirements
changes.

Requirement specifications capture the conditions under
which stakeholders find a candidate implementation accept-
able. The requirements community has developed a rich
collection of techniques for composing requirements, explor-
ing tradeoffs, and moving towards formalization as specifi-
cations [24]. Requirements may be best expressed by a mix-
ture of (1) models that capture features and properties of the
system (e.g. of physical agents and domain-specific require-
ments), and (2) logical formulas that decide the acceptable
behaviors of the system. The models define an overapprox-
imation (i.e. superset) of the desired system behaviors, and
the logical conditions serve to eliminate unacceptable be-
haviors. The most familiar logical requirements are safety
and liveness properties, which are expressible as predicates
on traces. Qualitative (i.e. nonfunctional) requirements are
often given by preferences over coarse-grain utility measures
on traces.

In a deriwational approach, it is not necessary that logi-
cal requirements are ever complete. First, the incremental
adaptation of derivation structure to changing requirements
allows for a process that starts with incomplete require-
ments and slowly “trains” the development process/tools
by incrementally adding in new requirements. That is, in
a requirements-driven process, it may be better to incre-
mentally develop the requirements, so that with each new
requirement increment, the developers work on the corre-
sponding increment to the derivation structure. Second,
models often provide a more concise means for capturing
requirements and given infrastructure than through logical
formulas. The issue is ensuring that the features and prop-
erties embodied in models are preserved by the derivation
in the final code.

It should be obvious that all code embodies some require-
ments, whether or not they reflect actual needs. And it
is also true that feedback from stakeholders is needed to
capture the actual requirements. The initial requirements
may be a crude approximation of what they will end up
as. The goal is to develop a succession of approximations
that converge to requirements that all stakeholders find ac-
ceptable. Over the lifecycle, as the needs of stakeholders
evolve, so will the requirments. The software lifecycle is a
sequence of requirements that are more-or-less acceptable to
the stakeholders. The job of software engineers is to supply
the tools and design-knowledge formalizations that permit
an automated, incremental generation of derivation struc-
tures accompanying this sequence of approximate require-
ments. If we regard the code generated from intermediate
requirements as prototypes, then the prototypes can be run
for stakeholders to gain further insight into the adequacy
of the requirements, unconcerned about the inertial cost of
modifying the prototype (since it and its successors will be
generated).

In our view, the process of transforming requirement spec-
ifications to code is via a sequence of refinement steps. Each
refinement embodies a design decision, replacing a design
on one level (initially the combined models and formulas
that comprise the requirement specifications) with a more
detailed design at the next. Under certain mathematical

356

conditions, refinements can be shown to preserve proper-
ties. The key to generating certification evidence as a part
of the code derivation process is to ensure that the refine-
ments in the derivation structure (1) preserve the features
and properties embodied in initial models, and in the designs
at various levels of refinement, and (2) enforce and preserve
any logically specified requirements during refinement.

Aspect-oriented and feature-oriented programming pro-
vide some rough special cases of derivational design: modu-
lar statements of requirement intent are mechanically trans-
lated into code scattered throughout an intermediate-level
design [2, 5, 14, 23].

3. Directions for Future Research

Several key research issues arise from the view of software
as a refinement-based derivation structure in a requirements-
driven lifecycle.

1. Filling the semantic gap between requirements and code
— Where does the information come from to fill the
large gap between requirements and code? What is
the nature of the refinement steps and how do they
arise?

Compilers fill in their gap by instantiating rules for
translating constructs from one language to another.
Requirement-level specifications often do not have com-
putational content so there may not be a ready set of
source-to-source translation rules. Some refinement-
based methods such as VDM, B [1], and the Praxis’
Spark methodology [4] rely on manually invented re-
finements and their post-hoc verification. This is an
expensive process under requirements evolution.

In our view, most software can be treated as the rou-
tine composition of well-known design abstractions, as
described in textbooks on system architectures, design
patterns, algorithms, data structures, and so on. Cap-
turing those reusable design abstractions and making
them available for machine application will facilitate
the construction (and incremental reconstruction) of
derivation structures.

The informal capture of design abstractions is not a
novel or little-known idea. Software architecture pat-
terns [8], design patterns [13], frameworks, generic pro-
gramming [3], template/schema-based programming,
generative programming [11], higher-order functions,
domain-specific generators, product-lines [10], libraries,
etc. all are motivated by a similar objective: to cap-
ture common patterns of computation so that they can
be built once and reused often [7]. The cost of build-
ing them is amortized over many uses. However, the
abstraction mechanisms listed, typically are not rep-
resented in a way that they can be applied mechan-
ically. Similarly, they do not provide much support
for their correctness argument; design abstractions are
most commonly thought of as a means for improving
programmer productivity and facilitating requirement
changes.

The formal capture of design abstractions has seen less
effort, but it naturally builds on and extends the pre-
viously mentioned approaches. The benefits of formal-
izing design abstractions include mechanical applica-
tion and the co-generation of code and certification

evidence. Work on the formalization of algorithm the-
ories, datatype refinements, and various optimization
techniques can be found in [15, 9, 19], including a tax-
onomy of algorithm theories [20] and the beginnings of
a taxonomy of system architecture theories [22]. The
creative effort is to develop design theories that are
(1) abstract enough to cover a range of concrete design
problems, yet (2) structured enough to admit tractable
machine support for instantiation.

Domain-specific generators that are based on codified
design abstractions and that transform user-specified
problem requirements into certifiable code provide vi-
able instances of this approach [6, 12, 16, 17].

Most approaches to code reuse aim to separate com-
mon code/structure from variation points (code libraries
are the extreme case where there is little or no varia-
tion). Attaching properties to the common structure,
and attaching constraints on variation points provides
a first step towards supporting the generation of certi-
fication evidence at the same time that code instances
are generated.

The upshot is the need for a research program of cod-
ifying best-practice design abstractions in such a way
that (1) they can be efficiently instantiated to meet
requirement-level specifications, and (2) evidence for
the consistency between the specifications and the in-
stance can be co-generated and then efficiently checked
by an external observer.

. Requirements-driven change — What kinds of tools can
support the adaptation of a derivation structure to a
requirements change? In a derivational approach, evo-
lution is effected by a local change to requirements, fol-
lowed by a process of propagating the change through
the derivation structure, re-establishing a consistent
refinement chain from top (requirements) to bottom
(code). Detection and treatment of inconsistencies be-
tween requirements or between requirements and pre-
vious design decisions motivate the exploration of trade-
offs and the choice of alternative design abstractions.
Significant research is needed to develop both theoreti-
cal foundations and practical methods for re-establishing
a globally consistent derivation structure after change
to a local part. Significant levels of automation for this
process seem possible.

This is a topic that has received scant attention, partly
because well-developed machine support for derivation
is needed before the issue of incremental rederivation
comes to the foreground.

. Automated inference tools to instantiate design abstrac-
tions — Some form of deductive inference is needed to
specialize design abstractions to requirements and con-
text in a way that generates formal evidence of consis-
tency. Inference tools are needed to calculate instances
of design abstractions that are correct-by-construction
and tailored to context.

The inference techniques underlying model checking,
abstract interpretation, and other forms of theorem-
proving and analysis, provide sound methods for rea-
soning about the properties and behaviors of software.
Work on derivational approaches to software has tra-
ditionally built on and extended techniques used for

357

post-hoc verification of code. Derivational software
engineering has characteristic needs beyond those of
program verification, especially (i) constructive tech-
niques for finding witnesses to existentials, (ii) con-
straint solvers, and(iii) methods for propagating prop-
erties through models and patterns. Current efforts to
develop fast specialized inference engines (SAT, SMT,
combined decision procedures) are especially impor-
tant in providing efficient automatic support for con-
structing refinements.

. Generation of certification evidence — A formalized de-
sign abstraction can be associated with an abstracted
proof (or other form of evidence). The inference tools
constructing a refinement from the abstraction can
then also generate formal evidence for the refinement;
that is, evidence of the consistency between the source
and target of the refinement [21]. Evidence for the
consistency of each refinement can be composed in a
natural way in order to provide evidence for the con-
sistency of a refinement chain [21].

The derivational approach to software provides fresh av-
enues of research for established subareas of Computer Sci-
ence. It offers to provide integration opportunities between
communities that tend to have little interaction and who
should be seen as parts of a larger whole, including

Requirements engineering

Formal specification languages and logics
Domain-specific languages and models

System architecture patterns and modeling formalisms
Design patterns

Model-Driven Development

Formal refinement methodology

Algorithms, data structures, optimizations

Deductive inference, combined decision-procedures and
constraint-solvers

EDA (hardware synthesis tools)

Resource mapping and optimization

For example, increased interaction between the require-
ments, specification, and system architectures communities
would seem to be natural. Current research in architectures
is mostly oriented toward modeling and verification. To sup-
port formal derivation, research is needed into techniques
for propagating (global) requirement constraints through the
structure of the architecture so as to infer (local) constraints
on components. This requires an integrated understand-
ing of requirements, requirement specifications, formal ar-
chitecture patterns/theories, efficient deductive propagation
mechanisms, and so on. Formal capture of architecture pat-
terns and propagation techniques for refining them may re-
quire advances in theory. Currently there is a large gap be-
tween the basic relevant theory (e.g. coalgebraic/coinductive
structure, concurrent games, game logic, mechanism design),

and the conceptions of software engineers regarding the system-

level patterns that constitute best-practice design; e.g. [8,
13, 18].

4. Concluding Remarks

Software exists to fulfill needs that individuals and orga-
nizations have. An ultimate end of software engineering is
providing the tooling to meet those needs through an auto-
mated requirements-driven process of creating and evolving
software. It may be increasingly true that “most software
creators are not software professionals”. Software engineers
then become the meta-engineers that create the tooling to
allow “software creators” to capture and evolve their require-
ments and automatically generate certifiable software-based
services, without needing to know the details of the under-
lying derivation structures. The design abstractions neces-
sary to provide that level of automation become the focus of
software engineer’s efforts. Our view is that a skilled soft-
ware engineer’s insights and creativity are best captured in
reusable design abstractions. There is higher leverage to be
obtained from the effort to develop reusable design abstrac-
tions than from serially creating ad-hoc codes. This fore-
casts a shift, as more developers move from programming to
achieve greater leverage through design knowledge capture
and meta-programming.

1. REFERENCES

[1] J.-R. Abrial. The B Book. Cambridge University
Press, 1996.

S. Apel, C. Lengauer, B. Moller, and C. Késtner. An
algebra for features and feature composition. In
AMAST-08, Springer LNCS 5140, pages 36-50, 2008.
R. Backhouse, P. Jansson, J. Jeuring, and

L. Meertens. Generic programming — an introduction.
In S. D. Swierstra, editor, Advanced Functional
Programming, pages 28—115. Springer-Verlag, LNCS
1608, Berlin, 1999.

J. Barnes. High Integrity Software: The SPARK
Approach to Safety and Security. Addison-Wesley,
Boston, MA, USA, 2003.

D. Batory. Feature-oriented programming and the
AHEAD tool suite. In ICSE ’04: Proceedings of the
26th International Conference on Software
Engineering, pages 702-703. IEEE Computer Society,
2004.

M. Becker, L. Gilham, and D. R. Smith. Planware II:
Synthesis of schedulers for complex resource systems.
Technical report, Kestrel Technology, 2003.

J. Bruno, M. Kinstrey, and L. Hoebel. Common
services framework. In Proceedings of the 5th
International Conference on Software and Data
Technologies (ICSOFT2010). Springer, 2010.

F. Buschmann, R. Meunier, H. Rohnert,

P. Sommerland, and M. Stal. Pattern-Oriented
Software Architecture — A System of Patterns. Wiley,
1996.

J. Cai and R. Paige. Program derivation by fixed
point computation. Science of Computer
Programming, 11:197-261, 1989.

P. Clements and L. M. Northrop. Software Product
Lines : Practices and Patterns. Addison-Wesley Pub
Co, Reading, MA, 2000.

2]

3]

[10]

358

[11] K. Czarnecki and U. Eisenecker. Generative
Programming: Methods, Tools, and Applications.
Addison Wesley., Boston, 2000.

B. Fischer and J. Schumann. Generating data analysis
programs from statistical models. Journal of
Functional Programming, 13(3):483-508, 2003.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

G. Kiczales and et al. An Overview of AspectJ. In
Proc. ECOOP, LNCS 2072, Springer-Verlag, pages
327-353, 2001.

Y. A. Liu and S. D. Stoller. From datalog rules to
efficient programs with time and space guarantees.
ACM Trans. Program. Lang. Syst., 31(6):1-38, 2009.
M. Lowry, A. Philpot, T. Pressburger, and

I. Underwood. Amphion: Automatic programming for
scientific subroutine libraries. In Intl. Symp. on
Methodologies for Intelligent Systems, pages 326-335,
1994.

M. Piischel and et al. SPIRAL: Code generation for
DSP transforms. Proceedings of the IEEE, special
issue on “Program Generation, Optimization, and
Adaptation”, 93(2):232— 275, 2005.

M. Shaw and D. Garlan. Software Architecture:
Perspectives on an Emerging Discipline. Prentice-Hall,
NJ, 1996.

D. R. Smith. KIDS — a semi-automatic program
development system. IEEE Transactions on Software
Engineering Special Issue on Formal Methods in
Software Engineering, 16(9):1024-1043, 1990.

D. R. Smith. Toward a classification approach to
design. In Proceedings of Algebraic Methodology and
Software Technology (AMAST), volume LNCS 1101,
pages 62—-84. Springer-Verlag, 1996.

D. R. Smith. Generating programs plus proofs by
refinement. In B. Meyer and J. Woodcock, editors,
Verified Software: Theories, Tools, FExperiments, pages
182-188. Springer-Verlag LNCS 4171, 2008.

D. R. Smith. Calculating refinements in algorithm and
system design. Technical report, Kestrel Institute,
ftp://ftp.kestrel.edu/pub/papers/smith/mr.pdf, May
20009.

S. Trujillo, D. Batory, , and O. Diaz. Feature oriented
model driven development: A case study for portlets.
In Proceedings of the 29th IEEE International
Conference on Software Engineering (ICSE-07), pages
36-50, 2007.

A. van Lamsweerde. Requirements Engineering: From
System Goals to UML Models to Software
Specifications. Wiley, 2009.

(12]

(13]

(14]

(15]

(16]

(22]

23]

(24]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

