

 Building a Socio-Technical Theory of Coordination:
Why and How (Outstanding Research Award)

James Herbsleb
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

+1 412 268 8933
jdh@cs.cmu.edu

ABSTRACT
Research aimed at understanding and addressing coordination
breakdowns experienced in global software development (GSD)
projects at Lucent Technologies took a path from open-ended
qualitative exploratory studies to quantitative studies with a tight
focus on a key problem – delay – and its causes. Rather than being
directly associated with delay, multi-site work items involved
more people than comparable same-site work items, and the
number of people was a powerful predictor of delay. To
counteract this, we developed and deployed tools and practices to
support more effective communication and expertise location.
After conducting two case studies of open source development, an
extreme form of GSD, we realized that many tools and practices
could be effective for multi-site work, but none seemed to work
under all conditions. To achieve deeper insight, we developed and
tested our Socio-Technical Theory of Coordination (STTC) in
which the dependencies among engineering decisions are seen as
defining a constraint satisfaction problem that the organization
can solve in a variety of ways. I conclude by explaining how we
applied these ideas to transparent development environments, then
sketch important open research questions.

CCS Concepts

• Software and its engineering➝Software creation and
management

Keywords
Coordination; socio-technical theory of coordination;
collaboration; empirical studies; global software development;
open source; transparent environments

1. INTRODUCTION
Coordination has always been one of the fundamental problems of
software engineering: if the work of individuals in teams and
organizations does not mesh in just the right way, the product will
not work as intended. This is true of any product, but the difficulty
seems greater with software, for the reasons that Brooks pointed
long ago [1] – especially its invisibility and constant change.

Coordination becomes particularly challenging – and interesting
as a subject of study – when organizational forms morph, evolve,

or innovate. When people organize in a habitual, consistent way,
for example, in collocated teams, it is easy to overlook day-to-day
coordination mechanisms that are simply taken for granted. It is
easy to see the importance of things such as meetings of various
flavors, processes, methods, and architectural separation, which
have long been studied. Other, subtler mechanisms such as
informal communication, practices, habits, and shared mental
models are often only made visible by their absence.

Very interesting – and often disturbing – things happen when an
organization is geographically split apart. Much can be learned
by observing the mayhem that often ensues when organizations
are distributed, and much is revealed about what must have been
happening in the collocated case that keeps such chaos more or
less at bay. Adding new tools and practices in these novel
organizational contexts, and seeing how the work is impacted,
also helps to deepen our understanding of what coordination is
and how to achieve it.

In this paper, I summarize two decades of research that colleagues
and I have carried out to understand and sometimes to facilitate
how work is carried out via novel and evolving organizational
forms, driven by factors such as geographic distribution,
collaboration in open source project communities, and open
ecosystems.

The story begins with qualitative studies that throw out a wide net
in order to understand the experience and difficulties of global
software development (GSD) – teams operating across
geographic, time zone, national, and cultural barriers. The focus
shifts to quantitative studies to validate qualitative results and take
a close look at one of the primary difficulties that surfaced from
early results – the developers’ experience that multi-site work
takes much longer than comparable work at a single site. This
leads in turn to a focus on finding and engaging the right people,
the specific problem our quantitative results pointed to [2].

These empirical results guided our efforts to find solutions, as we
developed resources and tools to assist in the development
process, and evaluated them in situ. In particular, we developed
an early chat tool [3, 4], an expertise location tool [5], descriptions
of practices that organizations had found helpful [6, 7], and
organizational models describing various ways to distribute work
across sites along with their strengths, weaknesses, and criteria for
when each is appropriate [8].

Another organizational form – open source development projects
– caught our attention during this period. It appeared to us to be
an extreme form of geographically distributed development,
loosely and informally organized; yet it appeared to be free from
many of the problems we observed in industry. We performed
two case studies of very different communities, Apache and
Mozilla, to try to understand how this new form successfully

SAMPLE: Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.
DOI: http://dx.doi.org/10.1145/12345.67890

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

FSE’16, November 13–18, 2016, Seattle, WA, USA
ACM. 978-1-4503-4218-6/16/11...$15.00
http://dx.doi.org/10.1145/2950290.2994160

2

accomplished development work [9]. In addition to findings
about how the work was performed, the quality of the code, and
the timeliness of support, we developed a number of hypotheses
that have been tested in subsequent work.

To try to make sense of the wealth of results coming from the
great variety of approaches to software development, and the
varied success they achieved, we formulated a socio-technical
theory of coordination [10, 11]. In essence, it views each
development project as posing a particular constraint satisfaction
problem that an organization must solve. I summarize several
studies that serve as tests of this theory, and sketch out research
questions to explore the theory and the phenomenon of
coordination more comprehensively.

Finally, I will discuss our recent work on what is rapidly
becoming a dominant development paradigm, ecosystem-based
development. Unlike the individual open source projects,
ecosystem-based development characteristically has large
numbers of highly interdependent projects that must continuously
coordinate. Transparent environments help developers to cope
both with the scale and decentralized organizational structure, in
order to take advantage of the tremendous resource pool of
libraries, frameworks, and other code available in these
environments. 1

2. PROBLEMS OF GSD
Projects in Lucent Technologies experiencing conflict,
misunderstandings, missed schedules, and technical issues of
many kinds provided business motivation for the Bell Labs
Collaboratory, a research project on GSD. Although researchers
were beginning to understand why “Distance Matters,” [12], the
symptoms of dysfunction still presented a puzzle. Lucent
(formerly AT&T) had been producing highly reliable telephony
products for many years, yet it seemed that spreading
development efforts across sites was shockingly disruptive. More
or less the same technical work as in the past, highly qualified
people, adequate budgets, yet an unprecedented level of problems.
In the rest of this section, I describe our empirical studies and
their increasingly sharp focus as our results began to point to
delay and its causes in the difficulties in finding and engaging the
right people across sites.

2.1 What’s Going on Here?
Our first efforts were to initiate a qualitative, open-ended study
designed to understand why things were coming off the rails. We
chose two sites to work with, and visited each with the research
team to introduce ourselves and to kick off qualitative data
collection in the form of interviews with developers, managers,
and executives, eventually expanding our scope into a qualitative
study of the disastrous first release of the software for the
organization’s primary product [6, 7]. Based on some initial
interviews and conversations with participants, we focused on the
integration phase, where the problems most visibly burst into the
open. We developed a rich set of findings detailing the ways in
which failures of communication, differing assumptions,
misunderstandings, mistrust, incompatible tools and environments

1 I focus here very egocentrically on the work that colleagues and

I have done. There is, of course, a much larger literature full of
major contributions by others, but space prohibits reviewing it
here. A more comprehensive review is in preparation.

led to incompatible actions across the sites and major delays as
the problems are identified and fixed.

Fundamental to the problems were a lack of awareness about who
knows what, is responsible for what, and is doing what across the
sites, along with the near-total absence of regular informal
communication which could unearth the “unknown unknowns” of
key information one doesn’t know one lacks. We also noted how
even limited face to face contact seemed to counteract these
problems, allowing subsequent distributed work to proceed more
fluidly. This led to a number of recommendations about
communication practices, architectural separation, assigning a
liaison role, and managing uncertainty.

2.2 How to Organize?
Recognizing that different product groups within the company
seemed to manage GSD rather differently, we expanded on this
qualitative work by visiting and conducting interviews and artifact
analysis of six different geographically distributed projects [8].
From this work, we identified four different organizational models
that projects seemed to be using to distribute work across sites,
identifying the benefits, problems, and typical coordination
mechanisms for each model. The models were distinguished
based on the principle by which they separated the development
work across sites: by component, by process step, by functional
area of expertise, or by core versus customization work. No
model provided a “best” overall solution, nor did any appear in
pure form. But each appeared to have some contextual conditions
that favored and others that argued against its use.

For example, one strategy involved separating a product into its
core functionality, developed and maintained at a large, central
site, and customization centers around the world located near
important customers. This strategy only worked when this style
of modularization made technical sense, and when appropriate
development resources were available in the right locations. It
had the advantage of giving full technical responsibility for the
largest and most complex component to a single organization that
took responsibility for its maintenance and integrity. It also
allowed the customization teams to get to know the customers
well and gain a deep understanding of their requirements. It had
several significant problems, however, as customization teams felt
ignored by the core developers, who tended to make changes with
little regard to how they would impact each custom project.
Expertise in the core technology was sparse in the customization
sites, and they had difficulty getting sufficient attention from the
core to ask questions and get their problems solved.

2.3 Distance, Delay, and Social Networks
One of the most striking results from our qualitative work was the
consistency with which our participants reported how GSD
seemed to result in substantial and sometimes crippling delay in
development. We designed a set of studies to get a better handle
on the extent and possible causes of delay [2, 13, 14]. Our
approach was twofold. First, we took advantage of the fact that
all development work in the company we worked for was
undertaken pursuant to a modification request (MR). By looking
at the geographic location of each person associated with the MR,
we could distinguish work that was distributed across sites from
work that occurred all at a single site. We also developed and
deployed a survey instrument that assessed communication
patterns and social networks within and across sites.

We expected that GSD would take somewhat longer than
collocated work, but we were taken aback by the magnitude of the
difference we observed. On average, a work item that had

3

participants from more than one site took about 2.5 times as long
to complete. Fitting a graphical model, we statistically controlled
for a number of factors that could have produced spurious results
– for example, the size and diffusion (i.e., number of changes and
number of files changed) of same site versus multiple site work
items. Such differences in the work itself could not account for the
delay we observed. We were also surprised by the consistency of
this figure – data taken from two different Lucent development
organizations exhibited almost precisely the same ratio. Data
from our survey in which we asked (among many other things) if
developers had recently experienced a delay and how long it took
to resolve, gave us nearly the identical figure of intervals 2.5
times as long for delays involving multiple sites.

Digging in to possible explanations for this dramatic difference
revealed further surprises. Most unexpectedly, our model showed
no direct relationship between the number of sites and how long
the work took. The effect we were observing was a mediated
relationship involving the number of people involved in the work
item. Distributed work items had a strong tendency to involve
more people, and the number of people was a very strong
predictor of how long it would take. Returning to our qualitative
data from our previous studies, there were several possibilities, all
based on lack of knowledge of expertise and current workloads,
which could explain this connection. The MR owner, for example,
might assign work incorrectly at another site, leading to additional
assignments. Or perhaps the first assignee had expertise to do
only part of the work, again leading to additional assignments.
Our prior research [6, 8] suggested that knowing who to contact
about what, the difficulty of initiating communication, and issues
about the effectiveness of cross-site communication could all play
a role.

In addition to this analysis of archival data to assess the extent and
causes of delay issues, we conducted two surveys of one
distributed development organization in order to better understand
social networks and the frequency and intensity of interaction
across sites as compared to within a single site. Confirming most
of our hypotheses, developers communicated with many fewer
people at other sites than at their home site, and communication
was much less frequent. Our participants also found it much more
difficult to identify and communicate with appropriate experts
across sites, and overall received much less information from
them. Moreover, cross-site colleagues were much less likely to
perceive themselves as part of the same team, or to share goals.

3. GSD SOLUTIONS
As our empirical studies began to clarify the origin of problems
with coordination and the resulting delay, we proposed and
implemented technical and organizational solutions targeted to
these difficulties. I will focus here on two tools that saw
significant use, and practices that arose with their use.

3.1 Expertise Browser
Finding someone with specific expertise – in tools, technologies,
or parts of a product – is a serious problem in distributed
organizations, and as our results showed, caused very substantial
delays in accomplishing technical work. The amount of
experience, i.e., the number of software changes accomplished
with a given tool, technology, or in specific project part, can be
used as a serviceable approximation of expertise. This insight led
to the design and development of the Expertise Browser (ExB)
[5], a socio-technical visualization tool that was deployed and
used by several GSD organizations.

ExB used linked displays to show a hierarchical technical view of
a software product (from subsystem to file), and a social view of
the supervisors, developers, and organizations that performed the
work. Clicking on some unit in the technical view, representing,
e.g., a file or module, would produce a filtering and ordering of
the people, organization, and supervisor views to reflect their
relative contribution to the code unit. Clicking on one of the
social panes, e.g., a specific developer, would highlight in the
code view the proportion of contributions that person had made to
each visible unit of code. Thus, the tool could be used to find an
expert or to explore what work was performed by individuals or
organizations.

Figure 1. Expertise Browser user interface, with code units

represented on the right and individuals, teams, and
organizations on the left.

Our logs showed that different sites tended to use the tool
somewhat differently. Smaller and newer sites tended to use ExB
for locating experts, while older and more established sites
seemed more often to use ExB to explore where other parts of the
organization were working in the code. We also found a strong
desire for a view of recent activity, to enhance awareness of
potentially conflicting work that other sites were doing, and for a
“quantitative resume” that would give a profile of a developer’s
work, including languages used, code volume, and organizations.
Today, GitHub profiles provide highly developed visualizations of
these kinds of information.

3.2 Rear View Mirror
In order to try to increase communication frequency and
effectiveness, as well as addressing the absence of cross-site
informal communication, we designed, built, and deployed an
early social media application (or, depending on the definition of
social media you prefer, a precursor to social media). It combined
person-to-person instant messaging, persistent group chat, and
presence awareness (to see who was currently active). We called
it “Rear View Mirror” (RVM) to express the ambition that it
would provide an unobtrusive but always available way for
developers to see what was going on around them, especially at
other sites. Our research focused on two different aspects of
introducing RVM: patterns, issues, and tactics for adoption [4]
and content analysis to indicate how it was used [3].

While it is a bit hard to imagine now, chat still seemed fairly
novel in 1999, especially in a work setting. As we released the
RVM application to several parts of the development
organization, we spent two weeks with research team members at
two different sites simultaneously training developers on the tool.
For the initial deployment we chose pairs of developers who

4

seemed to have the greatest cross-site communication needs, in
hopes of achieving a critical mass of users quickly. The results
were fairly disappointing, with about half using the tool initially,
dropping off over several months to a steady 10%. In addition to
the typical problems of an alpha deployment, interviews revealed
some interesting issues. Our training strategy had not worked
very well. We concluded that we should focus on teams, not just
pairs of people within an organization. Where adoption
happened, it was because a large share of a team began using the
tool. We also realized we needed to train teams together, since
they needed not just to learn how the tool worked, but also how to
collaborate with it. With some engineering work to address
usability issues and a change to team-focused training, we were
able to boost adoption to 40-50% of newly-trained teams.

We also looked at what teams were actually talking about with
RVM [3]. The popular press of the day was deeply suspicious of
chat and messaging tools in the workplace (e.g., [15]), seeing
them as a source of interruption and distraction. While we did see
small amounts of non-work content and occasional humor, the
majority of messages (69%) were directed to accomplishing work.
All the teams we examined showed a surprisingly consistent
pattern of use, with very similar frequencies of the different types
of messages. Since the tool maintained group message histories
(for a limited duration), conversations were sometimes
asynchronous, but most conversational turns happened in seconds
or minutes. Messages tended to occur in bursts, with some days
showing extensive use, and others little or none. Tool design
involved several major tradeoffs, including avoiding intrusiveness
versus timely notification, and customizable privacy settings
versus setup time. All in all, RVM seemed to provide a means for
a modest increase in communication across sites. One can see

Slack and other tools providing a rich set of team-based
functionality within the enterprise.

4. OPEN SOURCE: EXTREME GSD
As we were studying GSD inside the enterprise, the open source
movement began to get attention as a serious competitor to the
commercial development paradigm. Little was known at the time
about how and why this extreme form of GSD seemed to work so
well. Popular articles (e.g., [16]) reveled in the lack of structured
process and provided various maxims (e.g., “release early and
often”). Economists wondered about the incentives that led to
voluntary work without pay (e.g., [17]), but we could find no
research explaining how fully distributed development could
eschew standard coordination mechanisms such as management
oversight, plans, and specifications, yet produce great products,
while experiencing few of the profound problems of GSD.
Colleagues and I set out to try to understand this puzzle by
extracting and analyzing a detailed history of the Apache server,
using archival analysis techniques developed by Audris Mockus,
and with the help of insights provided by Apache Group founding
member Roy Fielding [9, 18].

The story we uncovered had a number of dimensions, but
interestingly, it turned out that different and differently sized
groups of developers performed the basic software development
functions in a way that made coordination possible. A relatively
small core group produced the vast majority of new functionality,
while bug fixing was spread much more thinly across developers,
and testing – i.e., submitting a bug report – was far more
distributed yet. So the highly interdependent work of developing
new functionality was coordinated informally among a small team
of a dozen or so developers, while the much less interdependent
work of testing and fixing engaged large numbers of people.
Meritocratic selection of core members with commit rights, self-
assigned release managers, mailing lists for communication,
common ground in the form of a mutually understood (albeit
informal) development process, and a voting mechanism for
reaching decisions, together filled out the picture of how project
coordination was achieved. Comparison to somewhat similar
commercial projects hinted at impressive results: very high
quality, rapid responses to problems, and high productivity [9].

Our observations of Apache led us to construct seven hypotheses
that were speculative generalizations arising from our reasoning
about the research literature and why we observed what we did in
our Apache case study. For example, we speculated that in an
open source project where the core group exceeded some
threshold, perhaps 10-15 members, code ownership, not observed
in Apache, would become necessary since larger groups would
find it difficult to coordinate informally as a distributed team. As
another example, we also reasoned that open source projects with
a strong core team but with little participation beyond the core
will be able to create new functionality but will fail because of
insufficient resources devoted to finding and fixing bugs. As
noted by Stol and Fitzgerald [19] the Apache case study was
focused on the “substantive domain,” i.e., striving to understand
the particular phenomenon of open source. From the results, we
developed what they aptly call “theory fragments,” which we then
used to guide the design of a second, concept-driven, case study.

We selected Mozilla as the subject of our theoretical replication,
since it was very different from Apache on many dimensions, and
would allow us to test a number of our hypotheses. Mozilla was
much larger, had a commercial origin, a small paid staff, a
roadmap document for planning, test teams, and a formalized
code review process. Most of our hypotheses were supported; for

Group
Chat

Presence
Viewer

Figure 2. The presence awareness (above) and chat windows
of the Rear View Mirror user interface.

5

example, the Mozilla core team was much larger, and as expected,
code ownership was enforced. We also modified and extended
our hypotheses, as we observed other coordination mechanisms
such as required code review and a more explicit development
process, were also present and helped the project function at scale.
We suggested, based on these theory fragments, that some open
source processes, such as open work assignments, might be
beneficial in commercial environments. We had the chance to try
out some of these ideas, which experienced modest success [20].

5. THEORY FORMULATION AND TEST
Thus far, I have reported a collection of empirical studies aimed
primarily at understanding a particular software development
phenomenon:
How do developers coordinate their work?
Along with the empirical work on delay [13, 14] and open source
[9, 18], tool interventions ([3-5]), as well as organizational models
[6, 8] we achieved some level of understanding of how
coordination was accomplished, when and how it failed, and
deployed practices and tools to address the key practical question:
How can we improve coordination and overall project success?
The answers we found to both of these questions seemed like a bit
of a hodgepodge. Many coordination techniques and tools were
used, and it was clear that some organizations and teams were
much more successful – and better coordinated – than others. Yet
there did not appear to be any tools or practices, alone or in
combination, that seemed always to produce good results. And
while the various coordination mechanisms we explored seemed
vaguely related, it was hard to express just how. For example,
detailed specifications seemed sometimes to reduce the need for
explicit coordination, but not always. A defined process
sometimes seemed to improve communication, but there were
exceptions. RVM and ExB were taken up and used
enthusiastically by some groups, who gave fairly glowing
accounts of how helpful they were, while other groups tried them
and quickly abandoned them, or declined to use them at all
because they didn’t seem helpful.

These experiences pointed to the need for a theory that could help
explain the relationships between all of these coordination
mechanisms, give some account of how they were in some sense
all addressing the “same” problem, why they were sometimes
helpful and sometimes not, and to formulate questions and
predictions about why they might combine effectively, substitute
for each other, or conflict. This need for a unifying account led to
our efforts to develop a theory of coordination in software
engineering.

5.1 The Need for Theory
Theories, along with the empirical methods that lead to their
development and testing, are the essence of science. Historically,
in software engineering, we recognized the need for evidence to
evaluate the claims we make about the impact of our technical
contributions (e.g., [21]) long before we realized the limitations of
a validation-centric, theory-free approach to querying reality.
Accreting the results of empirical tests of claims about specific
engineering contributions does not by itself add up to broad and
enduring knowledge. It often seems to be the case that by the
time we evaluate Development Tool A, and find it is superior
under certain conditions to Development Tool B, someone has
already proposed Development Tool C, and the evaluations of A
and B do not, by themselves, give us any insight or evidence-
based expectations about C.

When we concern ourselves with the question of how general our
results are (i.e., their external validity), scientists tend to approach
this in a handful of ways [22] (pp. 24-25), four of which are:
generalize to cases that share some surface similarity, generalize
across irrelevant differences, discriminate cases with relevant
differences, and interpolate or extrapolate from known results.
Each of these involves an implicit theory that informs the scientist
of what dimensions of similarity matter, what conditions are
irrelevant, what differences matter, and what observed cases say
about those that lie between or outside them. If the implicit
theory is wrong, these approaches produce invalid generalizations.
The problem with implicit theorizing is that the theory is never
really exposed, discussed, tested, or even specified.

The final and most substantial way of making a causal
generalization is by means of an explicit theory that provides a
causal explanation of the observations [22] (p. 25). The theory
may not be fully articulated – theory fragments in Stol and
Fitzgerald’s [19] helpful terminology – but to the extent it is made
explicit and the relation of the empirical observations to the theory
is clear, explicit theory provides a basis for generalization to cases
to which the theory applies. The more support a theory accrues,
the firmer the basis for such generalizations becomes. Further
studies, of course, are also likely to find boundary conditions
beyond which the theory does not hold, and lead to modifications
or even rejection of the theory in favor of one that provides a
better fit to the evidence.
To inform the discussion that lies ahead, I’ll adopt a simple
definition of theory, realizing that many treatises have been
written on the topic, and it is notoriously full of subtleties and
philosophical land mines. For present purposes, it is enough to
say a theory is (1) a set of constructs, or entities that enter into the
theory, (2) a set of relationships that describe the ways in which
the constructs are connected or interact, and (3) a causal story
which explains how the constructs and relations give rise to
observable phenomena of interest. A theory that is complete in
some sense should have all these parts. Theories that are partly
implicit and partly specified can be called theory fragments [19].
Scientists care about evidence, then, because of the support it
provides (or does not provide) for a theory, i.e., it bears on
whether a particular theory is true. More pragmatically, we might
say that as evidence accumulates in favor of a theory: if we
behave as if that theory were true we are less likely to be surprised
by events in the theory’s domain than if we did not have the
theory. It makes the world more predictable by making it more
understandable.

5.2 A Socio-Technical Theory of
Coordination (STTC)
Building on prior theories of business process coordination [23,
24], distributed cognition [25, 26], distributed artificial
intelligence [27], and drawing theory fragments from work on
geographically distributed engineering [2, 6, 9], Audris Mockus,
Jeff Robertson and I formulated what I now call a socio-technical
theory of coordination (STTC) [10, 11].

In short, the theory conceives of coordination in software
engineering as a distributed constraint satisfaction problem
(DCSP) defined by the mutually-constraining engineering
decisions for a project. People must organize to solve this
problem by using capabilities and coordination mechanisms at
their disposal. The better the match of the solution with the
project-specific DCSP, the more effectively the project will be
coordinated. This, in turn, should lead to higher quality (fewer

6

bugs from uncaught constraint violations) and better productivity
(less time spent reworking decisions that violated constraints). We
refer to this degree of match between the coordination problem
and the organization’s coordinating activities as congruence.
The origin of the theory [11] lies in a key observation from
Hutchins’s theory of distributed cognition [28]. In particular, we
were inspired by Hutchins’s notion that many problems that teams
solve collaboratively, like the problem of navigating a ship at sea,
have an irreducible core. Navigation is grounded in geometry and
physics, and this grounding is completely independent of any
particular problem-solving mechanism. Problem-solving systems,
consisting of humans, technology, and practices, can vary
dramatically. These variations, however, can only be understood
and compared once one grasps how they address the core
problem. For example, Hutchins [28] compares the radically
different ways that navigation problems can be solved by naval
officers using modern equipment or Pacific islanders using an
entirely different theory of navigation and virtually no equipment.
Both systems “respect” the physics of navigation problems, but
have entirely different conceptual systems, practices, and tools for
addressing the problem.

This view inspired us to try to characterize the “irreducible core”
problem of coordination in software engineering, in order to see
how different kinds of practices, tools, and processes are rooted in
different ways of conceptualizing and addressing this core
problem. As is the case with ship navigation, coordination among
agents can be accomplished in many ways, but each solution
strategy has an irreducible grounding in the decisions embedded
in engineering tasks and their interdependencies [11].

Applying Yokoo’s (2001) formulation, a software project consists
of a large set of engineering decisions that must be taken in order
to complete the project. Decisions are represented as n variables
x1, x2, . . . , xn whose values are taken from finite, discrete domains
D1, D2, . . . , Dn. Assigning a value to a variable represents making
the decision represented by that variable [11].

A project has a set of constraints that operate over the variables
that represent the engineering decisions. Given an assignment of a
value for some variable, the constraints serve to limit possible
values that can be assigned to other variables. Formally,
constraints pk(xk1, xk2, . . . , xkn) can be represented as predicates
defined on the Cartesian product Dk1 x Dk2 x . . . x Dkj.
Successfully completing a project is equivalent to finding an
assignment for all variables that satisfies all constraints. [11].

In order to define a distributed constraint satisfaction problem, we
define two relations (Yokoo 2001). Each variable xj belongs to
one agent i, represented as the relation belongs(xj,i). In general,
agents only know about a subset of the constraints. We can
represent this relation as known(Pl, k), meaning agent k knows
about constraint Pl [11].

Agents attempt to solve a DCSP by assigning values to variables
and communicating with other agents. There are many standard
algorithms for solving DCSPs, and much is known about their
complexity, completeness, soundness, and performance in various
constraint landscapes (see Yokoo, 2001, for an overview). Agent
behaviors that give rise to these distributed algorithms differ in
many ways, including what the agents communicate, when they
communicate, with whom they communicate, how they decide the
order in which to make decisions, and what they do when they
discover a constraint violation. Since it is these agent behaviors
that enable and define the various algorithms, DCSP provides a
way to think about the relationship between overall project

performance and the individual behaviors and communication
patterns that give rise to this performance [11].

Better organizational performance – higher productivity, shorter
development times, and higher quality – should result when there
is a better match between the particular DCSP presented by a the
engineering work and the coordination strategies adopted and
applied by the development organization. We call the degree of
this match socio-technical congruence [29].

5.3 Empirical Studies of Congruence
In order to test this theory, one has to measure the degree of
congruence in a large number of items of software development
work, and empirically test whether work that is more congruent is
accomplished more efficiently and with higher quality. In this
section, I provide a brief overview of how we accomplished this.

In order to measure congruence, we needed to characterize the
topology of the dependency network and the topology of the
application of coordination mechanisms in ways that would allow
the degree of congruence between them to be measured. With
respect to the dependency network, it is not feasible to try to fully
capture all decisions and all constraints among them. Developers
often make a great many decisions each day, and a complete
account of the ways in which each decision constrains all other
decisions would be exceedingly difficult to construct.

An appropriate aggregation of decisions, however, could perhaps
provide a sufficient characterization to allow an empirical test. We
could consider a file of source code to be a clump of decisions
[10], each file being a node in an aggregated dependency network
or undirected graph. Edges in the graph represent work
dependencies between nodes, i.e., an edge between two nodes
indicates that decisions in each node constrain, or have an effect
[10] on decisions in the other node.
The dependencies between nodes could be measured in several
ways, for example call graphs or data dependencies, but we have
found logical dependencies [30] to be effective for our purposes
[31, 32]. It is convenient to use a matrix representation of the task
dependency network, TD where rows and columns are nodes and
cell entries are edge weights, reflecting a measure of logical
dependency (i.e., the number of times two files have been
changed together as part of the same work item [30]). With
respect to the DCSP formulation, these dependencies provide an
abstract representation of the set of predicates that express the
constraints.
A graph representing the assignment of decisions to developers
can be constructed in analogous fashion, once again aggregating
decisions to the level of files. We construct a task assignment
matrix TA where each developer is a row i and each file is a
column j, and the cell entry is the number of times developer i
modified file j. In DCSP terminology, this provides an aggregated
representation of the belongs relation.

The following matrix multiplication [29, 31, 33] allows us to
construct a coordination requirements matrix, CR

CR = TA * TD * TA
T

where TA
T is the transpose of the task assignment matrix. CR is a

square matrix where developers populate the rows i and columns
k, and the cell entry reflects the extent to which developer i
engages in work that has task dependencies with the work
engaged in by developer k.

Actual coordination, or the use of a particular coordination
mechanism by a pair of developers, can also be represented as a
square matrix CA where developers once again populate the rows

7

and columns, and each entry represents the extent of use of a
particular mechanism by developer i and developer k. For our
purposes, we have found binary cell values – a pair of developers
did or did not use a particular coordination mechanism – to be
sufficient. This is roughly equivalent to the known relation in the
DCSP formulation – if two developers are actually employing a
coordination mechanism, it is highly likely they know about the
constraint.

Congruence, or the degree of match between CR and CA, can be
computed as the proportion of non-zero cells in CR that are
matched by actual coordination, indicated by a non-zero cell in
the same location in CA. Congruence can range from 0, if no non-
zero cell in CR is matched by a non-zero cell in CA, to 1, if every
non-zero cell in CR is matched by a non-zero cell in CA.

The final step is to compute congruence for a large number of
work items and construct a statistical model to assess the degree
of association between congruence and desirable outcomes,
particularly quality and productivity, while controlling statistically
for the many other variables that can impact these outcomes. We
did this originally in one commercial development organization,
using a multiple regression model to assess the impact of four
different coordination mechanisms on development speed [29,
34], and later assessing impact on code quality and replicating
both results in a different commercial organization [33].

This empirical work provides support for STTC, but it really just
scratches the surface. It has a number of important limitations. It
looked only at the match between the people who needed to
coordinate and their use of four different coordination
mechanisms. It did not examine other coordination mechanisms
(shared work history, offline communication, use of shared
documentation, etc.) nor did it attempt to advance our
understanding of what mechanisms are effective for what kinds of
constraints. In fact, many more questions are raised by this work
than are answered (which I take to be a good thing for a theory!).
Among the important questions:

• Coding is just one of many engineering tasks. What do
dependency networks look like in this larger set of tasks, and
how can we compute coordination requirements?

• Popular frameworks, libraries, and APIs undoubtedly impose
structure on the task dependency networks of projects using
them – can we capture this imposed structure and use it in
various ways to facilitate coordination?

• Projects extend through time, and as decisions are made, the
decision network changes, perhaps radically. What are these
changes, and how can we recognize and accommodate this
evolving structure with the coordination mechanisms at our
disposal?

• How early in a project can we usefully predict coordination
requirements and how can we use this information in
planning?

• What is the full set of coordination techniques that
development organizations can use?

• Can different techniques substitute for each other, e.g., relax
use of a defined process if advanced collaboration
technologies are used?

• How can we compose various coordination techniques to
build a complete coordination solution for a given project?

• Given that we can compute or predict coordination
requirements, how do we match them with appropriate
coordination techniques for a given project?

• How do we know when it is appropriate to introduce
particular coordination techniques to an ongoing project to
address coordination issues, or to drop them when they are
not needed?

5.4 STTC and Transparency
Social coding environments are introducing very substantial
changes in how coordination happens, often accompanied by
innovative processes, especially the continuous delivery model
(see, e.g., [35]). In practice, continuous delivery often includes
elements such as micro-service architectures, small teams,
decentralized decision-making, requirements expressed as
improving specific business metrics, and a DevOps approach to
deployment [36]. There is also rapid growth in commercial use of
open source software, which increasingly is developed and
maintained in the context of a software ecosystem, or collection of
related and interdependent projects (e.g., [37, 38].
New environments and life cycle models impact the nature of the
engineering decisions, the task interdependencies that define the
coordination DCSP, and the organizational capabilities and
coordination mechanisms available to solve it. The constraints
among engineering tasks that seem most critical from a
coordination point of view are those that arise from dependencies
among different repositories. A quick examination of
dependencies in any sizeable project (e.g., by examining the
package manager for the language in which the project is written)
generally shows large numbers of dependencies, especially if one
looks at the transitive closure. Since changes in any project one
depends on, directly or indirectly, could impact one’s project (i.e.,
violate one or more constraints), and since these other projects are
under the control of other developers who can change them at
will, the situation is much less predictable than traditional
commercial environments that use techniques such as
roadmapping to help ensure that code changes do not break code
that depends on them.

In the face of constraints arising from widespread, diffuse, and
largely “unmanaged” (in the traditional sense) dependencies,
social coding environments are extremely useful. A central novel
characteristic of these environments is transparency, or the
“accurate observability, of an organization’s low-level activities,
routines, behaviors, output, and performance” [39] p. 181).
Transparency is key to coordinating work where decision-making
is decentralized and developers take a large share of responsibility
for creating and managing dependencies [40]. Social coding
environments allow explicit social media style connections to
repositories and people, capture a detailed history of development
activity in a repository and its forks in ways that are readily
browsed, searched, and shared. Asynchronous communication is
supported through comments on artifacts. Contribution to external
repositories and code review are made simpler by a pull request
mechanism. These environments and the necessity of managing
change have given rise to practices and policies that support a
number of quite distinct styles of coordination based in a
community’s values [41].

In a qualitative study of developers using GitHub [40], we studied
the kinds of decisions developers made and how they related to
the information available in the environment and the activities of
other developers. We found that developers used several kinds of
information in deciding whether to create a dependency on a
project, including the recency and volume of activity, and whether
pull requests were handled in a timely way. They used signals of
attention, such as number of watchers and forks, to gauge the
quality and importance of a project. They attended to commits to

8

identify potentially contentious or troublesome commits that
might break their code. If breaking changes occurred, they often
communicated with the owner of the breaking code, sometimes
submitting a pull request to the external project to modify the
code that was causing their problem.

External code submissions, often to provide fixes or
enhancements desired by the users of one’s code, presented the
decision of whether to accept the code. In a quantitative study of
pull request acceptance [42], we found that both following
technical norms (e.g., include test cases, keep changes small) and
having a social connection (e.g., submitter follows pull request
closer, previously submitted pull request) substantially increased
the likelihood of acceptance. Lengthy discussions, which often
question either the intent or the solution quality of a pull request
[43], sharply decreased the odds of acceptance, except when the
submitter had a social connection with the project.

In future work, we plan to move toward a congruence approach,
as we identify the ways in breaking changes propagate across
repository boundaries, to see if we can establish how the various
kinds of coordination mechanisms (e.g., comments, subscriptions
via watching and starring, observing changes in forks) match up
with different technical coordination problems and how they
impact outcomes.

6. CONCLUSION
Coordination is one of the fundamental problems of software
engineering. I have argued that it is a fundamentally socio-
technical phenomenon, where one must take into account both the
technical dependencies among engineering tasks, which
collectively define the problem, and the ways that people organize
to find a solution. This can be nicely characterized as a
distributed constraint satisfaction problem, which I think captures
the irreducible core of coordination in software engineering,
allowing us to see the common underlying impact of all of the
varied means of coordination, from software process and
collaboration technology, to the coordination implications of
traditional design strategies such as modular product structure and
architectural styles. These are sets of practices with different
underlying conceptual structures all addressing parts of the same
irreducible core problem.

I think it is clear that theory is necessary in order for us to take a
scientific approach to understanding the complexity of the
pervasive role of humans in software engineering. Progress will
be fragmented and it will be very difficult to cumulate results into
a deeper understanding, unless our research is grounded in theory.
Mary Shaw, in her eloquent keynote talk at ICSE 2016, in
assessing the progress of software engineering toward a true
engineering discipline, noted that engineering is preferentially
based in science. The science we need, as I have argued
elsewhere, [44], requires theory, and because of the fundamentally
socio-technical nature of key phenomena, will also extend well
into the human domain, being based as much on behavioral
science as computer science.

7. ACKNOWLEDGEMENTS
This work was supported by NSF awards 1633083, 0534656,
0414698, 0943168, 1546393, 1111750, 1322278, a grant from the
Alfred P. Sloan Foundation, The Google Open Source Program
Office, IBM, Siemens, Bosch, Accenture, and the Center for the
Future of Work, Heinz College, Carnegie Mellon University. I
would also like to thank all of my extraordinarily talented
collaborators.

8. REFERENCES
[1] Brooks, F. P. No Silver Bullet: Essence and Accidents of

Software Engineering. IEEE Computer, 20, 4 (1987), 10-19.
[2] Herbsleb, J. D. and Mockus, A. An Empirical Study of Speed

and Communication in Globally-Distributed Software
Development. IEEE Transactions on Software Engineering,
29, 3 (2003), 1-14.

[3] Handel, M. and Herbsleb, J. D. What is Chat Doing in the
Workplace? In Proceedings of the Conference on Computer-
Supported Cooperative Work (New Orleans, LA, 2002).

[4] Herbsleb, J. D., Atkins, D. L., Boyer, D. G., Handel, M. and
Finholt, T. A. Introducing Instant Messaging and Chat into
the Workplace. In Proceedings of the ACM Conference on
Computer-Human Interaction (Minneapolis, MN, 2002).

[5] Mockus, A. and Herbsleb, J. D. Expertise Browser: A
Quantitative Approach to Identifying Expertise. In
Proceedings of the International Conference on Software
Engineering (Orlando, FL, 2002).

[6] Herbsleb, J. D. and Grinter, R. E. Splitting the Organization
and Integrating the Code: Conway’s Law Revisited. In
Proceedings of the 21st International Conference on
Software Engineering (ICSE 99) (Los Angeles, CA, May 16-
22, 1999). ACM Press,

[7] Herbsleb, J. D. and Grinter, R. E. Architectures, Coordination,
and Distance: Conway's Law and Beyond. IEEE Software,
Sept./Oct. (1999), 63-70.

[8] Grinter, R. E., Herbsleb, J. D. and Perry, D. E. The Geography
of Coordination: Dealing with Distance in R&D Work. In
Proceedings of the GROUP '99 (Phoenix, AZ, November 14-
17, 1999).

[9] Mockus, A., Fielding, R. T. and Herbsleb, J. D. Two case
studies of open source software development: Apache and
Mozilla. ACM Transactions on Software Engineering and
Methodology, 11, 3 (Jul 2002), 309-346.

[10] Herbsleb, J. D. and Mockus, A. Formulation and Preliminary
Test of an Empirical Theory of Coordination in Software
Engineering. In Proceedings of the ACM SIGSOFT
Symposium on the Foundations of Software Engineering
(FSE) (Helsinki, Finland, September 1-5, 2003).

[11] Herbsleb, J. D., Mockus, A. and Roberts, J. A. Collaboration
in Software Engineering Projects: A Theory of Coordination.
In Proceedings of the International Conference on
Information Systems (Milwaukee, WI, 2006).

[12] Olson, G. M. and Olson, J. S. Distance Matters. Human-
Computer Interaction, 15 (2000), 139-178.

[13] Herbsleb, J. D., Mockus, A., Finholt, T. A. and Grinter, R. E.
Distance, Dependencies, and Delay in a Global
Collaboration. City, 2000.

[14] Herbsleb, J. D., Mockus, A., Finholt, T. A. and Grinter, R. E.
An Empirical Study of Global Software Development:
Distance and Speed. IEEE Press, City, 2001.

[15] Guernsey, L. You Can Surf, but You Can't Hide. City, 2002.

[16] Raymond, E. S. The Cathedral and the Bazaar. O'Reilly,
Sebastopol, Cal., 2001.

[17] Lerner, J. and Tirole, J. Some simple economics of open
source. The journal of industrial economics, 50, 2 (2002),
197-234.

9

[18] Mockus, A. u., Fielding, R. T. and Herbsleb, J. D. A Case
Study of Open Source Software Development: The Apache
Server. In Proceedings of the International Conference on
Software Engineering (Limerick Ireland, June 5-7, 2000).

[19] Stol, K.-J. and Fitzgerald, B. Theory-oriented software
engineering. Science of Computer Programming, 101 (2015),
79-98.

[20] Gurbani, V. K., Garvert, A. and Herbsleb, J. D. A case study
of a corporate open source development model. In
Proceedings of the International Conference on Software
engineering (Shanghai, China, 2006).

[21] Basili, V. R., Selby, R. W. and Hutchens, D. H.
Experimentation in software engineering. IEEE Transactions
on Software Engineering, 12 (1986), 758-773.

[22] Shadish, W. R., Cook, T. D. and Campbell, D. T.
Experimental and quasi-experimental designs for
generalized causal inference. Wadsworth Cengage learning,
2002.

[23] Malone, T. W., Crowston, K. and Herman, G. A. Organizing
Business Knowledge: The MIT Process Handbook. MIT
Press, Cambridge, MA, 2003.

[24] Malone, T. W. and Crowston, K. The interdisciplinary study
of coordination. ACM Computing Surveys, 26, 1 (1994), 87-
119.

[25] Hollan, J., Hutchins, E. and Kirsh, D. Distributed Cognition:
Toward a New Foundation for Human-Computer Interaction
Research. ACM Transactions on Computer-Human
Interaction, 7, 2 (June 2000), 174-196.

[26] Hutchins, E. The Technology of Team Navigation. Lawrence
Erlbaum, City, 1990.

[27] Durfee, E. H. Organisations, Plans, and Schedules: An
Interdisciplinary Perspective on Coordinating AI Systems.
Journal of Intelligent Systems, 3, 2-4 (1993), 157-187.

[28] Hutchins, E. Cognition in the Wild. The MIT Press,
Cambridge, MA, 1995.

[29] Cataldo, M., Wagstrom, P. A., Herbsleb, J. D. and Carley, K.
M. Identification of coordination requirements: implications
for the Design of collaboration and awareness tools. In
Proceedings of the Computer supported cooperative work
(Banff, Alberta, Canada, 2006).

[30] Gall, H., Hajek, K. and Jazayeri, M. Detection of Logical
Coupling Based on Product Release History. In Proceedings
of the International Conference on Software Maintenance
(Bethesda, Maryland, 1998).

[31] Cataldo, M., Herbsleb, J. D. and Carley, K. M. Socio-
Technical Congruence: A Framework for Assessing the
Impact of Technical and Work Dependencies on Software
Development Productivity. In Proceedings of the
International Symposium on Empirical Software Engineering
and Measurement (Kaiserslautern, Germany, 2008).

[32] Cataldo, M., Mockus, A., Roberts, J. and Herbsleb, J.
Technical dependencies, work dependencies and their impact
of failures. IEEE Transactions on Software Engineering, 35,
6 (2009), 864-878.

[33] Cataldo, M. and Herbsleb, J. D. Coordination Breakdowns
and Their Impact on Development Productivity and Software
Failures. IEEE Transactions on Software Engineering 39, 3
(March 2013), 343-360.

[34] Cataldo, M., Herbsleb, J. D. and Carley, K. M. Socio-
technical congruence: a framework for assessing the impact
of technical and work dependencies on software
development productivity. In Proceedings of the ESEM '08:
Proceedings of the Second ACM-IEEE international
symposium on Empirical software engineering and
measurement (New York, NY, USA, 2008). ACM.

[35] Humble, J. and Farley, D. Continuous delivery: reliable
software releases through build, test, and deployment
automation. Pearson Education, 2010.

[36] Bass, M. Software Engineering Education in the New World:
What Needs to Change? In Proceedings of the 2016 IEEE
29th International Conference on Software Engineering
Education and Training (CSEET) (2016). IEEE.

[37] Jansen, S., Finkelstein, A. and Brinkkemper, S. A sense of
community: A research agenda for software ecosystems. In
Proceedings of the International Conference on Software
Engineering-Companion (2009). IEEE.

[38] Bosch, J. From software product lines to software
ecosystems. In Proceedings of the 13th international
software product line conference (San Francisco, CA, 2009).
ACM.

[39] Bernstein, E. S. The transparency paradox a role for privacy
in organizational learning and operational control.
Administrative Science Quarterly, 57, 2 (2012), 181-216.

[40] Dabbish, L., Stuart, C., Tsay, J. and Herbsleb, J. Social
Coding in GitHub: Transparency and Collaboration in an
Open Software Repository. In Proceedings of the Computer-
Supported Cooperative Work (Seattle, WA, 2012).

[41] Bogart, C., Kästner, C., Herbsleb, J. and Thung, F. How to
Break an API: Cost Negotiation and Community Values in
Three Software Ecosystems. In Proceedings of the
Foundations of Software Engineering (Seattle, WA, 2016).

[42] Tsay, J., Dabbish, L. and Herbsleb, J. Influence of social and
technical factors for evaluating contribution in GitHub. In
Proceedings of the Proceedings of the 36th International
Conference on Software Engineering (2014). ACM.

[43] Tsay, J., Dabbish, L. and Herbsleb, J. Let’s talk about it:
Evaluating contributions through discussion in GitHub. In
Proceedings of the ACM International Symposium on
Foundations of Software Engineering (2014).

[44] Herbsleb, J. D. Beyond computer science. In Proceedings of
the International Conference on Software Engineering (St.
Louis, MO, 2005). IEEE.

Columns on Last Page Should Be Made As Close As
Possible to Equal Length

10

